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TESTING MODELS OF LOW-FREQUENCY VARIABILITY

BY ULRICH K. MÜLLER AND MARK W. WATSON1

We develop a framework to assess how successfully standard time series models ex-
plain low-frequency variability of a data series. The low-frequency information is ex-
tracted by computing a finite number of weighted averages of the original data, where
the weights are low-frequency trigonometric series. The properties of these weighted
averages are then compared to the asymptotic implications of a number of common
time series models. We apply the framework to twenty U.S. macroeconomic and finan-
cial time series using frequencies lower than the business cycle.

KEYWORDS: Long memory, local-to-unity, unit root test, stationarity test, business
cycle frequency, heteroskedasticity.

1. INTRODUCTION

PERSISTENCE AND LOW-FREQUENCY VARIABILITY has been an important and
ongoing empirical issue in macroeconomics and finance. Nelson and Plosser
(1982) sparked the debate in macroeconomics by arguing that many macro-
economic aggregates follow unit root autoregressions. Beveridge and Nelson
(1981) used the logic of the unit root model to extract stochastic trends from
macroeconomic time series, and showed that variations in these stochastic
trends were a large, sometimes dominant, source of variability in the series.
Meese and Rogoff’s (1983) finding that random walk forecasts of exchange
rates dominated other forecasts focused attention on the unit root model in
international finance. In finance, interest in the random walk model arose nat-
urally because of its relationship to the efficient markets hypothesis (Fama
(1970)).

This empirical interest led to the development of econometric methods for
testing the unit root hypothesis, and for estimation and inference in systems
that contain integrated series. More recently, the focus has shifted toward
more general models of persistence, such as the fractional (or long-memory)
model and the local-to-unity autoregression, which nest the unit root model
as a special case, or the local level model, which allows an alternative nesting
of the I(0) and I(1) models. While these models are designed to explain low-
frequency behavior of time series, fully parametric versions of the models have
implications for higher frequency variation, and efficient statistical procedures
thus exploit both low- and high-frequency variations for inference. This raises
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the natural concern about the robustness of such inference to alternative for-
mulations of higher frequency variability. These concerns have been addressed
by, for example, constructing unit root tests using autoregressive models that
are augmented with additional lags as in Said and Dickey (1984) or by using
various nonparametric estimators for long-run covariance matrices and (as in
Geweke and Porter-Hudak (1983) (GPH)) for the fractional parameter. As
useful as these approaches are, there still remains a question of how successful
these various methods are in controlling for unknown or misspecified high-
frequency variability.

This paper takes a different approach. It begins by specifying the low-
frequency band of interest. For example, the empirical analysis presented in
Section 4 focuses mostly on frequencies lower than the business cycle, that
is, periods greater than eight years. Using this frequency cutoff, the analysis
then extracts the low-frequency component of the series of interest by com-
puting weighted averages of the data, where the weights are low-frequency
trigonometric series. Inference about the low-frequency variability of the series
is exclusively based on the properties of these weighted averages, disregarding
other aspects of the original data. The number of weighted averages, say q, that
capture the low-frequency variability is small in typical applications. For exam-
ple, only q = 13 weighted averages almost completely capture the lower than
business cycle variability in postwar macroeconomic time series (for any sam-
pling frequency). This suggests basing inference on asymptotic approximations
in which q is fixed as the sample size tends to infinity. Such asymptotics yield
a q-dimensional multivariate Gaussian limiting distribution for the weighted
averages, with a covariance matrix that depends on the specific model of low-
frequency variability. Inference about alternative models or model parameters
can thus draw on the well-developed statistical theory concerning multivariate
normal distributions.

An alternative to the methods proposed here is to use time domain filters,
such as bandpass or other moving average filters, to isolate the low-frequency
variability of the data. The advantage of the transformations that we employ
is that they conveniently discretize the low-frequency information of the orig-
inal data into q data points, and they are applicable beyond the I(0) models
typically analyzed with moving average linear filters.

There are several advantages to focusing exclusively on the low-frequency
variability components of the data. The foremost advantage is that many em-
pirical questions are naturally formulated in terms of low-frequency variability.
For example, the classic Nelson and Plosser (1982) paper asks whether macro-
economic series such as real gross national product (GNP) tend to revert to
a deterministic trend over periods longer than the business cycle, and macro-
economic questions about balanced growth involve the covariability of series
over frequencies lower than the business cycle. Questions of potential mean
reversion in asset prices or real exchange rates are often phrased in terms of
long “horizons” or low frequencies. Because the statistical models studied here
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were developed to answer these kinds of low-frequency questions, it is natural
to evaluate the models on these terms.

In addition, large literatures have developed econometric methods in the
local-to-unity framework, and also in the fractional framework. These meth-
ods presumably provide reliable guidance for empirical analysis only if, at a
minimum, their assumed framework accurately describes the low-frequency
behavior of the time series under study. The tests developed here may thus also
be used as specification tests for the appropriateness of these methods. Other
advantages, including robustness to high-frequency misspecification and statis-
tical convenience (because weighted averages are approximately multivariate
normal), have already been mentioned.

An important caveat is that reliance on low-frequency methods will re-
sult in a loss of information and efficiency for empirical questions involving
all frequencies. Thus, for example, questions about balanced growth are ar-
guably properly answered by the approach developed here, while questions
about martingale difference behavior involve a constant spectrum over all
frequencies, and focusing only on low frequencies entails a loss of informa-
tion. In addition, because only q = 13 weighted averages of the data are re-
quired to effectively summarize the below-business-cycle variability of postwar
economic time series, there are obvious limits to what can be learned from
a postwar series about low-frequency variability. Thus, for example, in this
13-observation context one cannot plausibly implement a nonparametric study
of low-frequency variability. That said, as the empirical analysis in Section 4
shows, much can be learned from 13 observations about whether the data are
consistent with particular low-frequency models.

