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Motivation

• Time series models have potentially time varying parameters

• Recent interest in testing parameter stability
⇒ Nyblom (1989), Andrews (1993), Andrews and Ploberger (1994),

Hansen (2000), Elliott and Müller (2003)

• What to do if instability are found/suspected?

— Inference on stable subset of parameters

— Inference on parameter path
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Overview

• Generalized Method of Moments (GMM) framework

• Focus on instabilities that are small in the sense that reasonable tests
detect them with (possibly large) probability smaller than one in the

limit

• Main result: standard GMM inference (ignoring the partial instability)

remains asymptotically valid for the subset of stable parameters
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GMM Set-up

• Data is {yt}Tt=1. Model with time invariant parameter θ0 ∈ Θ ⊂ Rm
satisfies

E[g(yt, θ0)] = 0 for all t ≤ T.

• Let {θt}Tt=1 ∈ ΘT be the parameter path in the unstable model, such
that

E[g(yt, θt)] = 0 for all t ≤ T.

• Let gt(θ) = g(yt, θ) and Gt(θ) = ∂g(yt, θ)/∂θ.

• We analyze properties of usual GMM estimator

θ̂ = argmin
θ

Ã
T−1

TP
1
gt(θ)

!
QT

Ã
T−1

TP
1
gt(θ)

!
for sequence of positive definite weighting matrices QT
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Example

• Linear model yt = Xtβt + Ztδ + μ+ εt, εt ∼ iid(0, σ2)

• Rewrite yt =W 0
tθt + εt, where Wt = (Xt,Zt, 1) and θt = (βt, δ, μ)

• GMM with gt(θ) =Wt(yt −W 0
tθ) and QT = I3 equivalent to OLS

• We are interested in conducting inference on δ, μ

• Can’t simply run short regression of yt on (Zt, 1), since Xt and Zt
might be correlated
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High Level Assumptions I

(i) The parameter evolves as T 1/2(θt − θ0) = f(t/T ) ∀t ≤ T for some

nonstochastic, bounded and piece-wise continuous function f : [0, 1] 7→
Rm with at most a finite number of discontinuities.

Comments

• corresponds to local neighborhood in which tests of parameter stability
have nontrivial power

• almost unrestricted otherwise: smooth evolution, single break, multi-
ple breaks, ...
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High Level Assumptions II

(ii) In some neighborhood Θ0 of θ0, gt(θ) is differentiable in θ a.s. for

t ≤ T, T ≥ 1.

(iii) T−1/2
PT
1 gt(θt) ⇒ N (0, V ) for some positive definite p × p matrix

V.

(T−1/2
PT
1 Wtεt⇒ N (0, V ))

(iv) ||θ̂ − θ0||
p→ 0.

(v) ||QT −Q0||
p→ 0 for some positive definite matrix Q0, and there exist

positive definite p× p matrices V̂T such that ||V̂T − V || p→ 0.

(V̂T = σ̂2T−1
PT
1 WtW

0
t)
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High Level Assumptions III

(vi) T−1
PT
1 ||Gt(θ0)|| = Op(1) (T−1

PT
1 ||WtW

0
t || = Op(1)), and for

any decreasing neighborhood ΘT of θ0 contained in Θ0, i.e. ΘT = {θ :
||θ − θ0|| < cT} ⊂ Θ0 for some sequence of real numbers cT → 0,

T−1
PT
1 supθ∈ΘT

||Gt(θ)−Gt(θ0)||
p→ 0. (T−1

PT
1 ||0||

p→ 0)

(vii) sup0≤λ≤1

°°°°T−1P[λT ]t=1 Gt(θ0)− λΓ

°°°° p→ 0 for some positive definite

p×m matrix Γ.

(sup0≤λ≤1

°°°°T−1P[λT ]t=1 WtW
0
t − λΓ

°°°° p→ 0)
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Main result

Theorem: (i) Under the stated assumption

T 1/2Σ̂
−1/2
θ (θ̂ − T−1

TP
1
θt)⇒ N (0, Im)

where Σ̂θ = (Γ̂0QT Γ̂)
−1Γ̂0QTV̂TQT Γ̂(Γ̂

0QT Γ̂)
−1, Γ̂ = T−1

PT
1 Gt(θ̂) and

V̂T is a consistent estimator of V , so that standard Student-t and Wald

Statistics on stable coefficients have usual asymptotic null distribution.

