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Motivation

e Time series models have potentially time varying parameters

e Recent interest in testing parameter stability

= Nyblom (1989), Andrews (1993), Andrews and Ploberger (1994),
Hansen (2000), Elliott and Miiller (2003)

e What to do if instability are found/suspected?
— Inference on stable subset of parameters

— Inference on parameter path




Overview

e Generalized Method of Moments (GMM) framework

e Focus on instabilities that are small in the sense that reasonable tests
detect them with (possibly large) probability smaller than one in the
limit

e Main result: standard GMM inference (ignoring the partial instability)
remains asymptotically valid for the subset of stable parameters
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GMM Set-up

Data is {y:}/_;. Model with time invariant parameter fg € © C R™
satisfies

Elg(yt,00)] =0 for all t < T.

Let {Ht}%rzl € ©1' be the parameter path in the unstable model, such
that

Elg(yt,0¢)] =0 for all t < T.

Let g:(0) = g(yt, 0) and G¢(0) = g(yt,6)/06.

We analyze properties of usual GMM estimator
. . T T
0 =argmin | T Eljgt(Q) Qr (T Eljgt(Q)

for sequence of positive definite weighting matrices Qr




Example

Linear model y+ = X8 + Zt6 + p + e+, e+ ~ id(0, 02)

Rewrite y; = W/0; + &4, where Wy = (X¢, Z¢, 1) and 0 = (B4, 0, 1)
GMM with g¢(6) = Wi(yr — W/0) and Qp = I3 equivalent to OLS
We are interested in conducting inference on 9,

Can’t simply run short regression of y; on (Z¢, 1), since X; and Z;
might be correlated




High Level Assumptions |

(i) The parameter evolves as T1/2(0;, — 0p) = f(¢/T) ¥Vt < T for some
nonstochastic, bounded and piece-wise continuous function f : [0,1] —
R™ with at most a finite number of discontinuities.

Comments

e corresponds to local neighborhood in which tests of parameter stability
have nontrivial power

e almost unrestricted otherwise: smooth evolution, single break, multi-
ple breaks, ...




High Level Assumptions l|

(ii)) In some neighborhood ©¢g of 6y, g:(0) is differentiable in 6 a.s. for
t<T,T>1.

(iii) T—1/2 Z{ gt(0¢) = N(0,V) for some positive definite p X p matrix
V.
(7712 5] Wier = N(0,V))

(iv) |16 — o] = 0.
(v) [|Q7 — Qol| > 0 for some positive definite matrix Qg, and there exist

positive definite p x p matrices V; such that ||V — V|| 2 0.
(Vi = 62T~ 521 WiWy)




High Level Assumptions Ili

(viy T2 2T 11Gu00)]| = Op(1) (T2 W/l = Op(1)), and for
any decreasing neighborhood ©1 of 0y contained in ©g, i.e. O = {60 :
10 — Og|| < ep} C ©g for some sequence of real numbers ¢ — 0,

T~y T supgeo.,. [1GH(0) — Ge(6o)|| = 0. (T~ 52T [|o]] - 0)

(Vi) supp<r<i HT‘l 27[5);1;] G(6g) — )\FH L, 0 for some positive definite

p X m matrix [

1My — AFH ?, 0)

(supg<a<1




Main result

Theorem: (i) Under the stated assumption

~A_ ~ T
728 120 — 77152 0,) = N (0, Im)
1
where ¥y = (F"Q70) I QrVrQrT (MQrl) L, T = T71 T G(0) and
‘A/T Is a consistent estimator of V, so that standard Student-t and Wald
Statistics on stable coefficients have usual asymptotic null distribution.

In OLS example, Qr = I3, [ = T ST W, W/ and Vi = 4°T, so that
29 = 52T ~L. Hence

A 3 -1y B,
T126=1F12 (| § | — 80 = N (0, I3)
p 1o




Main result

Theorem (ctd): (ii)
T-1/2 }Tj g:(8) = N(0, AV A",
where A = (I, — T(I'QoMN)~1r'Qg) and I 5 T.
(iii) Furthermore, if in addition, T7=2/2 541 4,(8,) = V1/2W(.), then
T1/2 fg gt(0) = ¢(-)

where  ¢(A) = V2w — AN(QeN)r'Qevi/2w(1) +
r (fé‘ f(Ddl — )\f(l) f(l)dl> and W is a Wiener process.