Several papers have addressed other empirical and theoretical questions in
similar frameworks. Bierens (1997) derived estimation and inference proce-
dures for cointegration relationships based on a finite number of weighted av-
erages of the original data, with a joint Gaussian limiting distribution. Phillips
(2006) pursued a similar approach with an infinite number of weighted aver-
ages. Phillips (1998) provided a theoretical analysis of “spurious regressions”
of various persistent time series on a finite (and also infinite) number of de-
terministic regressors. Müller (2007b) found that long-run variance estimators
based on a finite number of trigonometrically weighted averages is optimal in a
certain sense. All these approaches exploit the known asymptotic properties of
weighted averages for a given model of low-frequency variability. In contrast,
the focus of this paper is to test alternative models of low-frequency variability
and their parameters.

The plan of the paper is as follows. The next section introduces the three
classes of models that we will consider: fractional models, local-to-unity au-
toregressions, and the local level model, parameterized as an unobserved com-
ponents model with a large I(0) component and a small unit root component.
This section discusses the choice of weights for extracting the low-frequency
components and the model-specific asymptotic distributions of the resulting
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weighted averages. Section 3 develops tests of the models based on these as-
ymptotic distributions and studies their properties. Section 4 uses the methods
of Section 3 to study the low-frequency properties of twenty macroeconomic
and financial time series. Section 5 offers some additional comments on the
feasibility of discriminating between the various low-frequency models. Data
and programs are provided in the supplement (Müller and Watson (2008)).

2. MODELS AND LOW-FREQUENCY TRANSFORMATIONS

Let yt , t = 1� � � � � T , denote the observed time series, and consider the de-
composition of yt into unobserved deterministic and stochastic components

yt = dt + ut�(1)

This paper focuses on the low-frequency variability of the stochastic compo-
nent2 ut ; the deterministic component is modelled as a constant dt = μ or as a
constant plus linear trend dt = μ+βt, with unknown parameters μ and β.

We consider five leading models used in finance and macroeconomics
to model low-frequency variability. The first is a fractional (FR) or “long-
memory” model; stationary versions of the model have a spectral density
S(λ)∝ |λ|−2d as λ→ 0, where −1/2< d < 1/2 is the fractional parameter. We
follow Velasco (1999) and define the fractional model FR with 1/2< d < 3/2
for ut as a model where first differences ut −ut−1 (with u0 = 0) are a stationary
fractional model with parameter d − 1. The second model is the autoregres-
sive model with largest root close to unity; using standard notation, we write
the dominant autoregressive coefficient as ρT = 1 − c/T , so that the process
is characterized by the local-to-unity parameter c. For this model, normalized
versions of ut converge in distribution to an Ornstein–Uhlenbeck process with
diffusion parameter −c, and for this reason we will refer to this as the OU
model. We speak of the integrated OU model, I-OU, when ut − ut−1 (with
u0 = 0) follows the OU model. The fourth model that we consider decomposes
ut into an I(0) and I(1) component, ut =wt + (g/T)∑t

s=1ηs, where (wt�ηt)′
are I(0)with long-run covariance matrix σ2I2 and g is a parameter that governs
the relative importance of the I(1) component. In this “local level” (LL) model
(cf. Harvey (1989)) both components are important for the low-frequency vari-
ability of ut . Again, we also define the integrated LL model, I-LL, as the model
for ut that arises when ut − ut−1 follows the LL model.

2.1. Asymptotic Representation of the Models

As shown below, the low-frequency variability implied by each of these mod-
els can be characterized by the stochastic properties of the partial sum process

2Formally, ut is allowed to follow a triangular array, but we omit any dependence on T to ease
notation.
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for ut , so for our purposes it suffices to define each model in terms of the
behavior of these partial sums of ut . Table I summarizes the standard conver-
gence properties of the partial sum process T−α∑[·T ]

t=1 ut ⇒ σG(·) for each of
the five models, where α is a model-specific constant and G is a model-specific
mean-zero Gaussian process with covariance kernel k(r� s) given in the final
column of the table. A large number of primitive conditions have been used to
justify these limits. Specifically, for the stationary fractional model, weak con-
vergence to the fractional Wiener processW d has been established under vari-
ous primitive conditions for ut by Taqqu (1975) and Chan and Terrin (1995)—
see Marinucci and Robinson (1999) for additional references and discussion.
The local-to-unity model and local level model rely on a functional central
limit theorem applied to the underlying errors; various primitive conditions are
given, for example, in McLeish (1974), Wooldridge and White (1988), Phillips
and Solo (1992), and Davidson (2002); see Stock (1994) for general discussion.

The unit root and I(0) models are nested in several of these models. The
unit root model corresponds to the fractional model with d = 1, the OU model
with c = 0, and the integrated local level model with g = 0. Similarly, the I(0)
model corresponds to the fractional model with d = 0 and the local level model
with g= 0.

The objective of this paper is to assess how well these specifications explain
the low-frequency variability of the stochastic component ut in (1). But ut is not
observed. We handle the unknown deterministic component dt by restricting
attention to statistics that are functions of the least-square residuals of a regres-
sion of yt on a constant (denoted uμt ) or on a constant and time trend (denoted
uτt ). Because {uit}Tt=1, i= μ�τ, are maximal invariants to the groups of transfor-
mations {yt}Tt=1 → {yt +m}Tt=1 and {yt}Tt=1 → {yt +m+ bt}Tt=1, respectively, there
is no loss of generality in basing inference on functions of {uit}Tt=1 for tests that
are invariant to these transformations. Under the assumptions given above,
a straightforward calculation shows that for i = μ�τ, T−α∑[·T ]

t=1 u
i
t ⇒ σGi(·),

where α is a model-specific constant and Gi is a model-specific mean-zero
Gaussian process with covariance kernel ki(r� s) given by

kμ(r� s)= k(r� s)− rk(1� s)− sk(r�1)+ rsk(1�1)�(2)

kτ(r� s)= kμ(r� s)− 6s(1 − s)
∫
kμ(r�λ)dλ(3)

− 6r(1 − r)
∫
kμ(λ� s)dλ

+ 36rs(1 − s)(1 − r)
∫ ∫

kμ(l�λ)dl dλ�

where k(s� r) is the model’s covariance kernel given in Table I.



