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Motivation

� Key building block of econometrics: t-statistic for inference about mean

) Inference for regression coe¢ cients reduces to inference about mean of
xiei for suitably de�ned ei, similar in GMM

� Potential challenge: inaccurate approximations by CLT in numerator and
LLN in denominator

) Induced by heavy-tailed population, especially asymmetry, in small sam-
ples

) E¤ective sample size often not very large due to clustering or nonpara-
metrics

� Standard remedy: Bootstrap

) Provides re�nement when at least three moments exist
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Null Rejection Probabilities

N(0,1) LogN F(4,5) t(3) P(0.4) Mix 1 Mix 2
n = 50

t-stat 5.1 10.0 12.7 4.5 13.8 7.8 18.7
sym-boot 5.1 7.9 10.1 4.0 10.7 7.4 18.1
asym-boot 5.2 6.8 8.3 7.3 8.4 8.4 17.7

n = 100
t-stat 4.9 8.3 11.0 4.6 11.8 7.0 15.9
sym-boot 4.9 6.7 9.0 4.2 9.4 6.4 14.5
asym-boot 5.0 6.3 7.7 6.8 7.8 7.1 13.6

n = 500
t-stat 4.9 6.0 7.8 4.8 8.3 5.7 9.3
sym-boot 5.0 5.4 6.8 4.7 7.2 5.3 7.7
asym-boot 5.0 5.7 6.7 5.9 7.0 6.0 7.3
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Population Densities
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Basic Idea

� Wi i.i.d. sample of size n with cdf F , H0 : E[W ] = 0, long right tail

� Divide and conquer: Largest k order statistics WR = (WR
1 ; : : : ;W

R
k ),

and remaining n� k �small� observations W s
i

� Conditional onWR, W s
i i.i.d. with cdf F (w)=F (W

R
k ) for w �W

R
k

) Conditional mean under H0:

(1� P (W > w))E[W jW � w] + P (W > w)E[W jW > w] = 0, so

m(w) = E[W jW � w] = �P (W > w)E[W jW > w]

1� P (W > w)
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Basic Idea, ctd.

� Asymptotic approximations:

1. WR has (joint) extreme value distribution

2. Conditional on WR,
Pn�k
i=1 W

s
i is approximately normal with mean

(n� k)(E[W ] +m(WR
k ))

3. EVT assumptions imply parametric approximation for m(�)

) Obtain approximate parametric model for k + 1 observations
(WR;

Pn�k
i=1 W

s
i )

� Determine 5% level test in approximate parametric model

) Numerically (very) challenging, but computations only need to be per-
formed once, and application of test to new datasets computationally trivial
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Contributions

� New asymptotic approximation for inference about mean

) Combines EVT and CLT

� Theory: Generates re�nement for population with more than two but less
than three moments, while bootstrap does not

� Practice: Implementation that only requires few �tail observations�

Also applicable to inference about scalar parameter in (clustered) linear
regression and GMM, but no theory to support potential improvements

� Bahadur and Savage (1956): Inference about mean impossible without
further assumptions

) Assumption here: EVT provides good approximation
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Related Literature

� Inference for mean under heavy tails (less than two moments)

Romano and Wolf (2000), Peng (2001, 2004), Johansson (2003)

� Higher order approximation to distribution of t-statistic

Bentkus and Götze (1996), Bentkus, Bloznelis and Götze (1996), Bloznelis
and Putter (2003), Hall and Wang (2004)

� Fixed-k inference about tail properties

Müller and Wang (2017)

� Nearly e¢ cient tests and CIs in nonstandard problems

Elliott, Müller and Watson (2015), Müller and Watson (2016, 2018),
Müller and Norets (2016)
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Companion Paper

� Use combination of CLT and extreme value distribution for re�nement of
CLT approximation

n�1=2
nX
i=1

Wi = n
�1=2

0@n�kX
i=1

W s
i +

kX
j=1

WR
j

1A
) Müller (2019) discusses rates of improvement
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Outline of Talk

1. Introduction

2. Review of Extreme Value Theory

3. Review of distribution of t-statistic

4. Theory: Rates of errors in coverage probability

5. Implementation

6. Monte Carlo evidence
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Review of Extreme Value Theory

� Su¢ cient for convergence of WR
1 to Fréchet extreme value distribution:

lim
w!1

1� F (w)
(w=�)�1=�

= 1

) Convergence if upper tail is approximately Pareto

) More-or-less necessary

) student-t with df degrees of freedom induces convergence with
� = 1= df, etc.

