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Abstract

This paper combines extreme value theory for the smallest and largest k& obser-
vations for some given k£ > 1 with a normal approximation for the average of the
remaining observations to construct a more robust alternative to the usual t-test.
The new test is found to control size much more successfully in small samples com-
pared to existing methods in the presence of moderately heavy tails. This holds
for the canonical inference for the mean problem based on an i.i.d. sample, but
also when comparing two population means and when conducting inference about
linear regression coefficients with clustered standard errors.
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1 Introduction

The usual t-test for inference about the mean of a population from an i.i.d. sample is a
key building block of statistics and econometrics. Not only does it have numerous direct
applications, but also many other standard forms of inference reduce to the application of a
t-test applied to a suitably defined sample. For example, consider a linear regression with
scalar regressor, Y; = X;5 +¢;, B[X;e;] = 0. A test of the null hypothesis Hy : 5 = (3, reduces
to a test of E[W;] = 0 for W; = (V; — X;5,)X;, and the usual t-statistic computed from
the i.i.d. sample W, amounts to a specific version of the usual heteroskedasticity robust test
suggested by White (1980). Under clustering that allows for arbitrary correlations between ¢;
(¥; = X;80)X;. In

the presence of additional controls Y; = X;8 + Z!v + ¢;, the equivalence to the inference for

for all j € C;, i = 1,...,n, the effective observations become W; = 3 e
the mean problem holds approximately after projecting Y; and X; off Z;. This further extends
to instrumental variable regression and parameters estimated by GMM.

The asymptotic validity of standard t-statistic based inference relies on two arguments.
First, the law of large numbers implies that the variance estimator in the denominator has
negligible estimation error. Second, and more importantly, a central limit theorem applied
to the numerator yields approximate normality. As is well known, a key condition for the
central limit theorem is that each term contributes negligibly to the overall variation. But
underlying populations with heavy tails are characterized by the presence of large terms. Even
if the second moment exists, so that t-statistic based inference is asymptotically justified, large
samples might be required before the normal approximation becomes accurate.

In the simple regression context above, there are many reasons why W, might have long
tail(s). The most straightforward one is simply that the disturbances ¢; are heavy tailed.
Many economic variables of interest, such as income, health care costs, firm sizes or asset
returns have long tails.

Even if the ¢; are not particularly heavy-tailed, WW; might have long left or right tails
because the corresponding value of the regressor X is large—these are influential observations,
which by definition contribute substantially to the sampling variation of 3. A particular
version of this effect arises in clustered regressions: If the clusters are of fairly heterogeneous
size (think of the 50 states of the U.S., say), then the large clusters typically make a non-
negligible contribution to the sampling variation of B, again threatening the validity of a

normal approximation.



Of course, these effects are more pronounced in small samples. The effective sample size
for the normal approximation of the t-statistic is often considerably smaller than the raw
number of observations in a study, and not all that large. This may be because researchers are
interested in inference for smaller subgroups, or because nonparametric kernel estimators are
employed that effectively depend only on relatively few observations, or because the relevant
variation only stems from a small fraction of observations, such as in studies about rare events.
It is also very common for standard errors to be clustered, reducing the effective number of
independent observations to the number of clusters, which tends to be only moderately large.

This paper develops an alternative to t-statistic based inference that performs more reli-
ably when the underlying population has potentially heavy tails. The focus is exclusively on
the case of moderately heavy tails, that is, the first two moments exist, so that asymptoti-
cally, t-statistic based inference is valid. The aim is to devise an inference method that suffers
from less size distortions if the underlying population has moderately heavy tails, without
losing much in terms of efficiency if the underlying population has light tails. The theoretical
development only concerns the canonical inference for the mean problem. But standard lin-
earization arguments imply that inference about a scalar parameter estimated by GMM, with
or without clustering, can be rewritten as a specific inference for the mean problem. The new
robust t-test developed for the mean problem can hence, without any further modifications,
be used to obtain more reliable inference for most problems of applied interest, such as for a
coefficient in a linear regression.

To describe the key idea, consider testing Hy : E[W;] = 0 against H, : E[W;] # 0 based on
an i.i.d. sample W;, i = 1,... ,n, from a population W with cumulative distribution function
F. For expositional ease, suppose that I’ has a thin left tail, but a potentially heavy right
tail. For some given k, let W = (WJE WL ... WE) be the k largest order statistics, with
W the sample maximum. Conditional on W, the remaining “small” observations W},
i=1,...,n—k are i.i.d. draws from the truncated distribution with c.d.f. F(w)/F(W}) for
w < W The mean of this truncated distribution under Hy is no longer zero, however, but
is given by —m(W}) < 0, where
P(W > w)E[W|W > w]

1-P(W > w)

m(w) = —EB[W|W < w| =

Note that m(w) for w large is determined by the properties of F' in its right tail.
The idea now is to apply three asymptotic approximations. First, invoke standard extreme

value theory to obtain an approximation for the distribution of W in terms of a (joint) ex-
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treme value distribution governed by three parameters describing location, scale and shape.
Second, apply the central limit theorem to the conditional i.i.d. sample of remaining obser-
vations W7 from the truncated (and hence no longer heavy-tailed) distribution to argue that
(n— k)™ Z?:_Ik W? is approximately normal with mean —m(W}[) under H, (and arbitrarily
different mean under the alternative H,). Third, by the same arguments that justify extreme
value theory, obtain an approximation to m(w) in terms of the three parameters that govern
the distributional approximation of W*.

These approximations lead to a parametric approximate joint model of k+1 statistics: W1
is jointly extreme value, and (n — k)~* Z?’;lk W# is normally distributed with a mean that,
under Hy, depends on W2 and the parameters of the extreme value distribution. For given k,
this is a small sample nonstandard parametric testing problem, and one can construct tests
that are of level o under the approximate parametric model. Once the test is applied to the
original mean testing problem, it is no longer exactly valid by construction. But the explicit
modelling of the potentially moderately heavy tail via extreme value theory might improve
performance over the usual t-test.

The main theoretical result of this paper corroborates this conjecture. For this result, we
consider a population for which extreme value theory provides accurate approximations, and
that possesses a finite variance but no third moment. In the asymptotics, we treat k as a
fixed number that does not vary as a function of n. In this way, the asymptotics reflect that
moderately large samples only contain limited information about the tail properties of the
underlying population. We show that the approximation error of the parametric model for k
fixed induces an error in the rejection probability in the mean testing problem that converges
to zero faster than the error in rejection probability of the usual t-test. In that sense, the
new approach yields a refinement over the usual t-test and provides theoretical support for
the usefulness of the new perspective.

A natural alternative to obtain more accurate approximations is to consider the boot-
strap. Bloznelis and Putter (2003) show that the percentile-t bootstrap provides a refinement
whenever the underlying population has at least three moments. A second, apparently new
theoretical result shows that the bootstrap does not provide a refinement when the under-
lying population has between two and three moments. Thus, precisely under the conditions
that lead to a relatively poor performance of analytical critical values, the bootstrap fails to

generate an improvement. !

'On the flip side, the exact test in the parametric approximate model may well not provide



The approach readily generalizes to the case where both tails are potentially heavy. The
approximate parametric model then consists of 2k + 1 statistics, with & joint extreme value
observations from the left tail governed by three parameters, k extreme value observations from
the right tail governed by their own three parameters, and the conditionally normal average of
the middle observations. Since in most applications, there are no compelling reasons to assume
any constraints between the properties of the left and right tail, the approximate parametric
problem is thus indexed by a six dimensional nuisance parameter. We use a version of the
algorithm of Elliott, Miiller, and Watson (2015) to numerically determine a powerful test in
this parametric problem for selected values of k.

Our preferred default test uses £ = 8 and is appropriate when the sample consists of at
least 50 independent clusters or observations. (We also provide an alternative, even more
robust test for £ = 4 that is applicable to samples with as few as 25 independent clusters
or observations.) We analyze this test with extensive Monte Carlo simulations, with data
generated from “smooth” analytical distributions, and from draws with replacement from large
economic data sets. We find that the new test leads to much better size control in moderately
large samples compared to existing methods, at fairly small cost in terms of average confidence
interval length for thin-tailed populations. This is true in the canonical inference for the mean
case, as predicted by the theory, but also when comparing two means, and for inference about
regression coefficients under clustering. In one design, the clusters are Metropolitan Statistical
Areas, which are fairly heterogeneous in size. This heterogeneity induces the resulting W; to
be quite heavy-tailed, which leads to poor performance of standard cluster robust inference.
A moderately large number of heterogenous clusters (say, no more than 100 or 200) is quite
common in empirical work, making the new approach particularly attractive in such settings.

The remainder of the paper is organized as follows. The next section describes the new test
in a general GMM set-up. Section 3 reports its performance in some small sample simulations.
Section 4 discusses the theoretical background for the new theoretical results. Section 5
contains the theoretical development in the inference for the mean problem. Section 6 provides

details on how the new test of Section 2 was constructed. Section 7 concludes.

a refinement for underlying populations with more than three moments. It is arguably more
important to improve the size control of the usual t-test under conditions where it performs

poorly, however, that is, when the tails are not thin.



2 Suggested New Test

Suppose we are interested in testing Hy : § = 3, against H; : 8 # [3, for a scalar parameter (3
that is part of a parameter vector ¢ = (3,7)" € R? estimated by Hansen’s (1982) Generalized
Method of Moments. In particular, assume that ¢ is identified from the r x 1 moment condition
Elg(¥, z;)] = 0 imposed on the data z;, j = 1,...,n,, and we use an 7 X r positive definite
weighting function o (which is irrelevant in the exactly identified r = ¢ case). Suppose further
that the data z; is 1.i.d. across clusters defined by the partition {C;}}; of {j : 1 < j < n}
(so that C; = {i} and n = n, under i.i.d. sampling of z;). Then as n — oo, under standard

regularity conditions, 9 = (B ,4') satisfies
Vi) —9) = (['UT) T8 -n72Y "G+ o,(1) (1)
i=1

where G; = 3. 9(V, z;) are i.id., [=—n! > 52109(9,2) /09 | 5_p L Tand U % U with T
and ¥ non-stochastic, so that the large sample variability of ¥ is entirely driven by the average
of i.i.d. observations G;. Correspondingly, the standard GMM hypothesis test of Hy : 8 = 3,
is numerically equivalent to the usual t-test of a zero population mean applied to the the n

observations

W, =B — By + 40D Gy, i=1,....n (2)
where G; = Zjeci g({(},zj) and ¢; is the ¢ x 1 vector (1,0,...,0)". For instance, for a linear
regression Y; = X' + ¢; with OLS coefficient 0 = (B, 4') and &, =Y; — X]’f}, we obtain

n -1

Wi =B—By+ 1 (nlzZXjX§> > X (3)
=1 j€C; Jj€eC;

In the inference for the mean case Hy : E[W;] = 0 for an i.i.d. sample W;, ¢ = 1,...,n with

sample average 3 = n™! Yoy Wi, (3) simply recovers Wi=p3+ (W, —B)=W,.

The practical upshot of this paper is the suggestion to replace the standard GMM test of
Hy : 3 = B, with a more robust t-test applied to the observations {I¥;}"_,. This new test has
a somewhat complicated form due to numerical and other considerations described in Section
6 below, but the basic logic is the one described in the introduction. The test allows for both
the left and right tail to be potentially (moderately) heavy.

To define the test, let W2 = (WE WE ... WE) be the k largest order statistics of
{W;}r_,, with WF the sample maximum, let WX = (WF WL, ... WE) the k smallest
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A ~ M
order statistics, with Wl the sample minimum, and let s2 = SR W — W, )2

n— 2k:
with W, = S 1% W™ be the sample variance estimator of the remaining n — 2k
“middle” observations. Define Yy = ((n — 2k)s2)~'/2 Z?:fk W™, the two k x 1 vectors
YL = —((n — 2k)s2)"Y2°WE and YR = ((n — 2k)s2)"Y/2WZE, and the 2k 4+ 1 vector

Y = (Y, Y, Y®). The suggested more robust t-test oNEW (Y) of level a rejects Hy : 3 = S,
ONEW(Y) = 1, if and only if all of the following four conditions hold:
(i) 1T(Y )| > CVT(Y) where

Yo + Zf:l yz'R - Zf:1 yzL
k k ’
VI W2+ Y (2

Weu (y) evZ +(1 = wey (y)) eviy with weu(y) = 1/(1+ 3 (4?2 + 30, (F)?) and (evZ, evl)
the 1 — /2 quantiles of a standard normal and student-t distribution with degrees of freedom

T(y) = (4)

equal to 80 + 10log(«), respectively.
ii) ©%(Y) = 1, where, for some integer M5, 85 € ©F ¢ R3and )’ > 0,
¥ % 0 7

MS
©*(y) =1 |explx(y")] - £7(y™) > Y NS (v165) (5)

i=1

and for some constants p;, p, > 0 and s¢(u) = “72’1, 0° = (k,n,£), & = —0.49 + %,
x(y") = max(0,5min(ys — py, 1yg > 0)(y1'/yx — 1= p,)) (6)
10 1
1
SRy _ & PR | k—1/, R _ . R\—k

126" = 4 ; D(k = &)u5 s, (u)* Myl — yi) (7)

—(14& Zlog(1+§s ) yR>

o — Sy yk + M*(y",0%)

X exp

Aylo%) = fr(y®l6%)e¢ \/1 ) (8)
+ i (yh)?
M*(yRaes) = 77('2115)71/E (KJ + £<1Zk_ 3 - %) (9)

fr(y"6%) = 1z > 011z > O]y~ exp[( (et Zlog ] (10)

with 27 =14 £(yf*/n — k) and ¢(-) the standard normal p.d.f.
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(111) @S((_ 0>?R/>?L/>/) =1
(iv) ¢*(Y) = 1, where for some integer M, 6; € ©y C RS and \; > 0,

F(¥) =1 faly) > DN (Y10 | (11)

f3) = 2y £3(y") and for 6 = (9%, 0%) with 0%, 0" € R3,
fyl0) = $(f(y[(6",6),0) + f(yl((67,6"),0)) (12)
f310, ) = fr(y®10%) fr(y"10%)d(yo — p+ M*(y"™,0%) — M*(y*,6")). (13)

The numbers {\Y, 0537 {X\; 0;}M,, p, and p, are specific to k, the level o of the test,
and the nuisance parameter space ©y C RS (and the derived space ©F C R?; see Section 6.2),
but do not depend on the data in any way. As described in more detail in the supplemental
appendix, we have numerically determined these numbers for a wide range of significance
levels a for k = 8 for our preferred default parameter space Oy that is appropriate for all
sample sizes larger than n > ng = 50. In addition, we also provide corresponding tables for
k = 4 computed under a larger nuisance parameter space O that is appropriate for samples
with 25 < n < 50. The p-value of Hy : f = 3, is given by the largest value of o such that
the tests reject for all o/ < «a. Confidence intervals of level 1 — « can be obtained via test

NEW at ¥’s computed from

inversion,? which in light of (2) simply amounts to evaluating ¢
location shifted W;’s.