984
U

.K
.M

Ü
L

L
E

R
A

N
D

M
.W

.W
A

T
SO

N

TABLE I

ASYMPTOTIC PROPERTIES OF PARTIAL SUMS OF POPULAR TIME SERIES MODELSa

Process Parameter Partial Sum Convergence Covariance Kernel k(r� s), s ≤ r
1a. FR − 1

2 < d <
1
2 T−1/2−dσ−1 ∑[·T ]

t=1 ut ⇒W d(·) 1
2 (r

2d+1 + s2d+1 − (r − s)2d+1)

1b. FR 1
2 < d <

3
2 T−1/2−dσ−1 ∑[·T ]

t=1 ut ⇒
∫ •

0 W
d−1(l)dl (r−s)2d+1+(1+2d)(rs2d+r2ds)−r2d+1−s2d+1

4d(1+2d)

2a. OU c > 0 T−3/2σ−1 ∑[·T ]
t=1 ut ⇒

∫ •
0 J

c(l)dl 2cs−1+e−cs+e−cr−e−c(r−s)
2c3

2b. OU c = 0 T−3/2σ−1 ∑[·T ]
t=1 ut ⇒

∫
0W (l)dl

1
6 (3rs

2 − s3)

3. I-OU c > 0 T−5/2σ−1 ∑[·T ]
t=1 ut ⇒

∫ •
0

∫ λ
0 J

c(l)dl dλ 3−sc(3+c2s2)+3rc(1−cs+c2s2)−3e−cs (1+cr)−3e−cr (1+cs−ecs )
6c5

4. LL g≥ 0 T−1/2σ−1 ∑[·T ]
t=1 ut ⇒W1(·)+ g ∫ •

0 W2(l)dl s+ 1
6g

2(3rs2 − s3)

5. I-LL g≥ 0 T−3/2σ−1 ∑[·T ]
t=1 ut ⇒

∫ •
0 W1(l)dl+ g

∫ •
0

∫ λ
0 W2(l)dl dλ

1
6 (3rs

2 − s3)+ 1
120g

2(10r2s3 − 5rs4 + s5)

aNotes. W , W1, and W2 are independent standard Wiener processes, W d is a “Type I” fractional Brownian motion defined as W d(s)=A(d)
∫ 0−∞[(s − l)d − (−l)d ]dW (l)+

A(d)
∫ s

0 (s − l)d dW (l), where A(d) = ( 1
2d+1 + ∫ ∞

0 [(1 + l)d − ld ]2 dl)−1/2 and Jc is the stationary Ornstein–Uhlenbeck process Jc(s) = Ze−sc/
√

2c + ∫ s
0 e

−c(s−l) dW (l) with
Z ∼N(0�1) independent of W .
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2.2. Asymptotic Properties of Weighted Averages

We extract the information about the low-frequency variability of ut using
a fixed number (q) of weighted averages of uit , i = μ�τ, where the weights
are known and deterministic low-frequency trigonometric series. We discuss
and evaluate specific choices for the weight functions below, but first sum-
marize the joint asymptotic distribution of these q weighted averages. Thus,
let Ψ : [0�1] �→ R

q denote a set of q weight functions Ψ = (Ψ1� � � � �Ψq)
′

with derivatives ψ = (ψ1� � � � �ψq)
′, let XTj = T−α+1

∫ 1
0 Ψj(s)u

i
[sT ]+1 ds = T−α ×∑T

t=1 Ψ̃T�t�ju
i
t , where Ψ̃T�t�j = T

∫ t/T

(t−1)/T Ψj(s)ds denotes the jth weighted aver-

age, and let XT = (XT1� � � � �XTq)
′ = T−α+1

∫ 1
0 Ψ(s)u

i
[sT ]+1 ds. If T−α∑[·T ]

t=1 u
i
t =

Gi
T (·)⇒ σGi(·), by integration by parts and the continuous mapping theorem,

XT =Gi
T (1)Ψ(1)−

∫ 1

0
Gi
T (s)ψ(s)ds(4)

⇒ X = −σ
∫ 1

0
Gi(s)ψ(s)ds

= −σ
∫ 1

0
Ψ(s)dGi(s)∼ N (0�σ2Σ)�

since Gi
T (1) = 0. The covariance matrix Σ depends on the weight func-

tion Ψ and the covariance kernel for Gi, with j� lth element equal to∫ 1
0

∫ 1
0 ψj(r)ψl(s)k

i(r� s)dr ds for i= μ�τ.
The convergence in distribution of XT in (4) is an implication of the stan-

dard convergence T−α∑[·T ]
t=1 u

i
t ⇒ σGi(·) for the five models discussed above.

While, as a formal matter, (4) holds for any fixed value of q, it may provide a
poor guide to the small sample behavior of XT for a given sample size T if q is
chosen very large. As an example, consider the case of a demeaned I(0)model
(so that Gμ is the demeaned Wiener process W μ and α = 1/2) and suppose
Ψj(s)= √

2 cos(πjs). As we show below, Σ in (4) then becomes Σ= Iq, leading
to the asymptotic approximation of {XTj}qj=1 being independent and identically
distributed (i.i.d.) N (0�σ2) for any fixed q. But E[X2

Tj]/(2π) is (almost) equal
to the spectrum of ut at frequency j/2T , so that this approximation implies a
flat spectrum for frequencies below q/2T . Thus, for a given sample size (such
as 60 years of quarterly data), it may make little sense to use (4) as an approx-
imation for values of q that are large enough to incorporate business cycle (or
higher) frequencies. Indeed, in this context, a reasonable definition for an I(0)
process (or any other of the five processes discussed above) in a macroeco-
nomic context might thus be that (4) provides reasonable approximations for a
choice of Ψ that captures below-business-cycle frequency variability.