� Then

n��WR
1 ) �X1

where for x > 0, P (X1 � x) = G(x) = exp(�x�1=�)
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Fréchet Densities
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Joint Convergence of Largest k Observations

� If n��WR
1 ) �X1, then for any �xed k, also

n��WR = n��

0B@ WR
1...

WR
k

1CA) �X = �

0B@ X1
...
Xk

1CA
where joint pdf of X is given by

G(xk)
kY
i=1

g(xi)=G(xi)

with g(x) = dG(x)=dx

� X can be generated via X1 � G, X2jX1 = x1 � G(x)=G(x1),
X3jX2 = x2; X1 = x1 � G(x)=G(x2), etc.
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Review: Distribution of t-statistic

� If E[W ] = 0 and E[W 2] <1, then Tn ) N (0; 1)

� Let T �njW be bootstrap draw of Tn conditional onW = fWigni=1

� Theorem (Bloznelis and Putter, 2003). If F is non-lattice and E[jW j3]
exists, then

sup
t
jP (T �n < tjW)� P (Tn < t)j = o(n�1=2) a.s.

while, for E[W 3] 6= 0, lim infn!1 n1=2 supt jP (Tn < t) � �(t)j > 0,
where �(t) = P (Z < t), Z � N (0; 1).
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Review: Distribution of t-statistic

� Theorem (Bentkus and Götze, 1996): For some C > 0, and E[W 2] = 1,

sup
t
jP (Tn < t)� �(t)j � CE[W 21[jW j >

p
n]]

+ Cn�1=2E[jW j31[jW j �
p
n]]

� Is sharp (Hall and Wang, 2004), holds uniformly in F (Bentkus, Bloznelis,
Götze, 1996)
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Theory Contributions

1. No bootstrap re�nement if extreme value theory holds with 1=3 < � < 1=2

2. Combining CLT for truncated sample with extreme value approximation
for k largest observations yields re�nement for 1=3 < � < 1=2
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Bootstrap under 1=3 < � < 1=2

� Assume that for some 1=3 < � < 1=2, limw!1
P (jW j>w)
w�1=�

> 0, so that
jW j has Pareto tail with index �

� Theorem:

(a) lim infn!1 n1=(2�)�1 supt jP (Tn < t)� �(t)j > 0

(b) n3(1=2��) supt jP (T �n < tjW)� �(t)j = Op(1):

) Since 3(1=2� �) > 1=(2�)� 1, also
supt jP (T �n < tjW)� P (Tn < t)j = Op(n1�1=(2�)), so no re�nement.

� Proof: (a) Follows from sharpness of Bentkus/Götze bound.

(b) Apply Bentkus/Götze to bootstrap distribution:
n�1

Pn
i=1W

2
i 1[jWij >

p
n]

p! 0 from maxi jWij = Op(n�),
and

Pn
i=1 jWij3 = Op(n3�).

16



New Asymptotic Approximation

� Under approximate Pareto tail limw!1 1�F (w)
(w=�)�1=�

= 1,

m(w) = E[W jW � w] � ��1=� �

1� �
w1�1=�

� Let s2n = (n� k)�1
Pn�k
i=1 (W

s
i � �W s)2. Then s2n

p! Var[W ].
By scale invariance of ultimate test, set Var[W ] = 1 wlog.

� Under local alternatives E[W ] = n�1=2�, from n��WR a� �X and CLT0B@ Pn�k
i=1 W

s
iq

(n� k)s2n
;

WRq
(n� k)s2n

1CA a�
 
Z + �� �n

�

1� �
X
1�1=�
k ; �nX

!

with �n = �n
�(1=2��) and Z � N (0; 1) independent of X
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New Test

� Joint approximation

Yn :=

0B@ Pn�k
i=1 W

s
iq

(n� k)s2n
;

WRq
(n� k)s2n

1CA
a�
 
Z + �� � �

1� �
X
1�1=�
k ; �X

!
:= Y = (Y0;Y

R)

� Construct test ' : Rk+1 7! [0; 1] such that under H0 : � = 0, for all
� = �n > 0 and � < 1=2, E['(Y)] � �

) Many such '

) Aim to maximize weighted average power, and apply numerical tech-
niques of Elliott, Müller and Watson (2015)
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Asymptotic Re�nement

Theorem: Under some technical assumptions, for k > 1, 1+k
1+3k < � < 1=2

and all � > 0, under H0

jE['(Yn)]� E['(Y)]j � Cn�rk(�)+�

where rk(�) =
3(1+k)(1�2�)
2(1+k+2�)

> 1=(2�)� 1.