In OLS example, QT = I3, Γ̂ = T−1
PT
1 WtW

0
t and V̂T = σ̂2Γ̂, so that

Σ̂θ = σ̂2Γ̂−1. Hence

T 1/2σ̂−1Γ̂1/2

⎛⎜⎝
⎛⎜⎝ β̂

δ̂
μ̂

⎞⎟⎠−
⎛⎜⎝ T−1

PT
1 βt

δ0
μ0

⎞⎟⎠
⎞⎟⎠⇒ N (0, I3)
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Main result

Theorem (ctd): (ii)

T−1/2
TP
1
gt(θ̂)⇒ N (0, AV A0),

where A = (Ip − Γ(Γ0Q0Γ)−1Γ0Q0) and Γ̂
p→ Γ.

(iii) Furthermore, if in addition, T−1/2
P[·T ]
t=1 gt(θt)⇒ V 1/2W (·), then

T−1/2
[·T ]P
t=1

gt(θ̂)⇒ ζ(·)

where ζ(λ) = V 1/2W (λ) − λΓ(Γ0Q0Γ)−1Γ0Q0V 1/2W (1) +
Γ
³R λ
0 f(l)dl− λ

R 1
0 f(l)dl

´
and W is a Wiener process.

Interpretation: (ii) Null distribution of overidentification test unaffected by
instability and (iii) null distribution of standard stability tests concerning
subset of parameters unaffected by instabilities in other parameters.
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Sketch of Proof I

• By a first order Taylor expansion of the first order condition of GMM,

0 = (T−1
TX
1

Gt(θ̂))
0QTT

−1/2 TP
1
gt(θ̂)

= Γ̂0QTT
−1/2 TP

1
gt(θt) + Γ̂0QT (T

−1 TP
1
G̃t)T

1/2(θ̂ − θ0)

−Γ̂0QTT
−1 TP

1
G̃tT

1/2(θt − θ0)

= Γ0QTT
−1/2 TP

1
gt(θt) + Γ0QTΓT

1/2(θ̂ − T−1
TP
1
θt) + op(1)

where jth row of G̃t is the jth row of Gt evaluated at some θ̃t,j that

lies on the line segment between θt and θ̂.

• Key insight: T−1
PT
1 G̃tT

1/2(θt − θ0) = ΓT−1
PT
1 T

1/2(θt − θ0) +

op(1)
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Sketch of Proof II

• Special case θt = θ0 + T−1/2κ01[t/T ≤ λ] + T−1/2κ11[t/T > λ] for

0 < λ < 1, i.e. f(s) = κ01[s ≤ λ]+κ11[s > λ]. Then under the

assumption sup0≤λ≤1

°°°°T−1P[λT ]t=1 G̃t − λΓ

°°°° p→ 0

T−1
TP
1
G̃tT

1/2(θt − θ0) = T−1
TP
1
G̃tf(t/T )

= T−1
[λT ]P
1

G̃tκ0 + T−1
TP

[λT ]+1
G̃tκ1

= Γλκ0 + Γ(1− λ)κ1 + op(1)

= ΓT−1
TP
1
f(t/T ) + op(1)

= ΓT−1
TP
1
T 1/2(θt − θ0) + op(1)
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Sketch of Proof III

• Real analysis result: A bounded and piece-wise continuous function

f : [0, 1] 7→ Rm with at most a finite number of discontinuities can be

uniformly approximated by a step function.

• Apply same argument as with single step to multiple step function to
obtain

T−1
TP
1
G̃tT

1/2(θt − θ0) = T−1
TP
1
T 1/2(θt − θ0) + op(1)
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Technical Difficulties

• Models with unstable parameters tend to generate nonstationary data.
Think of VAR with time varying parameters.

⇒ how to argue for the high-level assumptions to hold in the unstable

model?

• Ploberger and Kontrus (1989), Sowell (1996), Stock and Watson
(1998): Strong assumptions on DGP that rule out VARs.

• Andrews (1993): Highly technical mixing conditions.