While the determination of the numbers that fully determine the tests NFW was
computationally involved, we stress that the evaluation of the tests to obtain confidence
intervals and p-values in applications does not pose any significant computational bur-
den. A corresponding “post-estimation” STATA command that provides p-values and
confidence intervals after running regressions and related commands is available under

http://github.com/ukmueller/robttest.

3 Small Sample Results

This section presents six sets of small sample results: two for inference about the mean from

an i.i.d. sample, two for the difference of population means from two independent samples,

2In the rare samples where test inversion yields disconnected sets, we set the confidence

interval equal to the smallest interval that contains all non-rejections.
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and two for a regression coefficient with clustered standard errors. In all three cases, the data
is either generated from analytical distributions, or from draws with replacement from a large
data set. We focus on tests of nominal 5% level in the main text; results for 1% level tests are

reported in the supplemental appendix.

3.1 Inference for the Mean

We initially compare the new test with & = 8 (“NEW”) with three standard tests for the
population mean: standard t-statistic based inference with critical value from a student-t
distribution with n — 1 degrees of freedom “T-STAT”; the percentile-t bootstrap based on
the absolute value of the t-statistic “SYM-BOOT”; and the percentile-t bootstrap based on
the signed t-statistic “ASYM-BOOT”. The data is generated from one of seven populations:
the standard normal distribution N(0,1), the log-normal distribution LogN, the F-distribution
with 4 degrees of freedom in the numerator and 5 in the denominator F(4,5), the student-t
distribution with 3 degrees of freedom t(3), an equal probability mixture between a N(0,1) and
LogN distribution Mix1, and a 95 / 5 mixture between a N(0,1/25) and a LogN distribution
Mix2. All population distributions are normalized to have mean zero and unit variance; the
corresponding densities are plotted in Figure 1.

Table 1 reports null rejection probabilities, along with the average lengths of the resulting
confidence intervals, expressed as a multiple of the average length of the infeasible confidence
interval that is based on the t-statistic, but applies the size adjusted critical value. As can be
seen from Table 1, the new method comes much closer to controlling size under moderately
heavy-tailed distributions. For the thin-tailed normal population, the new method only leads
to 10% longer intervals for n = 50, and essentially no excessive length for n € {100,500}. For
other populations, the intervals of the new method are often much longer than those from other
methods; but since the other methods do not come close to controlling size, that comparison
is not meaningful (entries in bold indicate where tests are close to valid with a null rejection
probability below 6%). Remarkably, for n = 50, the new method yields shorter confidence
intervals than the size corrected t-statistic for some populations while still controlling size.
The explicit modelling of the tails can also yield efficiency gains, since under non-normal
populations, the sample mean is not in general the efficient estimator of the population mean.

An exception to the good performance of the new method is the student-t population with

three degrees of freedom. Even though it has fairly heavy tails, with the third moment not



Figure 1: Population Densities in Monte Carlo Experiments
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Table 1: Small Sample Results in Inference for the Mean

N(0,1) LogN F(4,5) t(3) P(0.4) Mix 1 Mix 2
n = 50
T-STAT 5.0/0.99 10.0/0.74 13.5|0.65 4.7|]1.01 13.6/0.62 7.4/0.88 18.8]0.60

SYM-BOOT ~ 5.0/1.00  7.8/1.07 10.8/1.27 4.1|1.11 10.6]1.35 6.9/1.12 18.1|1.44
ASYM-BOOT 5.2/1.00  6.9/0.96 8.9|1.03 7.4/1.06 8.6/1.07 8.1/1.02 17.6/1.08

NEW 38/1.10 3.2/0.93 4.5/0.77 3.3]1.44 520.72 3.3[1.11 12.2/0.66
n =100
T-STAT 4.9]1.00 8.20.83 10.9/0.73 4.6/1.01 11.5/0.71 6.90.91 15.4/0.60

SYM-BOOT ~ 5.0/1.00  6.7]1.04 9.1|1.21 4.2(1.08 9.2[1.19 6.4/1.06 14.1]1.17
ASYM-BOOT 5.1/1.00  6.5[0.97 7.5]1.02 6.6/1.05 7.7]1.00 7.4/1.00 13.4]0.95

NEW 48(1.01 3.1/1.26 3.6/1.04 3.8/1.37 3.6]1.00 3.3|1.31  7.9/0.75
n = 500
T-STAT 5.0/1.00 5.9]/0.95 7.8/0.87 4.8/1.01 7.9]0.86 5.8/0.97  9.6/0.77

SYM-BOOT ~ 5.0[1.00 5.4[1.01  6.9|1.10 4.7/1.03 6.8/1.19 5.4/1.01  8.1/1.04
ASYM-BOOT 5.0/1.00 5.5]1.00  7.0]1.01 6.1/1.02 6.4/1.05 6.0[1.00  7.7]0.95
NEW 49/1.00 4.1|1.18 4.3|1.21 4.5[1.13 4.1]1.22 4.4[1.18 3.21.21

Notes: Entries are the null rejection probability in percent, and the average length of confidence
intervals relative to average length of confidence intervals based on size corrected t-statistic
(bold if null rejection probability is smaller than 6%) of nominal 5% level tests. Based on
20,000 replications.
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existing, its symmetry enables T-STAT and SYM-BOOT to control size at much less cost to
average length compared to the new method.?

A potential objection to this first set of Monte Carlo results is that the underlying pop-
ulations have smooth tails, which might overstate the effectiveness of the new method “in
practice”. To address this concern, we consider a population that is equal to the (discrete)
distribution from a large data set. We use the income data of 2016 mortgage applicants as re-
ported by U.S. banks under the Home Mortgage Disclosure Act (HMDA). From this database
of more than 16 million applications, we create subpopulations that condition on U.S. state
and the gender of the applicant, as well as the purpose of the mortgage (home purchase, home
improvement or refinancing) and whether or not the unit is owner-occupied. We eliminate all
records with missing data, and only retain subpopulations with at least 5000 observations. For
each of the resulting 300 subpopulations, we compare the performance of alternative meth-
ods for inference about the mean, based on i.i.d. samples of size n (that is, sampling is with
replacement).

Panel (a) of Figure 2 plots the cumulative distribution function of the null rejection proba-
bilities over the 300 subpopulations for each test considered in Table 1, estimated from 20,000
draws from each subpopulation. Nominally, all mass should be to the left of the 5% line, but
the traditional tests don’t come close. For instance, for n = 100, the usual t-test has a null
rejection probability of less than 10% for only approximately 40% of the 300 subpopulations.
In comparison, the new test controls size much more successfully.

Panel (b) of Figure 2 plots the cumulative distribution function of the average length of
the confidence intervals, relative to the average length of the size corrected t-statistic based
interval. For n = 50, the new method not only controls size better than the bootstrap tests,
but it also leads to confidence intervals that are often shorter on average. In fact, they are
substantially shorter than what is obtained from the infeasible size corrected interval. For
n = {100, 500}, this is no longer the case and the better size control of the new method comes
at the cost of somewhat longer confidence intervals.

One might argue that in the HMDA example, one could avoid the complications of the
heavy right tail of the income distribution by considering the logarithm of the applicants’

income. But there is no robust way to transform a confidence interval for the population

3The analytical result by Bakirov and Székely (2005) shows that the usual 5% level t-
test remains small sample valid under arbitrary scale mixtures of normals, which includes all

t-distributions.
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Figure 2: Small Sample Results for HMDA Populations
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mean of log-income into a valid confidence interval for the population mean income. What is
more, in many contexts, the policy relevant parameter is the population mean (and not, say,
the median) of some potentially heavy-tailed distribution: think of health care costs, or flood

damage, or asset returns.

3.2 Difference between Two Population Means

Our second set of Monte Carlo experiment concerns inference about the difference of two
population means, 3 = E[W!] — E[W!Y], based on two independent equal-sized i.i.d. samples
WZJ ~ Wi i=1,...,n/2,j € {LII}. Casting this in terms of a linear regression and applying
(3) yields
W { WL — W — B, +2(W = W) fori <n/2
' WL — Wt — 3, — Q(I/VZ.IEH/2 — W) fori>n/2

where Wi = (n/2)"' 272 W7 are the sample means for j € {I,II}.

(2

We initially generate data according to

Wi=vi+e, Wl'=¢g] (14)

7

for i = 1,...,n/2, where & ~ #dN(0,1/10) across i and j € {LII}, and v; is distributed
according to one of the distributions of Table 1. Inference about E[W1] — E[W!] can then be
thought of as inference about the average treatment effect E[v;], with the design amounting
to a large but highly heterogeneous additive treatment effect.

Table 2 compares the new method to standard t-statistic based inference and a symmetric
and asymmetric percentile-t bootstrap, where now the bootstrap samples combine n/2 ran-
domly selected observations with replacement from each of the two samples. In this exercise
the design with v; ~ AN/(0, 1) leads to a much longer confidence interval from the new method
with n = 50. The reason is that with &/ ~ A/(0,1/10) in (14), W} has much larger variance
than WX, The distribution of WW; is thus approximately equal to a 50-50 mixture of two normal
distributions with very different variances, which is heavier tailed than a normal distribution.
At the same time, for asymmetric v;, standard methods do not control size well, while the
new method does so much more successfully.

As a second exercise, we generate I/Vij as n/2 i.i.d. draws of two randomly selected subpop-
ulations of the HMDA data set considered in the last section. Inference about E[WW1] — E[W1]

then corresponds to inference about the average treatment effect if the treatment induces a
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Table 2: Small Sample Results for Difference of Population Means

N(0,1) LogN F(4,5) t(3) P(0.4) Mix 1 Mix 2
n =50
T-STAT 5.7/0.96  8.9/0.81 8.9[0.83 5.1/0.99 8.9(0.83 7.2(0.90  9.00.83
SYM-BOOT — 5.7/0.97  8.3|1.02 86|L.12 4.7]1.07 86|L.12 6.8/1.06 8.9[1.22
ASYM-BOOT 5.9|0.97 8.8|0.93 9.1/0.98 7.4/1.03 9.1]0.98 8.6/0.98 10.0/1.02
NEW 2.0/1.40 3.8/1.06 4.7]1.06 2.3]1.47 4.8]1.05 3.5/1.25  6.2]0.99
n = 100
T-STAT 5.5/0.98 7.8/0.87 7.90.87 4.9]1.00 8.2/0.86 6.9/0.92  9.9/0.82
SYM-BOOT — 5.4/0.98  7.0[L.04 7.4|L.13 44[1.07 7.7]L.14 6.4]1.05 9.6|1.21
ASYM-BOOT 5.4|/0.98 7.6/0.98 7.9]1.01 6.9/]1.04 8.3|]1.01 7.6/0.99 10.6]1.02
NEW 44/1.08 3.4[1.28 4.2(1.20 3.7]1.43 4.4/1.18 4.0/1.30 7.8/1.01
n = 500
T-STAT 5.4]0.98 6.4/0.94 6.4/0.93 4.6/1.01 6.8/0.91 5.7/0.97 8.3/0.85
SYM-BOOT 5.5/0.98 5.8|1.01 6.0]1.12 4.4/1.03 6.3|]1.10 5.3|]1.01  7.7|1.08
ASYM-BOOT 5.4/0.98  6.3(0.99 6.6]1.04 5.8/1.02 6.6]1.02 6.2/1.00 8.3]0.98
NEW 5.310.99 421.21 4.1]1.25 42]1.15 4.2[1.24 4.2[1.22 4.2[1.31

Notes: See Table 1.
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Figure 3: Small Sample Results for Two Samples from HDMA Populations

(a) Distribution of Null Rejection Probabilities
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change from the distribution of income in one subpopulation to the distribution in another—
maybe a plausible calibration for an intervention that affects individuals’ incomes. Figure 3
reports the performance of the inference methods of Table 2 for 200 randomly selected pairs
of subpopulations, in analogy to Figure 2 above. We find that also in this exercise, stan-
dard methods fail to produce reliable inference, while the new method is substantially more

successful at controlling size.