IfXT captures the information in yt about the low-frequency variability of ut ,
then the question of model fit for a specific low-frequency model becomes the
question whether XT is approximately distributed N (0�σ2Σ). For the models
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introduced above, Σ depends only on the model type and parameter value, so
that Σ = Σi(θ) for i ∈ {FR, OU, I-OU, LL, I-LL} and θ ∈ {d� c�g}. The pa-
rameter σ2 is an unknown constant governing the low-frequency scale of the
process—for example, σ2 is the long-run variance of the errors in the local-
to-unity model. Because q is fixed (that is, our asymptotics keep q fixed as
T → ∞), it is not possible to estimate σ2 consistently using the q elements
in XT . This suggests restricting attention to scale invariant tests of XT . Im-
posing scale invariance has the additional advantage that the value of α in
XT = T−α+1

∫ 1
0 Ψ(s)u

i
[sT ]+1 ds does not need to be known.

Thus, consider the following maximal invariant to the group of transforma-
tion XT → aXT , a = 0:

vT =XT/
√
X ′
TXT �

By the continuous mapping theorem and (4), vT ⇒X/
√
X ′X . The density of

v = (v1� � � � � vq)
′ =X/

√
X ′X with respect to the uniform measure on the sur-

face of a q-dimensional unit sphere is given by (see, for instance, Kariya (1980)
or King (1980))

fv(Σ)= C|Σ|−1/2(v′Σ−1v)−q/2�(5)

where the positive constant C = 1
2�(q/2)π

−q/2 and �(·) is the gamma function.
For a given model for ut , the asymptotic distribution of vT depends only on
the q× q matrix Σi(θ), which is known for each model i and parameter θ. Our
strategy therefore is to assess the model fit for a specific stochastic model i and
parameter θ by testing whether vT is distributed (5) with Σ= Σi(θ).

2.3. Choice of Weights and the Resulting Covariance Matrices

Our choice of Ψ = (Ψ1� � � � �Ψq)
′ is guided by two goals. The first goal is

that Ψ should extract low-frequency variations of ut and, to the extent possi-
ble, be uncontaminated by higher frequency variations. The second goal is that
Ψ should produce a diagonal (or nearly diagonal) covariance matrix Σ, as this
facilitates the interpretation ofXT because the models’ implications for persis-
tence in ut become implications for specific forms of heteroskedasticity in XT�

One way to investigate how well a candidate Ψ extracts low-frequency vari-
ability is to let ut be exactly equal to a generic periodic series ut = sin(πϑt/T +
φ), where ϑ ≥ 0 and φ ∈ [0�π). The variability captured by XT can then be
measured by the R2 of a regression of ut on the demeaned/detrended weight
functions. For T not too small, this R2 is well approximated by the R2 of a con-
tinuous time regression of sin(πϑs + φ) on Ψi

1(s)� � � � �Ψ
i
q(s) on the unit in-

terval, where Ψi
j , i= μ�τ, are the residuals of a continuous time regression of

Ψj(s) on 1 and (1� s), respectively. Ideally, theR2 should equal unity forϑ≤ϑ0

and zero forϑ>ϑ0 for all phase shiftsφ ∈ [0�π), whereϑ0 corresponds to the
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prespecified cutoff frequency. Standard sets of orthogonal trigonometric func-
tions, such as the cosine expansion or the Fourier expansion with frequency
smaller or equal to ϑ0 are natural candidates for Ψ .

The left panels of Figure 1 plot R2 as a function of ϑ for a cutoff fre-
quency ϑ0 = 14 in the demeaned case, so that Ψ consists of the q = 14 el-
ements3 of the cosine expansion Ψj(s) = √

2 cos(πjs) (denoted eigenfunc-

FIGURE 1.—R2 regression of sin(πϑs+φ) onto Ψ1(s)� � � � �Ψ q(s). These figures show the R2

of a continuous time regression of a generic periodic series sin(πϑs + φ) onto the demeaned
(column A) or detrended (column B) weight functions Ψ1(s)� � � � �Ψq(s), with q chosen such that
Ψj(s), j = 1� � � � � q, has frequency smaller or equal to ϑ0 = 14. Panels (i) show the R2 value
averaged over values of φ ∈ [0�π), panels (ii) show the R2 maximized over these values of φ
for each ϑ, and panels (iii) show the R2 minimized over these values of φ for each ϑ. The solid
curves in the first column (labeled Demeaned) show results using the eigenfunctions ϕμl (s) from
Theorem 1, and the dashed curves show results using Fourier expansions. The solid curves in the
second column (labeled Detrended) show results using the eigenfunctions ϕτl (s) from Theorem 1,
and the dashed curves show results using detrended Fourier expansions.

3For postwar data in our empirical analysis, below-business-cycle variability is captured by
q= 13 weighted averages in the demeaned case. We choose an even number here to ensure that
in the demeaned case, the Fourier and cosine expansions have an equal number of elements.



988 U. K. MÜLLER AND M. W. WATSON

tions) and the Fourier expansion Ψj(s) = √
2 sin(π(j + 1)s) for j odd and

Ψj(s) = √
2 cos(πjs) for j even. In the top panel, for each value of ϑ, R2 is

averaged over all values for the phase shift φ ∈ [0�π); in the middle panel,
R2 is maximized over φ; in the bottom panel, R2 is minimized over φ. Both
choices for Ψj come reasonably close to the ideal of extracting all information
about cycles of frequency ϑ≤ϑ0 (R2 = 1) and no information about cycles of
frequency ϑ>ϑ0 (R2 = 0).