) Recall lim infn!1 n1=(2�)�1 supt jP (Tn < t) � �(t)j > 0, so new ap-
proximation is re�nement over usual t-test

) Proof: Given Bentkus/Götze, only hard part is to deal with s2n (but that is
very involved)
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Both Tails Potentially Heavy

� Same approach for two potentially fat tails, where nowWe = (WL;WR)

and Wm
i are remaining n� 2k middle observations

� Asymptotic approximations then become0BB@
WRp
(n�2k)s2n
�WLp
(n�2k)s2n

1CCA a�

0@ n�(1=2��
R)�RXR

n�(1=2��
L)�LXL

1A =  
YR

YL

!

andPn�2k
i=1 Wm

iq
(n� 2k)s2n

jWe a� Z � �R �R

1� �R
(XRk )

1�1=�R + �L
�L

1� �L
(XLk )

1�1=�L

= Y0j(YR;YL)
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Tail Location Parameters

� EVT holds regardless of (�xed) population shifts

) Poor small sample approximations

) Re�ected in lower rates for EVT approximation

� Introduce location parameters �L and �R for tails

) Parametric problem now indexed by six dimensional nuisance parameter

� = (�L; �L; �L; �R; �R; �R)
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Implementation

� �J � 1=2, �J such that E[XJ12] � 0
Upper bound on �J from assumption that tail model holds up to XJ25

� Impose that ' never rejects if

jY0 +
Pk
j=1 Y

R
j �Pk

j=1 Y
L
j jq

1 +
Pk
j=1(Y

R
j )

2 +
Pk
j=1(Y

L
j )

2
< 2:0

� Seek to maximize power against alternative with tail parameters indepen-
dent, �J � U(�1=2; 1=2) and improper density on (�J ; �J) proportional
to 1=�J

� Determination of ' for k = 8 takes about one hour

) But evaluations of ' are essentially instantaneous

22



Null Rejection Probabilities

N(0,1) LogN F(4,5) t(3) P(0.4) Mix 1 Mix 2
n = 50

t-stat 5.1 10.0 12.7 4.5 13.8 7.8 18.7
sym-boot 5.1 7.9 10.1 4.0 10.7 7.4 18.1
asym-boot 5.2 6.8 8.3 7.3 8.4 8.4 17.7
new k = 8 3.8 3.4 4.6 3.1 5.8 3.2 11.8

n = 100
t-stat 4.9 8.3 11.0 4.6 11.8 7.0 15.9
sym-boot 4.9 6.7 9.0 4.2 9.4 6.4 14.5
asym-boot 5.0 6.3 7.7 6.8 7.8 7.1 13.6
new k = 8 4.7 2.9 3.6 3.8 3.7 3.3 8.6

n = 500
t-stat 4.9 6.0 7.8 4.8 8.3 5.7 9.3
sym-boot 5.0 5.4 6.8 4.7 7.2 5.3 7.7
asym-boot 5.0 5.7 6.7 5.9 7.0 6.0 7.3
new k = 8 4.6 4.2 4.4 4.2 4.5 4.2 2.8
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Normalized Average Lengths

N(0,1) LogN F(4,5) t(3) P(0.4) Mix 1 Mix 2
n = 50

t-stat 0.99 0.75 0.67 1.01 0.63 0.87 0.59
sym-boot 0.99 1.06 1.33 1.12 1.45 1.09 1.42
asym-boot 1.00 0.96 1.07 1.07 1.15 1.00 1.07
new k = 8 1.12 0.92 0.75 1.44 0.69 1.08 0.61

n = 100
t-stat 1.00 0.84 0.73 1.01 0.71 0.91 0.60
sym-boot 1.01 1.05 1.19 1.08 1.25 1.06 1.18
asym-boot 1.01 0.98 1.01 1.05 1.04 1.00 0.95
new k = 8 1.01 1.24 1.03 1.34 0.99 1.29 0.73

n = 500
t-stat 1.00 0.95 0.87 1.01 0.85 0.97 0.79
sym-boot 1.00 1.01 1.13 1.03 1.18 1.01 1.06
asym-boot 1.00 1.00 1.03 1.02 1.04 1.00 0.97
new k = 8 1.02 1.18 1.20 1.13 1.19 1.18 1.27
Note: Normalized by average length of size corrected t-stat; bold indicates size<6%
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Null Rejection Probabilities