3.3 Clustered Linear Regression

A third set of Monte Carlo experiments explores the performance of the new method for

inference in a clustered linear regression
Yit:ﬁXit—i—Zz{t*y—l—uit,t:1,...,Ti,i:1,...,n (15)

with conditionally mean zero w;;, so that there are T; observations in cluster i. By (3) and the
Frisch-Waugh Theorem we obtain that

—1
n Tj

T
w; :B_ﬁo‘f‘ n_lszjt ZXitﬁzt
j=1 t=1 t=1

where u;; and B are the OLS estimates of u;; and 3, and Xit are the residuals of a OLS regression
of X;; on Z;;. We consider four tests of Hy : § = ,: The t-statistic implemented by STATA,
which is nearly identical to a standard t-test applied to I/T/i, except for degree of freedom
corrections; the suggestion of Imbens and Kolesar (2016) to account for a potentially small
number of heterogeneous clusters “IM-K0” (we consider the variant that involves the data
dependent degree of freedom adjustment K in their notation); the wild cluster bootstrap
that imposes the null hypothesis suggested by Cameron, Gelbach, and Miller (2008) “CGM”;
and the new test applied to W, “NEW”.

We initially consider data generated from model (15) where
Uip = Vi Xyt + Eit, (16)

v; is i.i.d. mean-zero with a distribution that is one of the seven populations considered in
Table 1, one element of Z;; is a constant, and X;;, the 5 non-constant elements of Z;;, and ¢
are independent standard normal. We set T; = T = 10 for all clusters. The presence of v;

induces heteroskedastic correlations within each cluster of observations {Y;;}L;.
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Table 3: Small Sample Results in Clustered Regression Design

N(0,1) LogN F(4,5) t(3) P(0.4) Mix 1 Mix 2
n = 50
STATA 5.1]1.00 9.3/0.80 10.7]0.76 4.7|1.01 10.9/0.75 6.9/0.92 12.3]|0.75
IM-Ko  4.9]1.00 9.1/0.81 10.5/0.77 4.5]1.02 10.7|0.75 6.7|0.92 12.0|0.75
CGM 5.0/1.01 9.4/0.77 10.8/0.72 5.0]1.00 11.0/0.70 7.0/0.89 12.3|0.68
NEW 3.3|1.34 3.5/0.97 4.4/0.92 2.8]1.44 4.5/0.89 3.3]1.19  7.3(0.88
n =100
STATA 5.2/0.99 7.6/0.87 9.5/0.81 4.7|1.01  9.8/0.79 6.7/0.93 11.8/0.75
IM-Ko  5.1]1.00 7.5|0.87  9.4/0.81 4.7]1.01  9.8/0.80 6.6/0.93 11.7|0.75
CGM 5.0/1.00 7.7/0.85 9.6/0.77 4.9]1.01 9.9|0.75 6.6/0.91 11.9/0.69
NEW 4.5|1.11 3.2]1.26 4.2|1.12 4.0/1.42 4.4/1.10 3.8/1.32 7.0/0.96
n = 500
STATA 5.1/1.00 6.1/0.95 7.1]0.91 5.0/1.00 7.5/0.89 5.5/0.97  8.8/0.83
Im-Ko  5.1/1.00 6.1/0.95 7.1/0.91 5.0/1.00 7.4/0.89 5.5/0.98 8.8/0.83
CGM 5.0/1.00 6.1/0.94  7.3/0.87 5.1]0.99  7.7|0.85 5.6/0.97  9.0/0.80
NEW 50/1.00 4.1]1.20 4.3]1.24 4.7]1.14 4.4|1.23 4.0/1.22 3.5/1.29

Notes: Entries are the null rejection probability in percent, and the average length of confidence
intervals relative to average length of confidence intervals based on size corrected STATA (bold

if null rejection probability is smaller than 6%) of nominal 5% level tests.
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Table 3 reports the results. As in the inference about the mean problem, the new method
is seen to control size much more successfully compared to the other methods, although at
a cost in average confidence interval length that is more pronounced than in Table 1 for
the thin-tailed v; ~ N(0,1). Intuitively, the product of two independent normals v; X;; has
considerably heavier tails than a normal distribution, but it is still symmetric.

In the final Monte Carlo exercise we again consider a discrete population from a large
economic data set. In particular, we consider a sample of all employed workers aged 18-65
from the 2018 merged outgoing rotation group sample of the Current Population Survey (CPS).
We let the dependent variable Y;; be the logarithm of wages, and pick the regressor of interest
X;; and the 5 non-constant controls Z;; as a random subset of potential regressors including
gender, race, age and dummies for Hispanic, non-white, married, public sector employer,
union membership and whether hours or the wage was imputed. The resulting coefficient
on X;; in the regression using the entire 145,838 individuals in the database is the population
coefficient. We cluster at the level of 308 Metropolitan Statistical Areas (MSAs).* That is, a
sample of n clusters is generated by drawing n MSAs at random with replacement. The four
different methods of Table 3 are then employed to conduct inference about [ based on a sample
consisting of all individuals that reside in the n randomly selected MSAs. By construction the
clusters are thus i.i.d. and the population regression coefficient is equal to (.

Figure 4 depicts the results over 200 populations generated in this manner, where each
population differs by the identity of the regressor of interest X;; and controls Z;. For each
population, we draw 20,000 samples of n € {50,100,200} clusters with replacement. (We
consider n = 200 rather than n = 500 for the largest sample size to avoid that with high
probability, samples contain many identical clusters.) In this design none of the methods
come close to perfectly controlling size. Still, the new method is substantially more successful,
albeit at the cost of considerably longer average confidence intervals for n € {100, 200}.

The poor performance of the standard methods might come as a surprise given that none of
the variables in the CPS exercise are heavy-tailed, and the number of clusters is not particularly
small. Approximately (cf. equation (1)), the variability of the OLS estimator /3 is driven by
the average of the n i.i.d. random variables GG; = Zle X;ui. The distribution of G; may
be heavy-tailed because (a) u;; has a heavy-tailed component, as in (16) above; (b) the joint
distribution of (Xit,ul-t) is such that Xju; is heavy-tailed; (c) X, is heavy-tailed; (d) T;

4For the purposes of this exercise, we treat as additional MSAs the part of each U.S. state
outside of any CBSA area.
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Figure 4: Small Sample Results for CPS Clustered Regressions

(a) Distribution of Null Rejection Probabilities
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is heterogeneous across ¢, so that clusters with large 7; lead to G; with high variance; or
a combination of these effects. MSAs are highly heterogeneous in their size: the largest
contains 6,163 individuals, and the smallest only 42. Effect (d) is thus clearly present, and the
suggestion by Imbens and Kolesar (2016) is designed to accommodate effects (c) and (d). But
as reported in Table 3, if G; is heavy-tailed due to effect (a), then the adjustment of Imbens
and Kolesar (2016) does not help much. The CPS design seems to exhibit all four effects to
some degree, making correct inference quite challenging, and the new method relatively most

successful at controlling size.

4 Background on Theory

We now turn to the theoretical analysis that underlies the new test of Section 2. As mentioned
in the introduction, the theory is developed exclusively for the canonical case of inference for

the mean.

4.1 Relationship to Literature

The classic impossibility result of Bahadur and Savage (1956) shows that one cannot learn
about the population mean from i.i.d. samples of any size, even if all moments are assumed
to exist. One must put further restrictions on the underlying population for informative in-
ference to become possible. The substantial assumption pursued here is that the population
tails are such that extreme value theory provides reasonable approximations. This effectively
amounts to an assumption that the tails of the underlying distribution are approximately
(generalized) Pareto. Given the theoretical prevalence and empirical success of extreme value
theory for learning about the tail of distributions (for overviews and references, see, for in-
stance, Embrechts, Kliippelberg, and Mikosch (1997) or de Haan and Ferreira (2007)), this
seems a reasonably general starting point, especially given that some assumption must be
made. What is more, the approximate Pareto tail is only imposed in the extreme tail with
approximate mass of k/n for k fixed, which is enough to ensure that the largest (and smallest)
k observations are governed by extreme value theory.

Miiller and Wang (2017) pursue this “fixed-k” approach for the purpose of inference about
tail properties, such as extreme quantiles. In contrast, the remaining literature on the mod-

elling of tails considers asymptotics where k = k, diverges with the sample size. In large
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samples, k, diverging asymptotics allow for consistent estimation of tail properties, at least
pointwise for a fixed population. In practice, though, the approximations generated from £k,
diverging asymptotics are not very useful for, say, samples of size 50 or 100, as there are only
a handful of observations that can usefully be thought of as stemming from the tail, so that
any approximation that invokes “consistency” of tail property estimators becomes misleading.

The separate analysis of the largest and remaining terms of a sum of independent random
variables goes back to at least Csorgd, Haeusler, and Mason (1988); also see Zaliapin, Kagan,
and Schoenberg (2005), Kratz (2014) and Miiller (2019). The relatively closest precursors to
this work are Peng (2001, 2004) and Johansson (2003). These authors are concerned with
inference about the mean from an i.i.d. sample under very heavy tails, that is, the underlying
population has less than two moments. For such populations, the usual t-statistic does not
converge to a normal distribution. Peng (2001, 2004) and Johansson (2003) suggest estimating
the contribution of the two tails to the overall mean by consistently estimating the tail Pareto
parameters using the smallest and largest k, observations, with &, diverging, and combining
those estimates with the estimate of the mean of the remaining middle observations. Our
approach rules out such extremely heavy tails by assumption. While this reduces the degree
of robustness of the suggested new method, our focus on populations with finite variance
mirrors what is (at least, implicitly) assumed in the vast majority of applied work, and it
allows for substantially more informative inference in small samples.

Another approach to overcome the Bahadur and Savage (1956) impossibility result is to
assume bounded support, with known bounds; see, for instance, Romano (2000), Schlag (2007)
and Gossner and Schlag (2013).

4.2 Extreme Value Theory

Let WE > Wi > .. > W[ denote the largest k order statistics from an i.i.d. sample from a
population with distribution F. Suppose the right tail of F' is approximately Pareto in the
sense that for some scale parameter ¢ > 0 and tail index £ > 0

lim 1~ F(w)

2 Twojo) e ! (17)

so that the second moment of W exists if and only if £ < 1/2. Then W is in the maximum

domain of attraction of the Fréchet limit law
nWE = o X, (18)
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where X, AN E, with E; an exponentially distributed random variable.
As is well known (see, for instance, Theorem 2.8.2 of Galambos (1978)), (18) implies that

extreme value theory also holds jointly for the first k order statistics

W X,
nWH =n~¢ : =X =0 : : (19)
WE X
The distribution of X satisfies {Xj_l/ 5};’9:1 ~ {3 BV

i1 where F; are i.i.d. exponential
random variables.

Since the new theoretical results of this paper concern rates of convergence, a suitable
strengthening of the approximate Pareto tail assumption (17) is needed. Falk, Hiisler, and

Reiss (2004) define the d-neighborhood of the Pareto distribution with index ¢ as follows.

Condition 1 For some 6, wy > 0, F admits a density for w > wy of the form

f(w) = (§0) (=) 1+ h(w)) (20)
with |h(w)| uniformly bounded by Cw=%/¢ for some finite C.

Theorem 5.5.5 of Reiss (1989) shows that under Condition 1, (19) provides accurate ap-

proximations in the sense that
sup [P(n W ¢ B) = P(¢X € B)| = O(n™°) (21)
B

for 6 < 1, where the supremum is taken over all Borel sets B C R*.

Many heavy-tailed distributions satisfy Condition 1: for the right tail of a student-t distri-
bution with v degrees of freedom, £ = 1/v and § = 2¢, for the tail of a Fréchet or generalized
extreme value distribution with parameter o, £ = 1/a and 6 = 1, and for an exact Pareto tail,
0 may be chosen arbitrarily large. But there also exist heavy-tailed distributions in the domain
of attraction of a Fréchet limit law that do not satisfy Condition 1, such as density of the form
(20) with h(w) = 1/log(1 + w), for example. Under some additional regularity conditions,
Theorem 3.2 of Falk and Marohn (1993) shows Condition 1 to be necessary to obtain an error
rate of extreme value approximations of order n~° for § > 0. Roughly speaking, Condition 1

thus formalizes the assumption that extreme value theory provides accurate approximations.

22



4.3 Approximations to the t-Statistic

Let T, = > 0 Wi/ />y W2 — (O, Wi)?/n be the t-statistic computed from an i.i.d. sam-
ple Wy, ..., W,, W; ~ W5 If E[W] = 0 and E[W?] < oo, then T}, = N(0,1). A seminal paper
by Bentkus and Gotze (1996) establishes a bound on the speed of this convergence which does
not require the third moment of W to exist. In particular, Bentkus and Gotze (1996) show
that for some C' > 0 that does not depend on F', and E[IV?] = 1,

sup |P(T}, < t) — ®(t)] < CE[W2L[|W| > n'/?)] + Cn Y2E[WPL|W| < 03] (22)

where ®(t) =P(Z < t), Z ~ N(0,1). Subsequent research by Hall and Wang (2004) provides
a sharp bound on the speed of convergence: If E[J¥?] < oo, their results imply that

sup, |P(T,, < t) — ®(¢)|
nP([W| > n=1/2) + nl2[E[W,]| + n 2B [|W,,|3] + n E[|W,|4]

(23)

with W, = W1[|W| < n'/?] is bounded away from zero and infinity uniformly in n.

A final relevant result from the literature concerns the bootstrap approximation to the
distribution of the t-statistic. Let W = (W4,...,W,,), and let T)* be a bootstrap draw of
T, from the demeaned empirical distribution of W;, conditional on W. Bloznelis and Putter
(2003) show that if F' is non-lattice and E[|IW]?] < oo, then

sup [P(T < t{W) — P(T}, < t)| = o(n"*/?) a.s. (24)
t

while, for BE[W?] # 0, liminf,, .o, n*/?sup, |P(T,, < t)—®(¢)| > 0. In other words, as long as W
has finite non-zero third moment, the error in the bootstrap approximation to the distribution
of the t-statistic is of smaller order than the normal approximation, and the bootstrap provides

a refinement over the usual t-test.