In general, orthogonal functions Ψi
j only lead to a diagonal Σ in the I(0)

model, but not in persistent models—see, for instance, Akdi and Dickey (1998)
for an analysis of the unit root model using the Fourier expansion. It is not
possible to construct Ψj that lead to diagonal Σ for all models we consider, but
consider a choice of Ψj as the eigenfunctions of the covariance kernel kμW (r� s)
and kτW (r� s) of a demeaned and detrended Wiener process, respectively:

THEOREM 1: Let

ϕμj (s)= √
2 cos(πjs)� for j ≥ 1�

ϕτj (s)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2 cos(πs(j + 1)) for odd j ≥ 1�√

2ωj/2

ωj/2 − sin(ωj/2)
(−1)(j+2)/2 sin(ωj/2(s− 1/2))

for even j ≥ 2�

ϕμ0 (s) = ϕτ−1(s) = 1, and ϕτ0(s) = √
3(1 − 2s), where π(2l + 1) − π/6 < ωl <

π(2l + 1) is the l th positive root of cos(ω/2) = 2 sin(ω/2)/ω. The sets of or-
thonormal functions {ϕμj }∞

j=0 and {ϕτj }∞
j=−1 are the eigenfunctions of kμW (r� s) and

kτW (r� s) with associated eigenvalues {λμj }∞
j=0 and {λτj }∞

j=−1, respectively, where
λμ0 = 0 and λμj = (jπ)−2 for j ≥ 1, and λτ−1 = λτ0 = 0, λτj = (jπ + π)−2 for odd
j ≥ 1, and λτj = (ωj/2)

−2 for even j ≥ 2�

Theorem 1 identifies the cosine expansion
√

2 cos(πjs), j = 1�2� � � � � as the
eigenfunctions of kμW (r� s) that correspond to nonzero eigenvalues and also,
in the detrended case, the eigenfunctions ϕτj (s) are trigonometric functions.
A natural choice for Ψ in the trend case is thus ϕτj , j ≥ 1, with frequency
smaller than or equal to ϑ0. By construction, eigenfunctions result in a di-
agonal Σ for both the I(1) and I(0) models, and thus yield a diagonal Σ for
all values of g in the local level model. For the fractional model and the OU
model, the eigenfunctions produce a diagonal Σ only for d = 0 and d = 1,
and for c = 0 and c → ∞, respectively. Table II summarizes the size of the
off-diagonal elements of Σ for various values of θ ∈ {d� c�g} in the FR, OU,
and LL models using the eigenfunctions. It presents the average absolute cor-
relation when ϑ0 = 14, a typical value in the empirical analysis. The average
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TABLE II

AVERAGE ABSOLUTE CORRELATIONS FOR Σ(θ)a

Fractional Model d = −0�25 d = 0�00 d = 0�25 d = 0�75 d = 1�00 d = 1�25

Demeaned 0.03 0.00 0.01 0.01 0.00 0.03
Detrended 0.03 0.00 0.01 0.01 0.00 0.02

OU Model c = 30 c = 20 c = 15 c = 10 c = 5 c = 0

Demeaned 0.02 0.02 0.02 0.02 0.02 0.00
Detrended 0.02 0.02 0.02 0.02 0.01 0.00

Local Level Model g= 0 g= 2 g= 5 g= 10 g= 20 g= 30

Demeaned 0.00 0.00 0.00 0.00 0.00 0.00
Detrended 0.00 0.00 0.00 0.00 0.00 0.00

aNotes. Entries in the table are the average values of the absolute values of the correlations associated with Σ(θ)
with q= 14 for the demeaned model and q= 13 for the detrended model.

absolute correlation is zero or close to zero for all considered parameter val-
ues.

What is more, the eigenfunctions ϕτj corresponding to nonzero eigenvalues
are orthogonal to (1� s), so that with Ψj = ϕτj , the detrending to Ψτ

j leaves Ψj

unaltered and thus orthogonal. This is not the case for the Fourier expansion.
The choice of Ψj as the Fourier expansion of frequency smaller than or equal
to ϑ0 might thus inadvertently lead to more leakage of higher frequencies, as
some linear combination of the detrended Fourier expansion approximates a
higher frequency periodic series. This effect can be seen in the right panels of
Figure 1, which containsR2 plots for the eigenfunctions and the Fourier expan-
sion in the detrended case with frequencies less than or equal to ϑ0 = 14 (so
that q = 13 for the eigenfunctions and q = 14 for the Fourier expansion). We
conclude that the eigenfunctions ϕij , j = 1�2� � � � � of Theorem 1 of frequency
below the cutoff do a good job both at the extraction of low-frequency informa-
tion with little leakage and at yielding approximately diagonal Σ for i = μ�τ,
and the remainder of the paper is based on this choice.

With this choice, the covariance matrix Σ is close to diagonal, so the models
can usefully be compared by considering the diagonal elements of Σ only. Fig-
ure 2 plots the square roots of these diagonal elements for the various models
considered in Table II in the demeaned case. Evidently, more persistent mod-
els produce larger variances for low-frequency components, a generalization
of the familiar “periodogram” intuition that for stationary ut , the variance of√

2/T
∑T

t=1 cos(πjt/T)ut is approximately equal to 2π times the spectral den-
sity at frequency j/2T . For example, for the unit root model (d = 1 in the
fractional model or c = 0 in the OU model), the standard deviation of X1 is
14 times larger than the standard deviation of X14. In contrast, when d = 0�25
in the fractional model, the relative standard deviation of X1 falls to 1�8, and
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FIGURE 2.—Standard deviation ofXl in different models. These figures show the square roots
of the diagonal elements of Σi(θ) for different values of the parameter θ = (d� c�g)� i denotes
the covariance matrix for the fractional (panel A), OU (panel B), and LL models (panel C),
computed using ϕμ. Larger values of d and g, and smaller values of c yield relatively larger
standard deviations of X1.

when c = 5 in the OU model, the relative standard deviation ofX1 is 6�3. In the
I(0) model (d = 0 in the fractional model or g = 0 in the local level model),
Σ= Iq, and all of the standard deviations are unity.