Interpretation: (ii) Null distribution of overidentification test unaffected by
instability and (iii) null distribution of standard stability tests concerning
subset of parameters unaffected by instabilities in other parameters.
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Sketch of Proof |

e By a first order Taylor expansion of the first order condition of GMM,
1= (3 128 5
0 = (1Y Gud)QrrY ?Qﬂm
1
1 re1/2 & y & s\ p1/207
= 'QrT legt(et) + MQp(T D G)T/ (60 — bo)
A T .
QT GyTV/2(6, — 0p)
1

= QY Zégt(et) + QY20 — 77 % 0r) + op(1)

where jth row of Gy is the jth row of G; evaluated at some ét,j that
lies on the line segment between 6+ and 6.

o Key insight: 71 ZlT GiyTY2(0, — 0g) = TT1 ZIT T/2(0;, — ) +
op(1)
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Sketch of Proof Il

e Special case 0; = 0y + T/ 2kg1[t/T < A\ + T~ Y 2k11[t/T > A] for
0 < XA <1, ie f(s) = kolls < Al4+k1l[s > A]. Then under the
assumption supg<y<1 HT‘l Zifi] Gy — )\FH 20

T ~
71y Gr2(0; - 00) = 15 Gy f(4)T)
1
(AT T

= T 15 Girg+T71 3 Giwg
1 AT]+1

= kg +T(1—XN)r1+ op(1)

= TS f(t/T) + op(1)
_ 1 i

= 71 %}Tl/z(@t — 0g) + op(1)
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Sketch of Proof Il

e Real analysis result: A bounded and piece-wise continuous function
f :]0,1] — R™ with at most a finite number of discontinuities can be

uniformly approximated by a step function.

e Apply same argument as with single step to multiple step function to

obtain

T . T
T3 G 2(0, — 00) = T~E . TY2(0; — 00) + 0p(1)
1 1
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Technical Difficulties

e Models with unstable parameters tend to generate nonstationary data.
Think of VAR with time varying parameters.
= how to argue for the high-level assumptions to hold in the unstable
model?

e Ploberger and Kontrus (1989), Sowell (1996), Stock and Watson
(1998): Strong assumptions on DGP that rule out VARSs.

e Andrews (1993): Highly technical mixing conditions.

e Follow Andrews and Ploberger (1994) and use indirect reasoning
via 'Contiguity’: Make standard assumptions on likelihood of stable
model, and then argue that likelihood of unstable model is close to
likelihood of stable model in the limit.
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Contiguity

A sequence of densities {fr 1(y)}r is called contiguous to another se-
quence of densities { fro(y)}r when every op(1) random variable under
the latter sequence of densities is also op(1) under the former.
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Contiguity ||

Theorem (Le Cam): A sequence of densities { fr 1} is contiguous to a
the sequence of densities { fr o} if

(1) Under fro, LRy = fr1/fro= LR
(2) E[LR] = 1

Intuition: L Rp describes the reweighting to get from fp o probability state-
ments to fp 1 probability statements:

Pro(Ar) ) frodur
T

Pri(Ar) = fridur = / LRt frodur
At Ar

= controlling the asymptotic behavior of L R makes sure that whenever

PT,O(AT) — 0, then also PT,l(AT) — 0.

(Note that EgLRy = [ LRy frodpr = [ fradpr =1.)
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Likelihood Structure

Density of data {yt}thl is parametrized by time varying k x1 (k > m)
parameter vector 5.

In unstable model, TY/2(8;, — 8g) = B(t/T) for some bounded and
piecewise continuous vector function B : [0,1] — R with at most a
finite number of discontinuities.

Let §+ be the o—field generated by {ys}’;:l, and suppose the condi-
tional density of y; given §;_1 with respect to p; is given by fi(y¢; B¢),
so that density of data is Hthl fe(yes Be)-

Define 1:(B8) = In fi(y¢; B), the scores si(B) = 0l(B)/08 and the
Hessians hy(8) = 9s¢(8)/05’.
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Likelihood Structure Il

e Under weak regularity conditions

Blsu(B)ISe-a] = [ su(B)fulvsi B

_ /aft(yt; B)
op

0
= %/ft(ytiﬂ)dﬂﬂﬁzﬁt =0

so that {st(ﬁt),&}thl is a martingale difference sequence

e Similarly, {s¢(8g)st(8g) + ht(ﬁo),St}thl is a martingale difference
sequence
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Assumptions on Likelihood of Stable Model

(i) In some neighborhood By of B, l:(8) is twice differentiable a.s. with
respect to B fort =1,--- 7.

(ii) {st(Bo), 3,;} is a square-integrable martingale difference array with

supg<r<1 |71 SN Elsi(80)st(B0)18¢-1] — 3 T(@)dl]| B 0 for some
nonstochastic bounded Riemann integrable matrix function T : [0,1] —

REXE and there exists € > 0 such that sup;<1 7>1 El|[5t(B0)] 2T€31] <
00 a.s.

(i) 7711 |he(Bo)|| = Op(1), and for any decreasing neighborhood of
Bo contained in By, T~ 131 supgeg, |[ht(B8) — ht(Bo)ll 2 o.