5 New Theoretical Results

To ease exposition, we focus in this section on the case where the left tail of W is light. The
analogous results also hold when both tails are moderately heavy with tail index smaller than

1/2; we provide an analogue of Theorem 2 in the supplemental appendix.

For notational simplicity, t-statistics in this paper do not use the degree of freedom cor-

rection in the variance estimator; this convention does not affect any of the following results.
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5.1 Properties of Bootstrapped t-Statistic under 1/3 < ¢ < 1/2

Theorem 1 Suppose (17) holds for 1/3 < £ < 1/2, and ffoo \w|3dF(w) < oco. Then under
E[W] =0

(a) liminf, o, n*/ @)~ sup, |P(T;, < t) — ®(t)| > 0 and

(b) n*2=9 sup, [P(T; < t{W) — ®(t)] = Oy(1).

Since 3(1/2 — &) > 1/(2¢) — 1 for 1/3 < £ < 1/2, the triangle inequality implies that
sup, [P(T < t{W) — P(T,, < t)| = O,(n*~1/(%)) ] so Theorem 1 shows that the bootstrap does
not provide a refinement if the underlying population has between two and three moments, at
least as long as the population has an approximate Pareto tail. This result is apparently new,
but it is not difficult to prove. From Markov’s inequality, [°__|w[*dF(w) < oo implies that
also || has a Pareto tail with index 1/3 < £ < 1/2 in the sense of (17). Part (a) now simply
follows from evaluating the sharp bound in (23). Part (b) follows from applying the Bentkus
and Gotze (1996) bound (22) to the empirical distribution of W; = W;—n~! > -1 Wy By (19),
n~¢ max; |W;| converges in distribution, so max; |W;| = O,(nf). Since £ < 1/2, this implies
n~ 1S WAL|[Wi| > /n] £ 0. Furthermore, |[WW;|* has a Pareto tail of index 3¢ > 1. Thus
n=3 3" | |Wil® converges in distribution to a stable distribution (see, for instance, LePage,
Woodroofe, and Zinn (1981), who elucidate the connection between extreme value theory and
stable limit laws), so that n=3/23""  |[W;|?> = O,(n=3(/279)  and the result follows.

The existence of three moments, corresponding to a tail index of £ < 1/3, is necessary
to obtain the first term of an Edgeworth expansion that underlies the proof of Bloznelis and
Putter (2003). More intuitively, recall that under £ < 1/3, the Berry-Esseen bound shows
that the central limit theorem has an approximation quality of order n~*/2. Now under (17),
P(WJE > /n) is of order 1 — (1 — n~ V@) ~ =1/ Thus, for ¢ > 1/3, the largest
observation is of order /n with a probability that is an order of magnitude larger than n~'/2.
Observations of order y/n are not negligible in the central limit theorem, so the rare large
values of W under £ > 1/3 are responsible for a deterioration of the central limit theorem
approximation compared to the ¢ < 1/3 case (cf. Hall and Wang (2004)). But from (18), W}
is of order n¢ in nearly all samples, so the bootstrap approximation misses this effect, and

systematically underestimates the heaviness of the tail.
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5.2 New Asymptotic Approximation

We first discuss the approximate parametric problem in more detail. Under the Pareto
tail assumption (17), we find from a straightforward calculation that for large w, m(w) =
—EB[W|W < w] ~ o/éw' /(1 -¢€). Let 52 = (n— k)~ S22 F(W# — W*)? be the variance es-
timator from the n— k smallest observations. With k fixed, s? still converges in probability to
the unconditional variance of W, s2 % Var[W]. Since the tests we consider are scale invariant,
it is without loss of generality to normalize Var[/W] = 1. From the convergence to the joint

extreme value distribution in (19), n=*W# < ¢X, where we write ~ for “is approximately

distributed as.” Furthermore, under local alternatives E[W] = n~'/2u, the t-statistic

n—=k s
TS — Zi:l VV%
" (n—Fk)s;

computed from {W?}"=F is approximately normal with mean p — n~'2m(WF) ~ u —

n12aVE(WE)I1/E /(1 — €). Combining these two approximations yields

R Ts o[ Z+p—n LXxIVE
Yn _ n a + 1% M 1-£k — Yn (25)
W/ (n—k)s? N, X

with 7, = on~ /29 and Z ~ N(0,1) independent of X. The last & elements of Y, are
the largest & order statistics divided by the denominator of T*, so that Y, is invariant to
changes in scale {W;}, — {cW;}, for ¢ > 0. The approximate parametric model on the
right-hand side of (25) treats these as jointly extreme value with scale 7,, and tail index £, and
conditionally normally distributed with some (negative) mean that is a function of Xj and
the parameters 7, and tail index ¢ under p = 0.

As discussed in the introduction, the core idea of this paper is to use the parametric model
Y, to determine a level a test o : R¥1 — {0,1} of Hy : u = 0 that satisfies E[p(Y,)] < «
for all £ < 1/2, at least for all n > ny and some appropriate upper bounds on o. We discuss
the construction of such tests in the next section. Any such test ¢ may then be applied to the

left-hand side of (25), ¢(Y,), to test Hy : E[W] = 0 from the observations Wi, ..., W,,.
A natural one-sided hypothesis test ¢,(Y,) with ¢, : R¥! — {0,1} has the form ¢,(y) =

1lyo < b(y™)], where y = (vo,y"™)

and b : R* — R allows for nonlinear shifts and critical

6To avoid notational clutter, the notation in Sections 2, 5 and 6 isn’t entirely consistent
but adapted to whether only the right tail, or both tails are potentially heavy and whether

the approximate parametric model contains a location parameter.
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value adjustments as a function of the extreme value observations y®. Given the form of the
Bentkus and Gotze (1996) bound (22), this form of tests is convenient to analyze. Two-sided
tests can be accommodated by considering linear combinations, as in 1[|yo| > b(y™)] = 1[yo <
—b(y™)]+ (1 —1[yo < b(y™)]) for yo # b(y™). We further allow the form of the test to “switch”

between different types depending on the realization of Y%, leading to the general form
ply) = 1ly" € H;l1lyo < bi(y™)) (26)
j=1

for some finite m,,, constants »; € R, Lipschitz continuous b; : R¥ — R and Borel measurable
subsets H; of R* with boundary OH,. For u = (1,ug,...,u;) € R¥ with 1 > ug > uz > ... >
uk, let Z;(u) = {s > 0 : su € 9H,}, that is, Z;(u) contains the scales s for which su falls on the
boundary of H;. For technical reasons, we assume that for some L > 0 and Lebesgue-almost
all u, Z;(u) contains at most L elements in the interval [L™!, L], for all j =1,..., m,,.
Our main theoretical result is the following.

Theorem 2 For k > 1, let ri(§) = % Suppose Condition 1 holds with § > ri(§),
ffoo lwPdF (w) < oo for all p > 0, and that ¢ is of the form (26). Then under Hy : p =0, for
1/3<&<1/2 and any € > 0

Elp(Ya)] — Blo(Y,)]] < Cn Ot

Recall from Theorem 1 (a) above that the distribution of the t-statistic converges to the
normal distribution at the rate n=(1/(29=1 A straightforward calculation shows that for
% < &< 1/2, rp(€) > 1/(2€) — 1. Thus, for that range of values of £, the theorem shows
that the difference in the rejection rate of ¢ in the parametric model E[p(Y,)] and in the

original inference for the mean problem E[p(Y,)] is of smaller order. In this sense, the new
approximation provides a refinement for underlying populations that have between two and
three moments.

The Bentkus and Gotze (1996) bound (22) implies that conditional on W T% is well
approximated by a standard normal distribution, since the W form an i.i.d. sample from
distribution whose heavy tail has been truncated. Furthermore, under Condition 1, it follows
from (21) that the distribution of W*/\/(n — k) is well approximated by the distribution of
n,X. The difficulty in the proof of Theorem 2 arises from the presence of s2 in the scale

normalization of W2 in Y,,. While it is easy to show that s2 = Var[W] = 1, the proof of
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Theorem 2 requires this convergence to be sufficiently fast, and this complication leads to the
presence of k in the rate rj (intuitively, larger k lead to more truncation, so s is estimated
from a distribution with a lighter tail).

A tedious but straightforward calculation shows that the full sample t-statistic of Hy :
E[W] = 0, T,,, can be written in terms of Y,, = (T, Y%, ..., V;F) as

__ Ly v
V1+ 35, (VA2 + R,

with R, = k(T3)?/(n(n — k) — 273 30, Vi /n — (1, Yi%)?/n = o,(n!). Under (25),
Y, LY, = (Y, YE, ..., YR, so the distribution of T, is approximated by

T (27)

Y; kYR
T(Yn) o 0o+ Zz:l i

- | (28)
VI+ S, (v

Application of Theorem 2 with o(y) = 1[T(y) > ] = 1[yo > — S0 v + t\/l 3 (g
shows that this approximation provides a refinement over the usual standard normal approx-
imation. Miiller (2019) shows that one can combine extreme value theory to improve the
rates of approximation to sums of i.i.d. random variables compared to the central limit the-
orem under £ > 1/3. One implication of Theorem 2 is thus a corresponding result for the
self-normalized sums (27) and (28).

In principle, one could use this implication also to construct an alternative test ¢ that
simply amounts to a t-test with appropriately increased critical value to ensure size control in
the approximate model, E[p(Y,)] < a. This is woefully inefficient, however, since the much
larger critical value is only needed for samples where ¢ and 7,, are large, which would defeat
the objective of obtaining a test that remains close to efficient for populations with thin tails.”

Proceeding as in the proof of Theorem 2, it can be shown that under Condition 1,
IElo(Y,)] — Elp(Y,)]] < Cn~minrs©-e1/2) for 0 < ¢ < 1/3. Thus, the approximation (25)
also holds for thin-tailed populations. However, since for populations with finite third mo-
ment, the rate of convergence of the distribution of the t-statistic to the normal approximation
~1/2

is n~/#, this does not constitute a refinement, irrespective of the choice of k.

"A 5% level two-sided test based on T'(Y,) for k = 8 would need to employ a critical value
of about 4.2, rather than the usual 1.96, to be valid for ¢ < 1/2 in the ny = 50 parameter

space discussed in Section 6.2 below.
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6 Construction of New Test

6.1 Generalized Parametric Model

To obtain accurate approximations in small samples also for potentially thin-tailed distribu-
tions, it makes sense to extend the parametric approximation to populations with an approx-

imate generalized Pareto tail. The c.d.f. F' of such populations satisfies
Flw)=1—(1+¢&w/o—v)™, €€ (-00,1/2] (29)

for all w close to the upper bound of the support of F', and here and in the following, expressions
of the form (1 + &x)~Y/¢ are understood to equal e~ for & = 0. The Pareto tail assumption
(17) of Section 4.2 is recovered as a special case with & > 0, v = 1/¢ and o rescaled by &.

Assumption (29) accommodates infinite support thin-tailed distributions, such as the ex-
ponential distribution with & = 0, as well as distributions with finite upper bound on their
support, such as the uniform distribution with £ = —1. From the seminal work of Balkema
and de Haan (1974) and Pickands (1975), it follows that under an appropriate formalization
of (29), there exist real sequences a,, and k,, such that

R
— k= X = (X, X)) (30)

Qn

is (jointly) generalized extreme value distributed, so that {(£X; 4+ 1)7"/¢}_ ~ (37, E o
with FEj i.i.d. exponential random variables. If I is exactly generalized Pareto in the sense of
(29), then Corollary 1.6.9 of Reiss (1989) implies

_ k ) k
— K, 1 ~ —_— E, 31
S o AR B (7 Do S

1

with a, = oné and &k, = 1 +n~¢(v — 1), so that 37" E;/n ~ 1 is the only approximation
involved in (30).
Under (29) and (30), from the same logic that led to (25), we obtain the approximate

model
O T; a Z - * Xa nHy
v . a + =0 (X, §) Y, (32)
W/ (n—k)s; (X + fine)
where e is a k x 1 vector of ones, 1, = n~*/?a, and
_ 1+&X, 1
m* (X, ki, &) = (1 +EX,)7V¢ (lin + — —) 33
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With k,, — 1/£ for £ > 0, it is tempting to employ the additional approximation k,, = 1/
to eliminate the location parameter in (32), and this is implicitly applied in standard extreme
value theory as reviewed in Section 4.2. However, unless n is very large, this leads to a
considerably deterioration of the approximation in (30), and hence (32), so we do not do so
in the following.

For practical implementations it is important to allow for the possibility that both tails are
potentially moderately heavy. This is straightforward under an assumption that also the left-
tail of F' is approximately generalized Pareto in the sense of (29): Let W be the set of smallest
k order statistics. Further let W™ be the n — 2k “middle” order statistics k+1,...,n—k —1,

and let s be the sample variance of W/™. Then in analogy to (32),

St
/(n—2k)s2 Z 4 — nftms(XE kB MY 4 nkm*(XE, kL €5)
A~ WL
Vo= | ~Jomr | nE(X" + rke) =Y, (34)
Wi i (XT + riyle)

V (n—Qk)s%

where X? and X are independent and generalized extreme value distributed with tail index
€5 and &7, respectively, and independent of Z ~ A(0, 1).