2.4. Continuity of the Fractional and Local-to-Unity Models

It is useful to briefly discuss the continuity of Σi(θ) for two of the models.
In the local-to-unity model, there is a discontinuity at c = 0 in our treatment
of the initial condition and this leads to different covariance kernels in Table I;
similarly, in the fractional model there is a discontinuity at d = 1/2 as we move
from the stationary to the integrated version of the model. As it turns out,
these discontinuities do not lead to discontinuities of the density of v in (5) as
a function of c and d.

This is easily seen in the local-to-unity model. Translation invariance implies
that it suffices to consider the asymptotic distribution of T−1/2(u[·T ] − u1). As



TESTING MODELS OF LOW-FREQUENCY VARIABILITY 991

noted by Elliott (1999), in the stable model T−1/2(u[·T ] − u1)⇒ Jc(·)− Jc(0)=
Z(e−sc − 1)/

√
2c + ∫ s

0 e
−c(s−λ) dW (λ) and limc↓0(e

−sc − 1)/
√

2c = 0, so that the
asymptotic distribution of T−1/2(u[·T ] − u1) is continuous at c = 0.

The calculation for the fractional model is somewhat more involved. Note
that the density (5) of v remains unchanged under reparameterizations Σ→
aΣ for any a > 0. Because ΣFR(d) is a linear function of ki(r� s), it therefore
suffices to show that

lim
ε↓0

kiFR(1/2−ε)(r� s)

kiFR(1/2+ε)(r� s)
= b(6)

for some constant b > 0 that does not depend on (r� s), where kiFR(d) is the co-
variance kernel of the demeaned (i= μ) or detrended (i= τ) fractional model
with parameter d. As shown in the Appendix, (6) holds with b= 2, so that the
density of v is continuous at d = 1/2.4

3. TEST STATISTICS

This section discusses several test statistics for the models. As discussed
above, when (4) holds, the transformed data satisfy vT ⇒ v =X/

√
X ′X with

X ∼ N (0�Σ). The low-frequency characteristics of the models are summarized
by the covariance matrix Σ= Σi(θ), which is known for a given model i ∈ {FR,
OU, I-OU, LL, I-LL} and model parameter θ. A test of adequacy of a given
model and parameter value can therefore be conducted by testing H0 :Σ= Σ0

against H1 :Σ = Σ0. This section derives optimal tests for this problem based
on v (or, equivalently, optimal scale invariant tests based on X). Because a
uniformly most powerful test does not exist, one must specify the alternatives
for which the tests have relatively high power. We consider four optimal tests
that direct power to different alternatives. The first two tests are low-frequency
versions of point-optimal unit root and “stationarity” tests: these tests focus
on two specific null hypotheses (the I(1) and the I(0) models) and maximize
power against the local-to-unity and local level models, respectively. The final
two tests are relevant for any null model: the first maximizes weighted average
power against alternatives that correspond to misspecification of the persis-
tence in ut , and the second maximizes weighted average power against alter-
natives that correspond to misspecification of the second moment of ut . For all
four tests, we follow King (1988) and choose the distance from the null so that

4This result suggests a definition of a demeaned or detrended fractional process with d = 1/2
as any process whose partial sums converge to a Gaussian process with covariance kernel that is
given by an appropriately scaled limit of kμFR or kτFR as d ↑ 1/2; see equations (11) and (12) in the
Appendix. The possibility of a continuous extension across all values of d renders Velasco’s (1999)
definition of fractional processes with d ∈ (1/2�3/2) as the partial sums of a stationary fractional
process with parameter d−1 considerably more attractive, as it does not lead to a discontinuity at
the boundary d = 1/2, at least for demeaned or detrended data with appropriately chosen scale.
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a 5% level test has approximately 50% power at the alternative for which it is
optimal.

The tests we derive are optimal scale invariant tests based on X , the lim-
iting random variable in XT ⇒ X . As shown by Müller (2007a), these tests,
when applied to XT (i.e., vT ), are optimal in the sense that they maximize
(weighted average) power among all scale invariant tests whose asymptotic re-
jection probability is smaller than or equal to the nominal level for all data
generating processes that satisfy XT ⇒ X ∼ N (0�Σ0). In other words, if the
convergence XT ⇒X of (4) completely summarizes the implications for data
yt generated by a given low-frequency model, then the test statistics derived
in this section applied to vT are asymptotically most powerful (in a weighted
average sense) among all scale invariant asymptotically valid tests.

3.1. Low-Frequency I(1) and I(0) Tests

We test the I(1) and I(0) null hypotheses using low-frequency point-optimal
tests. Specifically, in the context of the local-to-unity model we test the unit
root model c = c0 = 0 against the alternative model with c = c1 using the like-
lihood ratio statistic

LFUR = v′ΣOU(c0)
−1v/v′ΣOU(c1)

−1v�

where the value of c1 is chosen so that the 5%-level test has power of approx-
imately 50% when c = c1 for the model with q = 13 (a typical value in our
empirical analysis). This yields c1 = 14 for demeaned series and c1 = 28 for
detrended series. We label the statistic LFUR as a reminder that it is a low-
frequency unit root test statistic.