(iv) supg<r<t 1T 2 S he(Bo) + 3 T(1)dl|| B o.
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Contiguity!

Lemma: Under the stated Conditions, the unstable model is contiguous to
the stable model.

Sketch of proof: From an exact Taylor expansion, under the stable model

LRy = epl(4(8) — (o)
- exp[§ 5480 (81 — Bo) + %%(ﬂt — B he(By)(Bs — Bo)]

= el Y28 su(50) BU/T) + §THS B/ TY (B B/ T
= exp[wN(0,1) — %w2]

where w? = [ B(1))T(1)B(l)dl. But Eexp[wN(0,1) — 3w?] = 1, and
contiguity follows by LeCam’s Theorem.
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Application of Contiguity

With contiguity, it suffices to establish the high-level assumptions (iv)—
(vii) in the stable model.

Likelihood structure does not need to be known: Assumptions are
'regularity conditions’.

Example: VAR with Gaussian disturbances e ~ N (0,X)

1

Yyt = > At iYi—i t et
i—1

Even under contiguity, assumption (iii) in the unstable model,
ie. T-1/2 ST gu(0) = N(0,V), does not follow from
T-1/2 1 g:(0p) = N(0,V) in the stable model.
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Application of Contiguity ||

Paper makes two further arguments that facilitate derivation of
T-1/2 >4 g1(6;) = N(0,V) in the unstable model:

1. Under a martingale difference sequence assumption for g¢(6+) in the

unstable model, one can exploit contiguity to establish sufficient con-
ditions for martingale CLT, which take the form of convergences in

probability.

If g+(0g) = F's¢(Bp) Vt in stable model for some k x p matrix F', then
CLT in unstable model follows from LeCam’s Third Lemma, a change
of asymptotic measure. ldea: For finite T', if we know the distribution
of (Y, LRr) under fr g, then we can determine the distribution of
Y also under jf7 1. Same works asymptotically under contiguity.
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Monte Carlo Set-up |

OLS regression 1y = XB; + 210 + p + ¢

z | =P\ z,_4 1/2
et ~ 15dN(0, 1)

° (Xt>—p<Xt_1>—|—ut,utNi’idN<0,( 1

e 3, =1(t > T/2) x hT~1/2

e 20,000 repetitions

1/2
1

)
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Monte Carlo Results |

T =100 coverage 95% ClI Nyblom tests
DGP 5 " all 3 5
h=0,p=0 94.5% 94.3% 46% 4.9% 4.8%
h=5p=0 94.3% 94.3% 34.7% 40.0% 4.1%
h=5p=05 904.0% 93.0% 31.9% 36.2% 4.1%
h=10,p=0 04.1% 94.5% 89.7% 84.8% 2.5%
h=10,p=0.5 02.9% 90.1% 86.9% 81.9% 2.7%
T = 200 coverage 95% ClI Nyblom tests
DGP 9 L all B )
h=0,p=0 95.0% 94.6% 44% 5.0% 4.7%
h=5p=0 94.8% 94.9% 38.9% 43.9% 4.3%
h=5,0=0.5 94.6% 93.7% 38.1% 42.7% 4.4%
h=10,p=0 049% 945% 94.9% 92.9% 3.2%
h=10,p=0.5 03.7% 92.1% 83.5% 91.5% 3.4%
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Monte Carlo Set-up Il

Stylized New Keynesian Phillips Curve

Amy = ¢EAmi1 + Kksg + &
St = pP1Si—1 + poSt—2 + &

e Driving variable s; is unemployment gap, specified to be an AR(2).

e Solve forward and use resulting reduced form as data generating pro-
cess with (e, &) ~ 1dN(0,X), T = 160. Unknown parameters es-
timated from U.S. data (1960:1 to 2000:4) using GMM, with instru-

ments s;_1 and s;_»o.

e Time varying monetary policy induces instabilities in dynamics of driv-
ing variable (p; and p»), but ¢ and x remain stable. In Monte Carlo,
discrete jumps of p; and p, in middle of sample to values estimated
over Greenspan period.
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Monte Carlo Results Il

T =160
DGP

coverage 95% CI Nyblom tests
¢ K all — p1.p2 ¢,k

all stable
half-size
full-size

95.2% 952% 5.0% 5.0% 5.0%
95.7% 94.7% 30.1% 54.4% 4.1%
95.8% 94.2% 52.2% 95.6% 4.6%
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Conclusion

e Standard GMM inference for subset of stable parameters is asymptot-
ically valid if instabilities are local. Result holds for broad range of
instabilities and data generating processes.

e Technical arguments for analysis of unstable models might be of inde-
pendent interest.

e Identification of stable subset often difficult. Possible guidance by
economic theory. In any event, results broaden applicability of standard
GMM inference to instances with time varying nuisance parameters.
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