N(0,1) LogN F(4,5) t(3) P(0.4) Mix 1 Mix 2
n = 50

t-stat 4.9 10.3 12.6 4.7 13.5 7.7 19.2
new k = 4 3.5 3.0 3.9 3.4 4.2 2.9 10.6
new k = 8 3.8 3.4 4.6 3.1 5.8 3.2 11.8
new k = 12 3.3 6.2 8.3 3.0 9.9 3.1 11.5

n = 100
t-stat 5.2 8.2 10.8 4.6 11.5 7.1 15.4
new k = 4 4.8 2.8 3.5 3.5 3.6 2.9 4.8
new k = 8 4.7 2.9 3.6 3.8 3.7 3.3 8.6
new k = 12 4.2 2.7 3.3 3.7 3.5 3.0 7.8

n = 500
t-stat 5.2 5.8 7.6 5.1 7.9 5.8 9.2
new k = 4 4.9 3.7 3.7 4.3 3.7 3.8 2.7
new k = 8 4.6 4.2 4.4 4.2 4.5 4.2 2.8
new k = 12 4.9 3.4 3.6 3.6 3.7 3.5 2.7
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Normalized Average Lengths

N(0,1) LogN F(4,5) t(3) P(0.4) Mix 1 Mix 2
n = 50

t-stat 1.00 0.73 0.65 1.01 0.63 0.87 0.59
new k = 4 1.22 0.98 0.80 1.48 0.76 1.17 0.63
new k = 8 1.12 0.92 0.75 1.44 0.69 1.08 0.61
new k = 12 1.17 0.79 0.67 1.34 0.64 1.01 0.60

n = 100
t-stat 0.98 0.83 0.73 1.01 0.72 0.90 0.61
new k = 4 1.03 1.24 1.02 1.54 0.98 1.32 0.73
new k = 8 1.01 1.24 1.03 1.34 0.99 1.29 0.73
new k = 12 1.05 1.24 1.05 1.29 1.01 1.29 0.74

n = 500
t-stat 0.99 0.96 0.88 1.00 0.86 0.96 0.80
new k = 4 1.01 1.34 1.30 1.35 1.29 1.35 1.21
new k = 8 1.02 1.18 1.20 1.13 1.19 1.18 1.27
new k = 12 1.01 1.20 1.17 1.19 1.17 1.21 1.28
Note: Normalized by average length of size corrected t-stat; bold indicates size<6%
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Empirical Monte Carlo

� Consider applicant�s income in 2016 Home Mortgage Disclosure Act
(HMDA) universe of �16m mortgage applications

� Create subpopulations by conditioning on gender, purpose of loan, US
state, race

) 330 subpopulations with more than 4000 individuals

� For each subpopulation:

� Compute mean of applicant�s income

� Repeat 20,000 times: Draw n data points at random, compute CIs and
check whether it contains subpopulation mean

) Obtain 330 null rejection probabilities, and average lengths
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HMDA Results
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Regression with Clustered Standard Errors

� Consider inference about �0 in linear regression with clustered errors

Yit = �+ �Rit +X
0
it + uit

uit = �iRit + "it

for i = 1; : : : ; n, t = 1; : : : :; T with Rit; Xit;j; "it � iidN (0; 1), and
�i i.i.d. mean-zero

� Let R̂it be the residuals of a regression of Rit on Xit and a constant. By
Frisch-Waugh

�̂ � � =

0@ nX
i=1

TX
t=1

R̂2it

1A�1 nX
i=1

TX
t=1

R̂ituit

and STATA computes clustered standard error via

�̂2
�̂
=

nT

nT � k
n

n� 1

0@ nX
i=1

TX
t=1

R̂2it

1A�2 nX
i=1

0@ TX
t=1

R̂itûit

1A2
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Regression with Clustered Standard Errors

� Nearly equivalent to inference about mean of

Wi = �̂ + c
�1

TX
t=1

ûitR̂it c = n�1
nX
i=1

TX
t=1

R̂2it

) Apply new procedure to fWigni=1

� Compare to alternative approaches

� STATA

� Cameron, Gelbach and Miller (2008): Wild Bootstrap with null hy-
pothesis imposed

� Imbens and Kolesár (2016): Degrees of freedom adjustment as func-
tion of design matrix and estimated intra-cluster random e¤ect type
correlation
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Null Rejection Probabilities, T = 10