We similarly test the I(0) null hypothesis against the point alternative of a
local level model with parameter g = g1 > 0 (which is the same nesting of the
I(0)model as employed in Nyblom (1989) and Kwiatkowski, Phillips, Schmidt,
and Shin (1992)). A calculation shows that the likelihood ratio statistic rejects
for large values of

LFST =
(

q∑
j=1

v2
j

)/(
q∑
j=1

v2
j

1 + g2
1λj

)
�

where λj are the eigenvalues defined in Theorem 1 and LFST denotes low-
frequency stationarity. The 50% power requirement imposed for q= 13 yields
approximately g1 = 10 in the mean case and g1 = 20 in the trend case.

3.2. Testing for Misspecified Persistence in ut

As discussed in Section 2, low-frequency persistence in ut leads to het-
eroskedasticity inX , so that misspecification of the persistence for ut translates



TESTING MODELS OF LOW-FREQUENCY VARIABILITY 993

into misspecification of the heteroskedasticity function for X . This motivates
a specification test that focuses on the diagonal elements of Σ. Thus, let Λ de-
note a diagonal matrix and consider an alternative of the form Σ=ΛΣ0Λ. The
relative magnitudes of the diagonal elements of Λ distort the relative magni-
tude of the diagonal elements of Σ0 and produce values of Σ associated with
processes that are more or less persistent than the null model. For example,
decreasing diagonal elements of Λ represent ut with more persistence (more
very low-frequency variability) than under the null model. More complicated
patterns for the diagonal elements of Λ allow more subtle deviations from the
null model in the persistence features of ut .

To detect a variety of departures from the null, we consider several differ-
ent values of Λ and construct a test with best weighted average power over
these alternatives. Letting F denote the weight function for Λ, the best test is
simply the Neyman–Pearson test associated with a null in which v has density
fv(Σ0) and an alternative in which the density of v is the F -weighted mixture
of fv(ΛΣ0Λ). The details of the test involve the choice of values of Λ and their
associated weights.

A simple and flexible way to specify the values of Λ and correspond-
ing weights F is to represent Λ as Λ = diag(exp(δ1)� � � � �exp(δq)), where
δ = (δ1� � � � � δq)

′ is a mean-zero Gaussian vector with covariance matrix γ2Ω.
Specifically, the empirical analysis has δj following a random walk: δj = δj−1 +
εj with δ0 = 0 and εj ∼ i�i�d�N (0�γ2). For this choice, the weighted average
power maximizing test seeks to detect misspecification in the persistence in ut
against a wide range of alternatives, while maintaining that the implied het-
eroskedasticity in X is relatively smooth. The weighted average power maxi-
mizing test is the best test of the simple hypotheses

H0 :v has density fv(Σ0) vs. H1 :v has density Eδfv(ΛΣ0Λ)�(7)

where Eδ denotes integration over the measure of δ and fv is defined in (5). By
the Neyman–Pearson lemma and the form of fv, an optimal test of (7) rejects
for large values of

S = Eδ[|ΛΣ0Λ|−1/2(v′(ΛΣ0Λ)
−1v)−q/2]

(v′Σ−1
0 v)

−q/2 �

Because the power of the S test does not depend on Σ0 when Σ0 is diagonal
(which is approximately true for all of the models considered), the same value
of γ2 can be used to satisfy the 50% power requirement for all models for a
given q. Numerical analysis shows γ = 5/q to be a good choice for values of q
ranging from 5 to 30.

3.3. Testing for Low-Frequency Heteroskedasticity in ut
Limiting results for partial sums like those shown in Table I are robust to

time varying variances of the driving disturbances as long as the time varia-
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tion is a stationary short-memory process; this implies that the values of Σ
are similarly robust to such forms of heteroskedasticity. However, instability in
the second moment of financial and macroeconomic data is often quite per-
sistent (e.g., Bollerslev, Engle, and Nelson (1994) and Andersen, Bollerslev,
Christoffersen, and Diebold (2007), Balke and Gordon (1989), Kim and Nel-
son (1999), and McConnell and Perez-Quiros (2000)), so it is interesting to ask
whether second moments of ut exhibit enough low-frequency variability to in-
validate limits like those shown in Table I. To investigate this, we nest each of
the models considered thus far in a more general model that allows for such
low-frequency heteroskedasticity, derive the resulting value of Σ for the more
general model, and construct an optimal test against such alternatives.

For each of the low-frequency models, we consider a version of the model
with low-frequency heteroskedastic driving disturbances in their natural mov-
ing average (MA) representations. For example, for the I(0) model, con-
sider models for {ut} that satisfy T−1/2

∑[·T ]
t=1 ut ⇒ σ

∫ ·
0 h(λ)dW1(λ), where

h : [0�1] �→ R is a continuous function. When h(s)= 1 for all s, this yields the
I(0) model in Table I, but nonconstant h yield different limiting processes and
different values of Σ. Indeed, a calculation shows that the l� jth element of Σ
is Σlj =

∫ 1
0 Ψl(s)Ψj(s)h(s)

2 ds. Because the Ψ functions are orthogonal, Σlj = 0
for l = j when h is constant, but nonconstant h lead to nonzero values of Σlj .
Said differently, low-frequency heteroskedasticity in ut leads to serial corre-
lation in X . The form of this serial correlation depends on h. For example, in
the mean case when h(s)= √

1 + 2a cos(πs) with |a|< 1/2, Σ is the covariance
matrix of a MA(1) process with first-order autocorrelation equal to a.