The scale and location parameters 7, and , in this generalized model depend on the
known sample size n. But they also depend on the tail parameters of the underlying pop-
ulation: For instance, in (31), , = n~'2a, = ont~'/2. With ¢ unknown, this product
can in principle take on any positive value, even with (n,&) known, and the same holds for
the parameter k,. For this reason, we will now drop the index n in the nuisance parameter
0 = (k% 0k 8 kBl €7 € ©y and in the 2k + 1 dimensional observation Y =Y, from the
approximate parametric model in (34). In this notation, the problem becomes the construction

of a powerful test ¢(Y) of Hy : p = 0 against H, : i # 0 that satisfies

sup Eplp(Y)] < a, (35)

where Y = (Y, YV, Y®) and Y/ = (V{,...,Y))) € R* for J € {L, R}. From the repre-
sentation of the joint generalized extreme value distribution in terms of i.i.d. exponentially
distributed random variables below (30) and (33), it follows that the density of Y is given by

f(yl0, ) in (13).
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6.2 Nuisance Parameter Space

Allowing for arbitrary values of the location and scale parameters in the testing problem
(35) is not fruitful: An unreasonably large nuisance parameter space ©g leads to excessively
conservative inference, and it renders the computational determination of powerful tests pro-
hibitively difficult. With that in mind, in the default construction, we consider a nuisance
parameter space Oy that is partially motivated by a desire to obtain good size control in
samples from a demeaned Pareto population when n > ng = 50. In the description of Oy,
we refer to the extreme value approximation extended to the most extreme ny observations,
(W7o, & {y/3m for J € {L,R}. As noted in (31), this remains an good approximation
for an exact generalized Pareto population even if n = ny.

In particular, for J € {L, R}, we impose (a) &/ < 1/2; (b) s’ < 1/¢7 for ¢/ > 0; (c)
S E[Y] > 0 and (d) 379 F E[(Y;)?] < 2. Let ©5 C R® be the corresponding parameter
set on the “single tail” parameter #° = (k,7,£) € R3. Restriction (a) imposes that the tails
are such that at least two moments exists. Restriction (b) says that any potential tail shift is
inward relative to the non-demeaned Pareto default. Very large inward shifts are incompatible
with the population having mean zero. Restriction (c) puts a corresponding lower bound on
the inward shift: For the right tail, it requires that the sum of the largest ny observations still
has positive mean. To motivate restriction (d), note that the normalization by s, implies that
the sum of squared demeaned middle observations cannot be larger than unity. Ignoring the
demeaning, taking expectations and approximating the distribution of these observations by
again extending the extreme value distribution yields restriction (d) with a right-hand side
of unity. We relax the upper bound to equal 2 to accommodate approximating errors in this
argument.

We further impose cross restrictions between the two tails, so ©y is smaller than O3 x ©j:

(e) BIY,Y] = —B[Y,"]; (f) i BY"] > 00" E[Y;"] implies B[Y,? ,] > 05 (g) Y72 E[Y;"] >

i no/2

SB[V implies BIY,E ] > 0; () Y002, BV + Y002, E[(Y7)?) < 2. Restriction (c)

(2
amounts to an assumption that the two tails don’t overlap. Under an extended tail assumption
up to the most extreme ny/2 observations, the middle observations take on values between
_yno/

being zero. Finally, restriction (h) is the analogous version of restriction (d) for each tail.

, and Ynf /o» leading to restrictions (f)-(g) under the null hypothesis of the overall mean

While restriction (c) involves the extreme value approximation for the most extreme ng

observations, note that this approximation is only used to motivate a lower bound on x”, and
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for no other purpose. Consider, for instance, a sample of size n = ny = 50 from a mean-zero
population with a Pareto right tail and a uniform left tail, with overall continuous density.
Since the uniform distribution is relatively more spread out compared to the left-tail of a
demeaned Pareto distribution, the right tail is shifted outward compared to a demeaned Pareto
distribution (but it is still shifted inward relative to a non-demeaned Pareto distribution,
so there is no contradiction to requirement (b)). Thus, restriction (c) is satisfied for this
population, and as long as k is smaller than ny/2 = 25, the approximate parametric model
(34) can still be a good approximation

At the same time, one might argue that if the sample size n is much larger than ng, this
default parameter space Oy is artificially large, and more powerful inference could be obtained
by suitably reducing it. Note, however, that for any sample size n, the tails could be as large
as they are in a sample of size ny = 50. For instance, consider a sample of size n = 5000 from a
population that is a mixture between a point mass at zero and a demeaned Pareto distribution,
with 99% mass on the point mass at zero. Then only approximately 50 observations in the
sample will be non-zero, and those follow the demeaned Pareto distribution, so ©g is again
appropriate, and mechanical reduction of ©( as a function of n leads to a poorly performing

test in this problem.

6.3 Choice of k

As noted in Section 4.2, whenever extreme value theory applies to the sample maximum,
then it also applies to the first k order statistics, for any k. This suggests that one may
choose k very large, at least for large n, to improve the quality of inference about the tail
features. At the same time, as just noted, for any n, there exist populations for which extreme
value theory only provides good approximations for a small k& (or, indeed, not at all). So
there cannot exist a mechanical rule that chooses k as a function of n that is guaranteed to
work well. Similarly, rules that are a function of the observed data and that (appropriately)
choose k = k, as diverging whenever the data comes from an exact Pareto distribution also
behave poorly for some sequence of populations for which extreme value theory would have
provided accurate approximations for finite k£ (cf. Theorem 5.1 of Miiller and Wang (2017)).
Ultimately, inference about the mean requires a substantial assumption about the tails, and
the stronger the assumptions, the more powerful the potential inference. The assumptions

here are embodied in the choice of k and the nuisance parameter space O,.
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With that said, we suggest a default value of £ = 8. On the one hand, as demonstrated in
Section 3, £ = 8 tail observations are already sufficiently informative to allow for tests that are
nearly as efficient as the standard t-test when the tails are thin. At the same time, assuming
that extreme value theory provides useful approximations for the 8 most extreme observations
seems defensible even for relatively small samples, such as for n = 100, say. For even smaller
samples, say n < 50, we suggest using k = 4. Finally, relatively small %k also facilitate the
numerical determination of powerful tests as described below, so these choices are pragmatic

also from that perspective.

6.4 Numerical Determination of Powerful Tests

The hypothesis testing problem (35) is a parametric non-standard problem with a one-
dimensional parameter of interest € R and a six dimensional nuisance parameter 6§ € ©y C
RS,

We seek to construct a test ¢ : R?**1 — [0, 1] that comes close to maximizing weighted
average power. This criterion trades off power against speciﬁc alternatives i # 0, 6 € Oy,
B, 0[p(Y)], by maximizing the weighted average WAP(p) = [E,q[o(Y)]dE,(0, i) relative
to some given weighting function F, (0, p). Maxnmzlng Welghted average power amounts to
max1m1z1ng power against the single alternative f,(y) = [ f(y]0, u)dF,(0, 1), since WAP(p) =
[ ¢(y)fa(y)dy by a change of the order of mtegratlon We discuss the choice of F, for the
test of Sectlon 2 in the supplemental appendix.

The WAP maximizing test is characterized by the least favorable distribution A, a proba-
bility distribution with support in the null parameter space ©y. The problem of identifying
the optimal test may be viewed as an adversarial game between the econometrician and na-
ture. Nature chooses 6 € Oy from the null parameter space, and the econometrician chooses
test functions . If nature plays a deterministic strategy, that is chooses a specific 6y, then
by the Neyman-Pearson Lemma, the best response by the econometrician is simply the like-
lihood ratio test that rejects for large values of f,(y)/f(y|0o,0). In general, nature’s optimal
strategy will be randomized, with # drawn from the probability distribution A over ©y. The
econometrician’s best response is then to reject for large values of f,(y)/ [ f(y]0,0)dA(9).

The non-standard nature of the testing problem (35) precludes analytic determination of
A. Instead, we follow Elliott, Miiller, and Watson (2015) (abbreviated EMW in the following)

and numerically determine an approximate least favorable distribution with finite support.
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Their algorithm has a straightforward logic: Start with an arbitrary parameter #; € ©9 and
determine the corresponding optimal test 1[f.(y)/f(y|01,0) > cvq] with critical value cvy
chosen so that it is of level a under 8 = 6;. If this test controls size for all # € O, then
we have found the overall optimal test. If it fails to control size at, say, 65 € ©q, then
determine the two-point distribution Ay with support equal to {6,605} and critical value cvy
such that econometrician’s best response 1[f,(y)/ [ f(y]0,0)dAs > cvs] is of level o under
Ay and controls size under 6 € {6;,05}. Now check again if this new test controls size for
all 0 € ©y. If it does, we are done. If not, there is a parameter 03 € ©, for which the
test overrejects. Thus, determine the three-point distribution A with support {61, 0,05} and
critical value cvs such that econometrician’s best response 1{f,(y)/ [ f(y]0,0)dAs > cvs] is of
level a under A3 and controls size under 6 € {6,,05,05}. Etc.

In practice, it is necessary to introduce some numerical tolerances for this to work well; see
EMW and Miiller and Watson (2020) for details. Regardless, the approach yields a likelihood
ratio-type test of the form (11) where 0; € ©y and \; are associated positive weights (which
incorporate the critical value, so they don’t necessarily sum to unity). The averaging in f*"
in (11) imposes symmetry in the least favorable distribution A in the sense that switching the
role of the left and right tail parameter yields the same distribution.

A key ingredient in EMW’s numerical approach is an importance sampling estimate of
the null rejection probability RP(6) = = [¢“(y)f(y]0,0)dy of a candidate test ¢°
under 6 € O,

=N~ Z o % (36)

where Y, [ = 1,..., N are ii.d. draws from the proposal density f (so that by the LLN,
@(0) — Efle¢(Y)f(Y]6,0)/f(Y)] = RP(6) in obvious notation). Clearly, the larger Oy, the
larger the number of importance sampling draws N needs to be for RP to be of satisfactory
accuracy uniformly in 6 € ©.

The nuisance parameter space O of the last section is unbounded: the restrictions there did
not put any lower bound on the scale parameters 77 or the shape parameters ¢7, J € {L, R}.
It is hence not possible to obtain uniformly accurate approximations via RP over Oy, even
with arbitrary computational resources. It is therefore necessary to choose the test ¢ in a way
that does not require a computational check of Ey[p(Y)] < a over the entirety of ©y.

The solution to this challenge suggested by EMW is to switch to a default test with known

size control under ©yy C Og, where the switching rule is such that the default test is employed
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with probability very close to one whenever Y is generated from ©Ogy. In the specific problem
under study here, it makes sense to switch to simpler tests when one or both tails appear to be
sufficiently “thin” so that aggregating the corresponding tail observations with the Gaussian
“middle” observation Yj still yields an accurate normal approximation. For instance, suppose
the left tail seems thin in this sense. Under approximation (32), the sum of all observations
that are not in the right tail equals f/OL =Yy — Zle YL, with corresponding approximate
variance equal to V2 =1+ 321 (V;%)2. It hence makes sense to switch to a “single tail” test
% 1 R%+1 1 {0, 1} that treats Y as the extreme observations from the potentially heavy tail,
and Y{* to be approximately normal with mean m*((Y" — xfe)/nf, kF %) = —M*(YF, 67)

and variance V', In analogy to (11), such a test is of the form
MS
~S () — S( R S ¢S (195
Ply) =17 > D N royler) (37)
i=1

with £3(y|0°) defined in (8).

If both tails seem thin, then one would expect that the distribution of the analogue to
the full-sample t-statistic (4) (cf. (28) from Section 5.2) to be reasonably well approximated
by a standard normal distribution, especially if Y% (V)2 4+ S2F (V;F)? is small. We allow
for some adjustment in the usual Gaussian critical value, though, so the resulting test based
on T(Y) rejects if |T(Y)| > cvp(Y) for a function cvy(Y) that is slightly larger than the
1 — a/2 quantiles of a standard normal and depends on 1+ 3% (V;#)? + 321 (V%)% and the
significance level o. For o = 5% and we,(Y) = 0 (that is, when both tail observations Y
and Y® are vanishingly small), cvy(Y) = 2.009, which is only slightly larger than the usual
critical value of 1.96.

To make this operational, one must take a stand on what constitutes a sufficiently “thin”
tail for these normal approximations to be reasonably good. Intuitively, a tail J is thin if either
Y/ /Y, is close to one, indicating that density of W in tail J drops rapidly; or ¥}’ is small,
so that the contribution of the tail relative to Yj is nearly negligible, regardless of the shape
of the tail density of W. The function y : R¥ — [0,00) in (6) is our choice of corresponding
“thickness index”: x(Y7) = 0 indicates that the tail J € {L, R} is sufficiently thin for the
normal approximation to be sensible. The additional term exp[x(y)] in (5) compared to
(37) now ensures that the “single right tail” test in condition (ii) of Section 2 is not binding
whenever the corresponding switching index y(y%) is large. Its continuity in y* avoids the

sharp change of the form of the rejection region as a function of y that would be induced by
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a simpler hard threshold rule ¢°(y) = 1[x(y*) = 0]¢(y). Condition (iii) simply imposes the

same rejection rule with the role of the two tails reversed.

NEW never rejects if the analogue T(Y) of the full sample t-

NEW «

Condition (i) implies that ¢
statistic does not reject; in that sense, ¢ robustifies” the usual t-test to obtain better
size control. Consequently oW is asymptotically valid whenever the underlying population
has two moments, whether or not the tails are approximately Pareto. Condition (i) has the
additional appeal that sums of the form (36) then effectively only involve Y, for which
T(Y@y)| > cvp(Yq)), with an associated reduction in computational complexity.

We emphasize that the definition of a “thin tail” in the switching index, the approximate
normality of (4) and so forth are purely heuristic and do not enter the evaluation of Ey[p(Y)]
by the algorithm; this probability is always computed using the density f(y|¢,0) of Y in (36).