N(0,1) LogN F(4,5) t(3) P(0.4) Mix 1 Mix 2
n = 50

STATA 5.5 10.5 13.4 4.6 12.5 7.8 17.8
Im-Ko 5.3 10.3 13.2 4.4 12.3 7.6 17.5
CGM 5.2 10.6 13.4 4.8 12.6 7.8 17.7
new k = 8 3.3 4.5 5.8 2.8 4.6 3.1 8.8

n = 100
STATA 4.9 9.0 11.2 4.9 11.0 7.1 15.9
Im-Ko 4.8 8.9 11.1 4.8 10.9 7.0 15.8
CGM 4.7 9.0 11.3 5.1 11.2 7.1 16.2
new k = 8 4.1 3.0 3.7 4.0 3.8 3.9 8.3

n = 500
STATA 5.6 6.0 8.1 4.6 8.1 6.0 10.2
Im-Ko 5.6 6.0 8.1 4.6 8.1 6.0 10.2
CGM 5.5 6.2 8.4 4.7 8.2 6.1 10.5
new k = 8 5.2 3.9 4.3 4.1 4.5 4.1 3.5
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Normalized Average Lengths, T = 10

N(0,1) LogN F(4,5) t(3) P(0.4) Mix 1 Mix 2
n = 50

STATA 0.98 0.74 0.65 1.02 0.69 0.88 0.63
Im-Ko 0.99 0.74 0.66 1.02 0.70 0.88 0.64
CGM 0.99 0.71 0.61 1.00 0.65 0.85 0.57
new k = 8 1.36 0.84 0.71 1.43 0.76 1.11 0.66

n = 100
STATA 1.00 0.82 0.72 1.01 0.73 0.91 0.63
Im-Ko 1.01 0.82 0.73 1.01 0.74 0.91 0.64
CGM 1.01 0.80 0.68 0.99 0.69 0.89 0.57
new k = 8 1.11 1.19 1.00 1.41 1.00 1.29 0.76

n = 500
STATA 0.98 0.95 0.85 1.02 0.86 0.96 0.76
Im-Ko 0.98 0.95 0.86 1.02 0.86 0.96 0.76
CGM 0.98 0.94 0.82 1.01 0.82 0.95 0.72
new k = 8 0.99 1.24 1.20 1.17 1.20 1.21 1.20
Note: Normalized by average length of size corrected t-stat; bold indicates size<6%
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Empirical Monte Carlo

� Treat 2018 CPS data of outgoing rotation as population, appr. 150; 000
observations

� Consider regressions of log wage on random 5 element subset of gender,
race, age, education, union status, marriage status, education, etc.

) obtain 200 population regression coe¢ cients

� Interest in clustered inference by Metropolitan Statistical Areas (MSA),
total of 308

� For each population regression, repeat 20,000 times:

draw n clusters at random, compute clustered CI, and check whether �rst
population coe¢ cient is included
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Log-Wage CPS Clustered by MSA
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Log-Wage CPS Clustered by MSA
� Loss function of the form

`(CI) = length(CI) + c1[�0 =2 CI]

and for each population, determine c such that risk minimizing STATA cv
yields 5% level test

For each population, normalize risk of optimal STATA to unity
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Heavy Tails from Clustering

� Recall that under clustering, variability in �̂ conditional on regressors is
driven by variability of

nX
i=1

0@ TiX
t=1

R̂ituit

1A = nX
i=1

W 0
i

� W 0
i can be heavy-tailed because

� uit has cluster-speci�c heavy-tailed component, uit = "it + �i

� R̂it is heterogeneous across clusters

� Ti is heterogeneous across clusters

or combinations thereof
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Union Status Regression Clustered by MSA
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Union Status Clustered by MSA
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Two Sample t-statistic

� Inference about di¤erence in population mean between two randomly cho-
sen 330 subpopulations of the HMDA data set

� Draw n=2 i.i.d. observations from each subpopulation and apply standard
regression inference (= treat each observation as its own cluster)
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HMDA Two Sample
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HMDA Two Sample
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Conclusions

� New approach to inference for mean in presence of potentially fat tails that
combines EVT and CLT

� Theory: Provides re�nement under Pareto-like fat tails (more than two but
less than three moments), while bootstrap does not

� Practice: Implementation that yields noticeably better size control in fat-
tailed populations, also in clustered regression inference
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