• Follow Andrews and Ploberger (1994) and use indirect reasoning

via ’Contiguity’: Make standard assumptions on likelihood of stable

model, and then argue that likelihood of unstable model is close to

likelihood of stable model in the limit.
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Contiguity

A sequence of densities {fT,1(y)}T is called contiguous to another se-

quence of densities {fT,0(y)}T when every op(1) random variable under

the latter sequence of densities is also op(1) under the former.
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Contiguity II

Theorem (Le Cam): A sequence of densities {fT,1}T is contiguous to a

the sequence of densities {fT,0}T if
(1) Under fT,0, LRT = fT,1/fT,0⇒ LR

(2) E[LR] = 1

Intuition: LRT describes the reweighting to get from fT,0 probability state-

ments to fT,1 probability statements:

PT,0(AT ) =
Z
AT

fT,0dμT

PT,1(AT ) =
Z
AT

fT,1dμT =
Z
AT

LRTfT,0dμT

⇒ controlling the asymptotic behavior of LRT makes sure that whenever

PT,0(AT )→ 0, then also PT,1(AT )→ 0.

(Note that E0LRT =
R
LRTfT,0dμT =

R
fT,1dμT = 1.)
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Likelihood Structure

• Density of data {yt}Tt=1 is parametrized by time varying k×1 (k ≥ m)

parameter vector β.

• In unstable model, T 1/2(βt − β0) = B(t/T ) for some bounded and

piecewise continuous vector function B : [0, 1] 7→ Rk with at most a
finite number of discontinuities.

• Let Ft be the σ—field generated by {ys}ts=1, and suppose the condi-
tional density of yt given Ft−1 with respect to μt is given by ft(yt;βt),
so that density of data is

QT
t=1 ft(yt;βt).

• Define lt(β) = ln ft(yt;β), the scores st(β) = ∂lt(β)/∂β and the

Hessians ht(β) = ∂st(β)/∂β
0.
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Likelihood Structure II

• Under weak regularity conditions

E[st(βt)|Ft−1] =
Z
st(βt)ft(yt;βt)dμt

=
Z
∂ft(yt;β)

∂β
|β=βtdμt

=
∂

∂β

Z
ft(yt;β)dμt|β=βt = 0

so that {st(βt),Ft}Tt=1 is a martingale difference sequence

• Similarly, {st(β0)st(β0)0 + ht(β0),Ft}Tt=1 is a martingale difference
sequence
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Assumptions on Likelihood of Stable Model

(i) In some neighborhood B0 of β0, lt(β) is twice differentiable a.s. with
respect to β for t = 1, · · · , T.

(ii) {st(β0),Ft} is a square-integrable martingale difference array with
sup0≤λ≤1 ||T−1

P[λT ]
t=1 E[st(β0)st(β0)

0|Ft−1] −
R λ
0 Υ(l)dl||

p→ 0 for some

nonstochastic bounded Riemann integrable matrix function Υ : [0, 1] 7→
Rk×k, and there exists > 0 such that supt≤T,T≥1E[||st(β0)||2+ |Ft−1] <
∞ a.s.

(iii) T−1
PT
1 ||ht(β0)|| = Op(1), and for any decreasing neighborhood of

β0 contained in B0, T−1
PT
1 supβ∈BT ||ht(β)− ht(β0)||

p→ 0.

(iv) sup0≤λ≤1 ||T−1
P[λT ]
t=1 ht(β0) +

R λ
0 Υ(l)dl||

p→ 0.
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Contiguity!

Lemma: Under the stated Conditions, the unstable model is contiguous to

the stable model.

Sketch of proof: From an exact Taylor expansion, under the stable model

LRT = exp[
TP
1
(lt(βt)− lt(β0)]

= exp[
TP
1
st(β0)

0(βt − β0) +
1
2

TP
1
(βt − β0)

0ht(β̃t)(βt − β0)]

= exp[T−1/2
TP
1
st(β0)

0B(t/T ) + 1
2T
−1 TP

1
B(t/T )0ht(β̃t)B(t/T )]

⇒ exp[ωN (0, 1)− 1
2ω
2]

where ω2 =
R
B(l)0Υ(l)B(l)dl. But E exp[ωN (0, 1) − 1

2ω
2] = 1, and

contiguity follows by LeCam’s Theorem.
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Application of Contiguity

• With contiguity, it suffices to establish the high-level assumptions (iv)—
(vii) in the stable model.

• Likelihood structure does not need to be known: Assumptions are
’regularity conditions’.