NEW

The heuristics merely motivate the particular form of ¢ of Section 2. As discussed, it is

not possible to numerically check that Ey[p(Y)] < a for all § € ©g, = 0. So technically, we

NEW in the hypothesis testing

cannot give theoretical guarantees about the size control of ¢
problem (35). Still, given that the importance sampling approximation of null rejection prob-
abilities (36) is differentiable in 6, one can use fast derivative based hill-climbers (repeatedly,
with random starting values), to perform fairly exhaustive checks over a large subset of Oy,
including values of @ that lead to the events x(Y”) =0 for J € {L, R} with probability close

NEW s constrained to also in the

to zero, close to one or in-between. The simple form that ¢
remainder of the parameter space makes it plausible that Ey[¢"EV (Y)] < « for all § € O, or
at the least, very nearly so.

For £ = 8 and a given level «, the computations take about one hour on a modern
workstation in a Fortran implementation, and about 3 hours for £ = 12. As discussed in
greater detail in the supplemental appendix, we have determined ©“EW for a wide range of
significance levels a for & = 8 in the default parameter space with ny = 50, and also for
k = 4 in the larger nuisance parameter space with ng = 25. For comparison purposes, we
also generated "W with k € {4,12} for a € {0.01,0.05} in the default parameter space;
see the supplemental appendix for a small sample comparison. After technical modifications
that decrease their rejection probability by an arbitrarily small amount, o W satisfies the

condition of the two-tailed analogue of Theorem 2.
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7 Conclusion

Whenever researchers compare a t-statistic to the usual standard normal critical value they
effectively assume that the central limit theorem provides a reasonable approximation. This is
true when conducting inference for the mean from an i.i.d. sample, but it holds more generally
for linear regression, and so forth. As is well understood, the central limit theorem requires
that the contribution of each term to the overall variation is small. To some extent, this is
empirically testable: one can simply compare the absolute values of each (demeaned) term
with the sample standard deviation. The normal approximation then surely becomes suspect
if the largest absolute term is, say, equal to half of a standard deviation.

One may view the new test suggested here as a formalization of this notion: the extreme
terms are set apart, and if they are large, then the test automatically becomes more conser-
vative. What is more, even if the sample realization from an underlying population with a
heavy tail fails to generate a very large term, it still leaves a tell-tale sign in the large spacings
between the largest terms. Correspondingly, the test also becomes more conservative if the
largest observations are far apart from each other, even if the largest one isn’t all that large—
the new method seeks to infer the likelihood of a potential large outlier based on the spacings
of the extreme terms. These adjustments are disciplined by an assumption of Pareto-like tails.
But the small sample simulations suggest that they help generate more reliable inference also

when the underlying population is more loosely characterized by a moderately heavy tail.
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Supplemental Appendix
“A More Robust t-Test”

Ulrich K. Miiller

A Proof of Theorem 2

We write C' for a generic large enough positive constant, not necessarily the same in each
instance. Without loss of generality, under Condition 1 we can choose wq large enough so that

uniformly in w > wy,

Clw¢ < 1-F(w) < Cw™/¢ (38)
flw) < Cw V&L (39)

Also we normalize Var[W] = 1. Define

1-1/¢

m(w) = —E[W[W <m], m*(w) = Ul/éu{j
A, = 1W > wl, AL = 1[nf0X), > wo),

V(w) = Var[W|W < w] and A, = |(1 — k/n)"2/s, — 1/\/V(W[)|.
The proof of Theorem 2 is based on a number of preliminary Lemmas. We assume through-
out that the assumptions of Theorem 2 hold, and that n > k£ + 1. All limits are taken as

n — oQ.

Lemma 1 For any p > 0,
(a) nPP(WE < wpy) — 0;
(b) nPP(nfoX; < wy) — 0.

Proof. (a) Follows from P(WF < w,) = Sig (ni Z) F(wo)" (1 — F(wp))! <
n*F(wo)" % and F(wg) < 1.
(b) Follows from a direct calculation from the density of (Zle E) ¢ =X,/0. m



Lemma 2 (a) For any p < k/&, B[A,|n W[|P] = O(1).
(b) BlA|In~*WH[[] = O(1).
(¢) For any p < 0, E[X}] = O(1).
(d) B[|X]]’] < oco.

Proof. (a) The density of S = n=*W2, for s > n~%wy, is given by

n!

I ) E S (st o) (1 F () ) f ().

Using (38) and (39), we have (1 — F(nfs))*~1 < On'~ks0=R/¢ and f(nfs) < On~1-¢s~ /&1,
Furthermore, using (1 — a/n)" < e ® for all 0 < a < n and (38), we have uniformly in
s > n~Swy

F(nﬁs)n < (1 o C—ls—l/f/n)n < exp(—C’_ls_l/g).

Thus, the density of S, is bounded above by Cs™#/¢!exp(—C~'s7¢) on s € [n¢wy, o0),
and the result follows.

(b) A,||[WE|| < kW, and, proceeding as in the proof of part (a), the density of n=sW{
for s > n~¢wy is bounded above by C's~'/¢~1 exp(—C~1s7/¢) on s € [n~¢wy, 00), so the result
follows.

(c) BIX{] = apE[(Zle E;)7P¢] < 0o, where the last inequality follows a direct calculation.

(d) [|X|| < ko E; ¢, and the result follows by a direct calculation. m

Lemma 3 For w > wy, let W° be a random variable with c.d.f. equal to F()/F(w) for
W < w, and equal to one otherwise, and let W = W° +m(w). Then, uniformly in w > wq

(a) m(w) < Cw Ve,

(b) |V(w) — 1] < Cw* V%,

(¢) () — m* ()] < Cut=0+/% 4 Cut=s;

(d) for any B, > 1/€ and 1 < B < By, B[|[W|P] < CwPo~1/¢;

(e) BW21[W? > V(w)n]] < Cuw?n~/(9);

(f) Bl[WP1[W? < V(w)n]] < Cwl/2-m+©)/,



Proof. (a) Follows from m(w) = E[W1[W > wl]]/F(w), (39) and F(w) > F(wg) > 0.
(b) V(w) = E[W?21[W < w]|/F(w) — m(w)?, so that

= V(w) = F(;”(L_ S EW?&E?V <l )2

Now for w > wg, F(w)™ < F(w)™!, 1 — F(w) < Cw™ V¢ by (38), and m(w) < Cw 1/&+
from part (a). Furthermore, using (39)

—EW2L[W < w]] = / f(s)s2ds§C’/ s Ve s
< Cw? /¢

so the result follows.

(¢) For w > wy

R W Y (OO L it = it = VS
fm(w) =m (W)l = e T T TR Flw) ¢ 51—5
0 ) 1-1/¢
< Pl)? | [ stens— [ s(eo) G s 4+ oV S Flw) 1 = Flw)

and

/ syds — [ s(€o)HZ) TV ds| < / s Ve h(s)|ds

o0

< s~ (6+1/E g g
< Cwl (1+9)/¢
and F(w)™! < F(w)™', 1 — F(w) < Cw™'¢, so that
Im(w) — m*(w)| < Cw'~FIE 4 =<,

(d) By the ¢, inequality and the result of part (a)

E|W] = E[W +m(w)” W < w]
< CE“W‘BO*1/£|W|1/£*/J’O+B W < w]+ C’|m(w)]5

< Cwﬁo—l/ﬁE[|W’1/£—ﬁo+ﬁ W < w]+ Cw=B/+8

3



< CwPo—1/¢€ + CwPIEB

where the last inequality follows from E[|W[}/¢=%o*7] < oco.
(e) We have E[W?21[W < —/V(w)n]] < E[W?1[W < 0]] < co. Further, note that V (w) >

V(wg) > 0, and by the result in part (a), W < Cw uniformly in w > wy almost surely. Thus

EW21[W > \/V(w)n]] < BW21[W > /V(w)n]]
< Cw’P(W > /V(wo)n)

< Cw’P(W > 3/V(wo)n) + Cw’lm(w) > 1\/V (wo)n]
where the third inequality uses

P(W>s) = P(W4+m(w) >s|W <w)

IN

P(W > 3s|W < w) + 1[m(w) > 15]

< F(wo) "P(W > 1) 4+ 1[m(w) > 1]

for all s > 0. Now 1[m(w) > 21/V(wp)n] = 0 for all large enough n, since m(w) < C

uniformly in w from part (a). Finally, P(W > 11/V (we)n) < Cn~/3 from (38).
(f) Apply part (d) with 8, = (1/2 —r(§))/§ +1/€ > 3 for £ € [1/3,1/2) to obtain

E(IWP1[W? < V(w)n]] < E[[W’] < Cwom Ve,
|
Lemma 4 For any e > 0, B[A,1[A,, > Cn O+1/2=WE] < On=O+¢(1 4 (n=SW)k/Ee),
Proof. We initially prove
E[Au1|s, — V(W] > o O WE] < O OF (1L 4 (W /nf)¥E7). (40)
With T as defined in Lemma 3, note that by the ¢, inequality, for any g > 0

BIW? - V(w)’] < CE[[W[*]+CV(w)’
< CE[W[*) (41)

4



since V(w) < 1 and E[|W|*] > 0 uniformly in w > wy. Let W;, i = 1,...,n — k be iid. and
distributed like W, and define Q; = (n — k)" (W2 — V(w)). Note that E[IW;] = E[Q;] = 0. By
Rosenthal’s (1970) inequality, for any p > 2

n—k

> Q

i=1

E ] < C(n — B)E[|Qu"] + C((n — k)B[QT))"*.

Application of (41) and Lemma 3 (d) yields, for w > wg, n > k + 1 and any pg > p > 2

(n—k)B[Q:"] < Cn'Pwor'/

— Cvn%po—p(w/nﬁ)?po—l/&

(0= WE@)? < Cn?BW|'pr?

IA

C'n P/ 2qp2Po—po/(2€)

IN

IN

C'n2po—(p+po)/2 (w/nf)on —po/(28)

so that uniformly in w > wy

p

E < Cn¥Por(1 4 (w/n§)2p°*1/5).

n—k
>0
=1

By Markov’s inequality, for any o € R
n—k A
E Hzizl Qz

p]
P < > %na) < 2° :
, npe

n—k ~
> Qi
=1
Thus, with @ = —r(§) +1/2 — &, po = (k+1)/(2¢) — €/2 and p = py — €/2, we obtain from

some algebra that

()

n—k
2@
=1

> %nrk(§)+1/2§> < Cnfrk(§)+e(3/2—2§frk(§))(1+(w/n£>k/§—e) (42)
< Cn—rk(§)+€(1_|_(w/nf)k/ﬁ—e)

since 3/2 — 2§ — r(§) < 1 uniformly in £ € [1/3;1/2]. Furthermore, by Markov’s inequality

2

B

(n—k)"t ) Wi

1

n— k)7 (w)

na

P >

nt] < 2 ( (43)

[N

)



< Cn®t < OprE©)te

Now note that conditional on W#, {W#-+m(W[)}"=F has the same distribution as {IW;}7—/
with w = W} Thus, conditional on W%, the distribution of

n - 2
= V(W) - i WE +m(Wi))? = V(W) — ((n — k) i(Wf + m(Wf’)))
i=1 1=1
is equal to the distribution of 327" Q; — <(n — k)t VV,)2 for w = W, so (40) follows
from (42) and (43).
To conclude the proof of the lemma, note that 0 < V(w) < oo uniformly in w > wy, so
for a large enough finite C, [1/s, — 1//V(WF)| > On~+O+12=¢ implies |s2 — V(W}F)| >
n~"e©+1/2=¢ The result thus follows from (40) and sup,,s ., |(1—k/n)/2 =1V (w) = O(n=1/2).

Lemma 5 (a) B[A%|1[n"Y?" 60X /\/V (néoX},) € H,] — 1[n /?*¢0X € H;|] < Cn~+©

(b) For all € > 0, |E[A,(1[WE/\/(n —k)s2 € H;] — 1[n V2WE/\/V(WE) € H,])]

Cn_rk (6)"’6

Proof. (a) By a first order Taylor expansion |V (w)~*/2 — 1| < C|1 — V(w)| uniformly in
w > wy. For s € R¥ and H C R, let d(s,H) be the Euclidian distance of the point s from
the set H. We have

E[A;[1[n 0 X /\/V (nfoX}) € H;] — 1n *0X € Hjl|]

< BAL[d(n V20X, 0H;) < Cn VX - |1 = V(nfoXy)|]
< E[AZ1]d(n Y0 X, 0H,) < On~323)1X]| - X279

< E[AS1[d(n V20X, 0H,) < On~¥/2H3¢ X7V

< E[A;1d(nV*0X, 0M,) < ©(1 4+ X,)]]

where the second inequality follows from Lemma 3 (b), and the last inequality holds because

—3/24 36 < —r(€) and X2V < Xy for all X; > 1 for € € [1/3,1/2].



Furthermore, with U = (Uy, ..., Uy) = X/ X},

IN

IN

<

E[1[d(n Y**0X,0H,) < Cn~ ™ (1 + X,)]]
E[E[1[d(n~** 0 X, U, 0H,) < Cn O (1 4+ X,)]|UJ|
[ > Elfn " oX; — s < On ™ O(1+ X4)]|U]]

SGIJ'(U)
LE[E[ sup 1[jn~ 2+ X, — s|<Cn (©)+1/2— E’UH
L—1<s<L
LE[ sup 1[|n*1/2+ng1 — s < Cnfrk(§)+l/27§]
L—1<s<L

O~ @H1/2-€ ([ =1 1/2=6)=1/E=1 _ o =ri©—(1/2-9)/¢

where the second equality follows because the set Z;(u) is bounded above by L for Lebesgue

almost all u, and the last inequality follows because the density of X; is bounded above by

Cx

(b) Let D,, = 1[A,, < On~"+&+1/2¢] Using Lemmas 4 and 2 (a), we have for all € > 0

E[A.(1 - D,)] = E[E[A,1[A, > Cn OF/27¢ |WE]]

IN

Cn~HE(1 4 B (n W)

< Cn—rk(i)-f'

so it suffices to show the claim with A,, replaced by A, D,,.