• Example: VAR with Gaussian disturbances εt ∼ N (0,Σ)

yt =
X
i=1

At,iyt−i + εt

• Even under contiguity, assumption (iii) in the unstable model,

i.e. T−1/2
PT
1 gt(θt) ⇒ N (0, V ), does not follow from

T−1/2
PT
1 gt(θ0)⇒ N (0, V ) in the stable model.
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Application of Contiguity II

Paper makes two further arguments that facilitate derivation of

T−1/2
PT
1 gt(θt)⇒ N (0, V ) in the unstable model:

1. Under a martingale difference sequence assumption for gt(θt) in the

unstable model, one can exploit contiguity to establish sufficient con-

ditions for martingale CLT, which take the form of convergences in

probability.

2. If gt(θ0) = F 0st(β0) ∀t in stable model for some k× p matrix F , then

CLT in unstable model follows from LeCam’s Third Lemma, a change

of asymptotic measure. Idea: For finite T , if we know the distribution

of (YT , LRT ) under fT,0, then we can determine the distribution of

YT also under fT,1. Same works asymptotically under contiguity.
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Monte Carlo Set-up I

OLS regression yt = Xtβt + Ztδ + μ+ εt

•
Ã
Xt
Zt

!
= ρ

Ã
Xt−1
Zt−1

!
+ ut, ut ∼ iidN

Ã
0,

Ã
1 1/2
1/2 1

!!
,

εt ∼ iidN (0, 1)

• βt = 1(t ≥ T/2)× hT−1/2

• 20,000 repetitions
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Monte Carlo Results I

T = 100 coverage 95% CI Nyblom tests
DGP δ μ all β δ
h = 0, ρ = 0 94.5% 94.3% 4.6% 4.9% 4.8%
h = 5, ρ = 0 94.3% 94.3% 34.7% 40.0% 4.1%
h = 5, ρ = 0.5 94.0% 93.0% 31.9% 36.2% 4.1%
h = 10, ρ = 0 94.1% 94.5% 89.7% 84.8% 2.5%
h = 10, ρ = 0.5 92.9% 90.1% 86.9% 81.9% 2.7%

T = 200 coverage 95% CI Nyblom tests
DGP δ μ all β δ
h = 0, ρ = 0 95.0% 94.6% 4.4% 5.0% 4.7%
h = 5, ρ = 0 94.8% 94.9% 38.9% 43.9% 4.3%
h = 5, ρ = 0.5 94.6% 93.7% 38.1% 42.7% 4.4%
h = 10, ρ = 0 94.9% 94.5% 94.9% 92.9% 3.2%
h = 10, ρ = 0.5 93.7% 92.1% 83.5% 91.5% 3.4%
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Monte Carlo Set-up II

Stylized New Keynesian Phillips Curve

∆πt = φEt∆πt+1 + κst + εt
st = ρ1tst−1 + ρ2tst−2 + ξt

• Driving variable st is unemployment gap, specified to be an AR(2).

• Solve forward and use resulting reduced form as data generating pro-
cess with (εt, ξt) ∼ iidN (0,Σ), T = 160. Unknown parameters es-
timated from U.S. data (1960:1 to 2000:4) using GMM, with instru-
ments st−1 and st−2.

• Time varying monetary policy induces instabilities in dynamics of driv-
ing variable (ρ1 and ρ2), but φ and κ remain stable. In Monte Carlo,
discrete jumps of ρ1 and ρ2 in middle of sample to values estimated
over Greenspan period.
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Monte Carlo Results II

T = 160 coverage 95% CI Nyblom tests
DGP φ κ all ρ1,ρ2 φ, κ
all stable 95.2% 95.2% 5.0% 5.0% 5.0%
half-size 95.7% 94.7% 30.1% 54.4% 4.1%
full-size 95.8% 94.2% 52.2% 95.6% 4.6%
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Conclusion

• Standard GMM inference for subset of stable parameters is asymptot-

ically valid if instabilities are local. Result holds for broad range of

instabilities and data generating processes.

• Technical arguments for analysis of unstable models might be of inde-
pendent interest.

• Identification of stable subset often difficult. Possible guidance by

economic theory. In any event, results broaden applicability of standard

GMM inference to instances with time varying nuisance parameters.
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