In the notation of the proof of part (a), we have

ININ A

IN

B[A, D, |1 [WE/\/(n — k)s2 € H;] — 1[n"V2WE/ [V (WE) € H,]|]
E[A, D, 1[d(n Y*WE/\ JV(WE),0H,) < Cn 2N, [WE|]]]
E[A,1[d(n YV*WE/\/V(WE), 0H;) < Cn O W]
BlA:1[d(n~Y** 60X /\/V (néoX}), 0H,) < Cn O X;]] +n~°
B[A:1[d(n Y* 60X, 0H;) < Cn O X)]] + n~° + Cn~"+©

where the penultimate inequality follows from (21), and the last inequality applies the result

form part (a). The desired inequality now follows from the same reasoning as in the proof of

part (a). m



Proof of Theorem 2:
Let B, = 1{W{ > w1[n~2W*/ VW) € M) and B; = 1néoX, > wol1lné /20X

H,]. Given the results in Lemmas 1 and 5 (a), it suffices to show that

pp1 | Sy (Wt
(n —k)s3 (n = k)s;
~EB;1[Z — n'*m*(n*oX}) < b; (n*?0X)]| < On @
forall j =1,...,m,.

Notice that conditional on WF,

i (W + m(W)
(n — k)s3

Sn =

has the same distribution as the t-statistic computed from the zero-mean i.i.d. sample

Wl, Wg, . ,Wn with W; ~ W and W defined in Lemma 3 with w = WE. Thus, by (22),

A, sup [P(s, < s|WE) — &(z)| < A,CV(WEYBW21[W? > V(WEF)n]
+ A, Cn Y2V (WEYSPEIW P2 < V(WEn]).

Using V(W) > V(wg) > 0 if A, = 1 and applying Lemma 3 (e) and (f), the right-hand
side is bounded above by
Anc(n—éwf)Qn%—l/(?f) + Anc’<n_§W’f)(1/2_7%(5))/5”_7%(5) (44)
< A, Cn (L + (nm W) = Ly, (W)

since 26 —1/(2¢) < —r(§) and 0 < (1/2 —ri(€))/§ < 1 for all € € [1/3,1/2] and k > 1.
By the Lipschitz continuity of b,

R —1/2WR
b; L — b ﬂ < C’Ann_l/2||WR||,
(n—k)s2 V(W)

n

and defining

- RO (e Rm
(n —k)s? nl/2\/V (W[

n
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R, = b(W*/\/(n—k)s2) = bj(n™PWHE/ [V (W) + M — M

we have

AuRa| < A, (M m(W| 4+ On 2| [WH)
< AL ACHE (0 WY 4 S [WH)) 1= A, Ly (W)

where the second inequality invoked Lemma 3 (a). In this notation

Zﬁz—lk we WR n-1/2WR .
1| =<0 | —F—= =1 SR, +bj | —/— |+ M|.
[ (n=h)sz =~ T\ -k)s3 T\

From Lemma 4,

E[A,1[A, > Cn " O\ WE) < OA,n O (1  (n W) .= Ly, (WE).
Thus, uniformly in s € R,

E[B,1[s, < s+ R,[WH]]

IN

E[B.1[s, < s+ R,|1[A, < On O WE] L B[A,1[A, > Cn "+ OF1/27¢|1WE

IN

E[Bn1[s, < s+ Cn OF2=C L, (WE)WE] 4 L, (W}E)

IN

B,®(s + Cn O L, (W) + Ly ,,(WE) + Lg ,(WE)

IN

B,®(s) + Ly, (W) + Cn " OF2E ) (WE) + Ly, (W)

where the third inequality follows from (44), and the fourth inequality follows from an exact
first order Taylor expansion and the fact that the derivative of ® is uniformly bounded. Thus,

letting s = b;(W!/\/nV(WF)) + M and taking expectations, we obtain

n—=k s R R 3
(n—k)s2 (n—k)s2 nt/2\/V(WrE)
< B[Li,(WE)] + Cn " OH2HE[L, (WE)] + B[Ls,,(WF)]. (45)

Similarly, uniformly in s € R,

E[B.1[s, < s+ R,[WH]]



v

E[B,1[s, < s + R,J1[A, < Cn O WH] —E[A,1[A, > Cn " OF1/2=¢) | WE|
> B,®(s) — Lin(Wf) — Cnme@F/2=¢ ) (WHE) — Ly, (WF)
so that (45) holds with the left hand side replaced by its absolute value. By an application of

Lemma 2 (a) and (b), the right hand side of (45) is O(n~"++e),
Furthermore, with B = A*1[n¢Y20X/\/V(n¢cX;) € H,] and M* = n=2(n

m(nfan)/\/V(Man), by (21),
nsoX ~
B*1[Z < b; + M*
17 < j (n1/2 V(nfan)> ]

Wi ~
B1[Z <b; | —— | + 17|
nl/2\/V (W[

Cn=?.

E —E

IN

By Lemma 5 (b), replacing B** by B in this expression yields an additional approximation
error of order at most O(n~"+(€)+€).

By a first order Taylor expansion |1 —V (w)~/2| < C|1 -V (w)| uniformly in w > wy. Thus,
by the assumption about b;, and using again the fact that the derivative of ® is uniformly

bounded,

E

‘/(TLE(JZX.']c
< Cn VPEB(|In*X]] + (n — k)m(no Xp)|)|1 = V(o X))

BZ(I) (bj< — néoX )) +M*> B*CI) (b ( §— 1/2O'X) +n/m< fan))]‘

+Cn'PE[B Im(nfoXy) — m*(nfo Xy,)|].
By the Cauchy-Schwarz inequality and Lemma 3 (b),
n” VBB |InfX|| - |1 = V(n*oXy)|] < 07 VPE(|InX|P]YE(B)|L - V(nfo X)) [F) 2
< OnfCVIR(|IXI PR (46)
and by the Cauchy-Schwarz inequality and Lemma 3 (a) and (b),
n'?E[B;|Im(n‘oX;)| - [1 = V(nfoX})] < n'E[Bim(nfoXy)*) *E[B;|1 — V(nfoXy,)[*]/?
< Cn3(5*1/2)E[X2 2/5]1/2E[X4 2/6]1/2 (47)
Finally, by Lemma 3 (c),
n'?B[B|m(nfo Xy) — m* (nfo Xy)|] £ OnV2HCEIX, ) 4 Ons3REIX VY. (48)
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Note that 3(§ —1/2), (¢ —3/2 and —1/2 + & — § for § > r(§) are weakly smaller than —ry(§)
for all £ € [1/3,1/2], so the result follows from applying Lemma 2 (c) and (d) to (46)-(48). O

B Generalizing Theorem 2 to Two Potentially Heavy
Tails

Condition 2 Suppose for some %, 0%, €V 0% 6wy > 0, F admits a density for w > wy of
the form
R _ (¢R_R\-1; W \_1/eR R
F(w) = (€70 () (1 W)

and a density for w < —wq of the form
1, W _q/eL_
FE(w) = ("o ") =) T 1+ B ()
with |h? (w)| uniformly bounded by Cw=/¢" for J € {L, R} and some finite C.

Theorem 3 Suppose Condition 2 holds, and for k > 1, ry(§) = % < 0 where £ =
max(£, 7). Let ¢ : R?*+1 1 {0,1} be such that for some finite m,, ¢ : R*+1 — {0,1} can

be written as an affine function of {npj}gl, where each p; is of the form
pi(y) = 1(y" ¥") € Hyl1lyo < bi(y", ¥")]

with 'y =(yo,y",y%), b; : R?* — R Lipschitz continuous functions and H; Borel measurable

ul, let T;(u, u®) = {s*, s > 0 : (slu®, sfal?) € OH;}. Assume further that for some L > 0,

subsets of R** with boundary OH,;. For u’/ = (1,uy,...,ul) € R* with 1 >uy >ug > ... >

Z,;(ul,uf?) contains at most L elements in the set [L™*, L|?, for Lebesque almost all (u*, u’®)
and j =1,...,m,.

Then under Hy : 1 =0, for 1/3 <& <1/2 and any € >0
Blo(Y0)] — Elp(Y,)]| < Cn @
where Y,, and Y,, are the Lh.s. and r.h.s. of (34), respectively.

The proof of Theorem 3 follows from the same steps as Theorem 2 and is omitted for

brevity.
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C Implementation Details

C.1 Specification of Weighting Function

We choose F, (6, 11) to be an improper® weighting function with density that is proportional to
1-1/2 <" < 1/21[-1/2 < €" < 1/2)/(n"n™) (49)

so that the implied density on pu, x* and % is flat. This choice is numerically convenient,

as it leads to the product form f,(y) = f7(y%) fo(y¥) with f5(y) = f_IﬁQ f‘g(y|§)d§ and f\g
proportional to the density of the scale and location maximal invariant considered in Miiller
and Wang (2017). By the same arguments as employed there, fcﬁf can be obtained by one
dimensional Gaussian quadrature, and in practice we approximate f° by an average of those
over a grid of values for £ (cf. equation (7), where the shift by 0.01 avoids evaluation at &, = 0).

The lower bound of —1/2 on (&%, £%) in (49) plays no important role, since for values of ¢’

that imply an even thinner tail, "=V does not overreject due to conditions (i)-(iii) of Section

2.

C.2 Importance Sampling

We use the algorithm in Miiller and Watson (2018) to determine an appropriate proposal
density f for the importance sampling approximation @(0)

Even though the switching rule reduces the numerically relevant parameter space to a
bounded set, this set still turns out to be so large that a very large number N of importance
sampling draws are necessary to obtain adequate approximations. The computationally ex-
pensive part in the evaluation of @(0) in (36) for different ¢ is the evaluation of f(Y |6, 0)

(since all f(Y(;) can be computed once and stored).

8Technically, weighted average power is not properly defined for an improper weighting
function. But one can approximate the improper weighting function arbitrarily well by a

vague but integrable function, which leads to numerically nearly identical tests.
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These evaluations can be dramatically sped up by recombining two “single tails” in different
combinations: For a given #° = (k,7,£), let Y¢ € R¥! be an “extended” single tail with

distribution
ve [ ZVEmmmr e\ [
n(X + re) Y?S
where X is distributed as as in (30), independent of Z ~ A(0,1). Denote the density of Y*
by f¢(y°|6°). Given two independent vectors Y(,) and Y{, distributed according to 07 = oF
and 9‘; = 07 respectively, note that their combination into the “both tails” observation
(Yo )= Y5 (2 Yf’ Yf’)) € R?*1 has the same distribution as Y in (34), since the difference of
two independent normals of variance 1/2 is again standard normal. Thus, with Y(el) i.i.d. draws

from a suitable proposal density f¢, one obtains the alternative estimator

— K N fe(Ye |9L) ( |9R)
RP(A) = (KN)™ ! Ye Y 7ySl / — 0 S CED
(0) = ( ) ; ; o ( 0,(+k) L (1) (l+k)) ) fe(Yfl))f (Y(l+k))

(50)

that recombines each extended single tail with K different other extended single tails, for a
total of K'N importance draws. Yet evaluation of (50) only requires a simple product of the
(K 4+ N) values fe(Y‘(al)IHS) for 05 € {0%, 6"}, We let K = 128 and N = 640,000 for a total

of nearly 82 million importance sampling draws.

C.3 Computation

The overall algorithm proceeds in four stages. To describe these stages, let ©5 C R? be the
set of parameters satisfying the constraints (a)-(d) of Section 6.2 on one tail. Let O C ©F be
such that for 6° € ©F, the event that the switching index is zero, x(Y”) = 0, happens with
at least 90% probability, and ©%, C ©Y be such that x(Y”) = 0 with probability of exactly
90%. Note that ©F and ©%, depend on (p,, p;) in (6).

1. Choose (p,, p;) such that Eg[1[|T(Y)| > cvp(Y)]] < a for all § = (#~,0%) with 6% 6" ¢
o5,

2. Use the algorithm of EMW to numerically determine ¢ via {A\{}5 and {07} in (5)

13



so that
Eo[1|T(Y)| > evr(Y)]®(Y)] < a

for all § = (6, 0%) € ©, with 6* € ©3, and 6" € ©5\05.

3. Use the algorithm of EMW to determine o* in (11) via {\;}}4, and {6;}}, so that the
overall test NV of Section 2 satisfies Fy[pN"V(Y)] < a under all § = (#~,0%) € ©,
for 6%, 0" € ©5\65.

4. Spot-check that W indeed satisfies Ep[p""W (Y)] < « for all § € Oy, including § =
(67, 6") with 6", 0% € .

Note that the parameter set under consideration becomes consecutively larger in Steps
1-3, which ensures that any potential remaining overrejections of a stage can be corrected by
a subsequent stage, which increases the numerical stability of the algorithm. Null rejection
probabilities are estimated throughout with the importance sampling estimator (50). This
estimator has an importance sampling standard error (appropriately adjusted for the depen-
dence) of no more than 0.05%, 0.15% and 0.2% for a = 1%, 5%, 10%, respectively. In Steps
2 and 3, we search for size violations by running a gradient-based hill-climber with up to 200
randomly chosen starting values (with analytically determined derivatives obtained from f€).

We apply this approach to the default nuisance parameter space with ny = 50 of
Section 6.2 for £k = 8 and a € {0.002,0.004,..., 0.008,0.01,0.02,..., 0.10,0.12,...,
0.20,0.25,0.30,0.40,0.50}, and also for k& = 4 to the larger nuisance parameter space where
ng = 25 in the constraints of Section 6.2. We ensure that the 95% and 99% level confidence
intervals obtained via test inversion always contain the 90% and 95% level intervals, respec-
tively, and that the p-value is always coherent with the level of the reported confidence interval
by adding the obvious additional constraints to the form of the tests for a # 0.05. For k& = 8,
a suitable value for p, in (6) is p, = 0.8; p, = 0.5 for &k = 4; and p, = 0.5 for both values
of k. The replication files provide corresponding tables of {7, 0} and {)\;, 6;}M, for each
significance level and value of k € {4,8}. For instance, for £ = 8 and o = 5%, Mg = 6 and
M = 84.

14



D Monte Carlo Comparison of New Tests for Various &

Table 4 compares different versions of the new method across the same set of seven populations
of Table 1. We consider k € {4,812} for the default parameter space with ng = 50, and also
include the even more robust test with k£ = 4 constructed from the parameter space in Section
6.2 with ng = 25. For n = 25, only the test with ng = 25 comes close to controlling size for
non-thin tailed populations (and the test with k£ = 12 cannot be applied at all, since there is
only a single “middle” observation). For larger n, the tests with k = 4 are even more successful
in controlling size compared to the default method, but at a non-negligible cost in terms of
longer confidence intervals. In contrast, the test for & = 12 does not yield an additional
substantial reduction in average length, and has worse size control for n = 50. These results

underlie our choice of the test with k¥ = 8 and ng = 50 as the default.

E Small Sample Results for a = 0.01
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Table 4: Small Sample Results of New Methods for Inference for the Mean

N(0,1) LogN F(4,5) t(3) P(0.4) Mix 1 Mix 2
n =25
DEF: k=8,n9 =50 4.7/]1.00 13.1/0.64 16.5/0.56 4.0[1.02 17.8/0.53 8.0/0.82 18.7|0.62
k=4,n9 =50 2.7|11.25 7.4/0.70 10.1/0.61 3.1|1.16 11.6/0.57 5.2/0.93 11.7]0.67
k=12,n9 =50 NA NA NA NA NA NA NA
k=4,n9=25 2.3|1.42 4.3|0.80 5.7|0.67 2.1|1.49 7.3|0.61 3.1|1.09  9.3|0.72
n = 50
DEF: k=8,n90 =50 3.8/1.10 3.2/0.93 4.5/0.77 3.3]1.44 5.2|0.72 3.3]1.11 12.2]|0.66
k=4,n9 =50 3.9/]1.15 2.6/0.99 3.6/0.81 3.6/1.46 4.3/0.76 3.2|1.15 11.1]0.66
k=12,n9 =50 3.5|1.15 4.3/0.86 6.1/0.73 2.8/1.43  8.0/0.68 2.8/1.08 10.9/0.67
k=4,n9=25 3.711.15 2.1]1.15 2.8/0.94 3.2|]1.70 3.2/0.87 3.2|]1.32 11.6/0.73
n = 100
DEF: k=8,n9 =50 4.8/1.01 3.1/1.26 3.6/1.04 3.8]1.37 3.6/1.00 3.3]1.31  7.9|0.75
k=4,n9 =50 5.0/1.02 3.0/1.23 3.4/1.00 3.8/1.51 3.8/0.95 3.5/1.30 5.6/0.71
k=12,n9 =50 4.0/1.06 2.8/1.27 3.5/]1.07 3.6/1.33 3.4/1.04 2.9|1.33  8.7/|0.75
k=4,n9=25 5.1/1.01 2.6/1.37 3.3]1.13 4.2|]1.56 3.7]1.07 3.6/1.43  6.2]0.82
n = 500
DEF: k=8,n9=50 4.9/1.00 4.1/1.18 4.3|1.21 4.5|1.13 4.1|]1.22 4.4]1.18 3.2|]1.21
k=4,n9 =50 5.1/1.00 4.4/1.31 4.6/1.26 4.4/1.31 4.4/1.24 4.2|]1.32 3.2/1.10
k=12,n9 =50 5.1/1.00 3.7]1.18 4.2]1.17 3.1]1.16 4.2]1.16 3.7|1.19 2.7|1.28
k=4,n9=25 5.0/1.00 4.2]1.34 4.2]1.38 4.5|1.28 4.3]1.32 4.1|/1.36 3.1]|1.27

Notes: See Table 1.
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Table 5: Small Sample Results in Inference for the Mean

N(0,1) LogN F(4,5) t(3) P(0.4) Mix 1 Mix 2
n = 50
T-STAT 0.9/1.00 5.1/0.62 6.8/0.58 0.7|/1.04 7.8/0.53 2.7/0.82 10.8|0.60

SYM-BOOT ~ 0.9/1.02 2.9/1.04 4.0/1.31 0.5]1.19 4.1]1.29 2.6/1.12 10.3/1.58
ASYM-BOOT 1.0/1.02 2.1/0.85 2.6/0.97 1.9]1.10 2.7/0.95 2.6/0.96  9.4]1.08

NEW 0.3(1.39 0.6/0.79 1.1/0.69 0.2[1.57 1.8/0.63 0.5/1.10  3.9/0.70
n = 100
T-STAT 1.1/0.99 3.6/0.74 5.3/0.65 0.8]1.02 5.9/0.62 2.6/0.82  9.3/0.57

SYM-BOOT ~ 1.1/0.99  2.2|]1.05 3.5/1.22 0.7]1.09 3.5[1.25 2.4]/1.03  8.5/1.23
ASYM-BOOT 1.1/0.99 1.6/0.90 2.4]0.94 1.9/1.04 2.5[0.95 2.4/0.92  7.3]0.90

NEW 0.7/1.08 0.2/1.22 0.5/0.97 0.4]1.67 0.5/0.92 0.5/1.31  3.7/0.73
n = 500
T-STAT 1.0/1.00 1.9/0.88 3.0/0.80 0.8]1.02 3.5/0.78 1.5/0.93  4.2(0.69

sym-soor  1.1/1.00 1.5/0.99 2.1]1.09 0.8]1.04 2.6/1.13 1.4|1.01 3.0/1.04

ASYM-BOOT 1.1/1.00 1.3|0.93 1.7/0.94 1.6/1.02 1.8/0.95 1.4/0.97 2.3]0.86

NEW 1.0/1.01 0.6/1.33 0.7|1.34 0.5/1.32 0.7|]1.30 0.5]1.37 0.4|1.14
Notes: Entries are the null rejection probability in percent, and the average length of confidence

intervals relative to average length of confidence intervals based on size corrected t-statistic (bold if
null rejection probability is smaller than 2%) of nominal 1% level tests. Based on 20,000 replications.
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Table 6: Small Sample Results of New Methods for Inference for the Mean

N(0,1) LogN F(4,5) t(3) P(0.4) Mix 1 Mix 2
n =25
DEF: k=8,n9=50 0.6/1.07 6.7/0.57 8.9/0.50 0.4/1.10 10.3|0.46 2.1/0.84 6.6]|0.68
k=4,n9=50 0.3]1.34 3.4/0.60 4.9/0.53 0.3|]1.22  6.4/0.47 1.2/0.88 3.0/0.70
k =12,n9 = 50 0.0/0.00 0.0/0.00 0.0/0.00 0.0/0.00 0.0/0.00 0.0/0.00 0.0/0.00
k=4,n9=25 0.1/1.71 1.8/0.65 2.3]0.58 0.1|/1.54  3.0/0.53 0.5/1.04 1.4]/0.77
n =50
DEF: k=8,n9 =50 0.3]1.39 0.6/0.79 1.1/0.69 0.2/1.57 1.8/0.63 0.5/1.10 3.9/0.70
k=4,ny=50 0.3/]1.50 0.5/0.83 0.9/0.69 0.2/1.65 1.3|0.64 0.5]1.15 3.4/0.70
k=12,n9 =50 0.1/1.50 1.4|0.75 2.2/0.65 0.2/1.54 3.3/0.59 0.4/1.03 2.6]0.70
k=4,n9=25 0.4/1.59 0.3]0.97 0.5/0.78 0.2/2.02 0.6/0.73 0.5/1.34 3.5/0.79
n = 100
DEF: k=8,n9 =50 0.7/]1.08 0.2/1.22 0.5/0.97 0.4/1.67 0.5/0.92 0.5/1.31 3.7]|0.73
k=4,n9=50 0.6/1.22 0.3]1.06 0.6/0.85 0.3|1.85 0.7/0.81 0.5/1.27 2.2]0.69
k=12,n9 =50 0.6/1.14 0.3]1.22 0.4/1.00 0.5/1.56 0.5/0.92 0.3]1.35 3.3]0.75
k=4,n9=25 0.71.20 0.4|1.21 0.5/0.98 0.3|2.13 0.6/0.95 0.4/]1.47 2.5/0.76
n = 500
DEF: k=8,n9 =50 1.0/1.01 0.6/1.33 0.7|1.34 0.5/1.32 0.7/1.30 0.5/1.37 0.4]/1.14
k=4,n9=50 1.1/0.99 0.6/1.45 0.7|1.20 0.5/1.72 0.8/1.20 0.6/1.49 0.5/0.95
k=12,n9 =50 1.1/0.99 0.5[1.29 0.7/1.20 0.5/1.30 0.6/1.22 0.5/1.31 0.4|1.23
k=4,n9=25 0.9/1.01 0.6]1.54 0.7/]1.34 0.5/1.84 0.7|]1.34 0.6/1.64 0.5/1.08

Notes: See Table 5.
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Figure 5: Small Sample Results for HMDA Populations
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Table 7: Small Sample Results for Difference of Population Means

N(0,1) LogN F(4,5) t(3) P(0.4) Mix 1 Mix 2
n = 50
T-STAT 1.4]0.94 3.9/0.75 3.3/0.78 1.0/0.99 3.4/0.78 2.1|0.87 3.1]0.81

SYM-BOOT ~ 1.4/0.95 3.6/0.97 3.1]1.02 0.9]1.08 3.3]1.05 2.1[1.02 3.1]1.12
ASYM-BOOT 1.6/0.94 3.2(0.83 3.1/0.87 2.3]1.01 3.20.89 2.7/0.92 3.2(0.93

NEW 0.1/1.46 0.7/1.02 0.7/1.07 0.1/1.49 0.7]1.07 0.5/1.25 0.9/1.06
n = 100
T-STAT 1.0/0.99 3.1/0.78 3.1/0.80 1.0/1.00 3.0/0.81 1.8/0.89  3.6/0.80

SYM-BOOT 1.1/0.99 2.8/0.99 3.0/1.08 0.9/1.05 2.9|1.10 1.8/1.03 3.6/1.15
ASYM-BOOT 1.1/0.99 2.5/0.87 2.6/0.92 2.0/1.01 2.5/0.93 2.1/0.94 3.6/0.94

NEW 0.3]1.37 0.5/1.23 0.91.21 0.4/1.74 0.9]1.21 0.5/1.41 1.9/1.06
n = 500
T-STAT 1.0/1.00 1.7]0.92 2.0/0.87 0.9/1.01 2.3|0.85 1.4/0.94 3.3]|0.78

symMm-BooT  1.1/0.99 1.5[1.02 1.9/1.09 0.9]1.03 22/1.08 1.3]1.02 3.1|1.06
ASYM-BOOT 1.1/1.00 1.5/0.96 1.9]0.96 1.5/1.01 1.9/0.95 1.5/0.97 2.9/0.90
NEW 0.9/1.01 0.5|1.44 0.7]1.40 0.7/1.32 0.7]1.37 0.6]1.43 1.2/1.38

Notes: See Table 5.
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Figure 6: Small Sample Results for Two Samples from HDMA Populations
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Table 8: Small Sample Results in Clustered Regression Design

N(0,1) LogN F(4,5) t(3) P(0.4) Mix 1 Mix 2
n = 50

STATA 1.0/1.00 3.8[0.72 4.3]0.72 0.9]1.02 4.9(0.71 2.1/0.86 4.80.74
IM-Ko  1.0/1.01  3.7]0.73  4.1/0.73 0.8/1.03 4.7/0.72 2.0/0.88 4.6|0.75
CGM  09]1.02 3.7/0.68 4.1/0.66 1.0[0.99 4.7/0.65 2.0/0.83 4.6/0.65
NEW 0.2/1.55 0.5/0.91 0.7/0.91 0.3]1.49 0.7/0.89 0.5/1.18 1.4/0.92

n = 100

STATA 1.1/0.99 3.3/0.78 3.9|0.76 0.8/1.03 4.2/0.73 2.1/0.88 5.7/0.70
IM-Ko  1.1/0.99 3.2(0.78 3.8/0.76 0.8]1.03 4.1/0.74 2.0/0.88 5.6/0.71
CGM  1.1]1.00 3.3)0.73 3.90.69 1.0]1.00 4.2/0.66 2.2/0.84 5.7/0.61
NEW 0.5/1.33 0.4/1.22 0.7/1.13 0.4]1.74 0.7]1.09 0.6/1.39 2.2|0.95

n = 500
STATA 1.1/0.99 1.9(0.90 2.7/0.82 0.9]1.02 2.7/0.82 1.6/0.92 4.0/0.74
IM-Ko  1.1/0.99 1.9/0.90 2.7/0.82 0.9/1.02 2.6/0.82 1.6/0.92 4.0/0.74
CGM  1.1/1.00 2.0/0.87 2.8]0.77 0.9]1.00 2.8/0.77 1.6/0.90 4.2/0.68
NEW 1.0/1.01 0.6/1.39 0.7]1.34 0.6]1.36 0.7]1.35 0.6/1.38 0.71.28

Notes: Entries are the null rejection probability in percent, and the average length of confidence
intervals relative to average length of confidence intervals based on size corrected STATA (bold if
null rejection probability is smaller than 2%) of nominal 1% level tests.
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