The same device can be used to generalize the other models. Thus, using the
notation from Table I, consider {ut} that satisfy T−α∑[·T ]

t=1 ut ⇒ σG̃(·), where
for the different models:

FR: G̃(s)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(d)

∫ 0

−∞
((s− λ)d − (−λ)d)dW (λ)

+A(d)
∫ s

0
(s− λ)dh(λ)dW (λ)� d ∈

(
−1

2
�

1
2

)
�

A(d− 1)
d

∫ 0

−∞
((s− λ)d − (−λ)d−1(sd− λ))dW (λ)

+ A(d− 1)
d

∫ s

0
(s− λ)dh(λ)dW (λ)�

d ∈
(

1
2
�

3
2

)
�
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OU: G̃(s)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
c

∫ 0

−∞

(
ecλ − e−c(s−λ))dW (λ)

+ 1
c

∫ s

0

(
1 − e−c(s−λ))h(λ)dW (λ)� c > 0,

∫ s

0
(s− λ)h(λ)dW (λ)� c = 0,

LL: G̃(s)=
∫ s

0
h(λ)dW1(λ)+ g

∫ s

0
(s− λ)h(λ)dW2(λ)� g ≥ 0�

I-OU : G̃(s)= c−2

∫ 0

−∞

(
e−c(s−λ) − (1 − cs)ecλ)dW (λ)

+ c−2

∫ s

0

(
e−(s−λ) − c(s− λ)− 1

)
h(λ)dW (λ)�

c > 0�

I-LL : G̃(s)=
∫ s

0
(s− λ)h(λ)dW1(λ)

+ 1
2
g

∫ s

0
(s− λ)2h(λ)dW2(λ)� g ≥ 0�

In these representations the function h only affects the stochastic component
of G̃(s) that stems from the in-sample innovations, but leaves unaffected terms
associated with initial conditions, such as 1

c

∫ 0
−∞(e

−c(s−λ) − ecλ)dW (λ) in the
local-to-unity model. The idea is that h(t/T) describes the square root of the
time varying long-run variance of the in-sample driving disturbances at date
t ≥ 1, while maintaining the assumption that stable models were stationary
prior to the beginning of the sample. This restriction means that G̃(s) is a sum
of two pieces, and the one that captures the pre-sample innovations remains
unaffected by h. Especially in the fractional model, such a decomposition is
computationally convenient, as noted by Davidson and Hashimadze (2006). As
in the I(0) example, for any of the models and any continuous function h, it is
possible to compute the covariance kernel for G̃ and the resulting covariance
matrix of X .

Let Σi(θ0�h) denote the value of Σ associated with model i with parame-
ter θ0 and heteroskedasticity function h. The homoskedastic versions of the
models from Table I then yield Σ= Σi(θ0�1), while their heteroskedastic coun-
terparts yield Σ= Σi(θ0�h). The goal therefore is to look for departures from
the null hypothesis Σ = Σi(θ0�1) in the direction of alternatives of the form
Σ= Σi(θ0�h). Because there is no uniformly most powerful test over all func-
tions h, we consider a test with best weighted average power for a wide range
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of h functions. The details of the test involve the choice of values of h and their
associated weights.

Similar to the choice of values of Λ for the S test, we consider a flexible
model for the values of h that arise as realizations from a Wiener process. In
particular, we consider functions generated as h = eηW

∗ , where W ∗ is a stan-
dard Wiener process on the unit interval independent of G, and η is a para-
meter. The test with best weighted average power over this set of h functions
is the best test associated with the hypotheses

H0 :v has density fv(Σ(θ0�1)) vs.(8)

H1 :v has density EW ∗fv(Σ(θ0� e
ηW ∗
))�

where EW ∗ denotes integration over the distribution ofW ∗. The form of fv and
the Neyman–Pearson lemma imply that the optimal test of (8) rejects for large
values of

H = EW ∗ [|Σ(θ0� e
ηW ∗
)|−1/2(v′Σ(θ0� e

ηW ∗
)−1v)−q/2]

(v′Σ(θ0�1)−1v)−q/2
�

A choice of η = 6q−1/2 satisfies the 50% power requirement for a wide range
of values of q for both the I(0) and I(1) models.

3.4. Some Properties of the Tests

This section takes up the issues of the asymptotic power of the various tests
for various alternatives and the accuracy of the asymptotic approximations in
finite samples. The numerical results will be presented for 5%-level tests, q =
13, and demeaned data.

3.4.1. Asymptotic Power

The asymptotic rejection frequency of the LFUR and LFST tests is shown in
Figure 3 for a range of values of d in the fractional model (panel A), c in the
OU model (panel B), and g in local level model (panel C). For example, panel
B shows that the LFST test has power of approximately 90% for the unit root
alternative (c = 0), but power of less than 25% for values of c greater than 20 in
the OU model. Applying this asymptotic approximation to an autoregression
using T = 200 observations, the LFST test will reject the I(0) null with high
probability when the largest autoregressive (AR) root is unity, but is unlikely to
reject the I(0) null when the largest root is less than 1−20/200 = 0�9. Similarly,
in the local level model studied in panel C, the LFUR test has power of over
90% for the I(0)model, but power of less than 25% for values of g greater than
20. This asymptotic approximation suggests that in a MA model for yt − yt−1

and with T = 200 observations, the LFUR test will reject the I(1) null with
high probability when the MA polynomial has a unit root (that is, when the
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FIGURE 3.—Asymptotic rejection frequencies for 5%-level LFST and LFUR tests (q = 13,
demeaned data).

level of yt is I(0)), but is unlikely to reject when the largest MA root is less
than 0�9.

Figure 3 also allows power comparisons between the optimal low-frequency
tests and tests that use all frequencies. For example, from panel B, the q= 13
low-frequency unit root test has approximately 50% power when c = 14. This is
the best power that can be achieved when yt exhibits low-frequency OU behav-
ior with c = 0 under the null. If instead, yt followed an exact Gaussian AR(1)
model with unit AR coefficient under the null and local-to-unity coefficient un-
der the alternative, then it would be appropriate to use all frequencies to test
the null, and the best all-frequency test has approximately 75% power when
c = 14 (cf. Elliott (1999)). This 25% difference in power is associated with
the relatively weaker restriction on the null model of the LFUR test, with an
assumption that the I(1) model only provides an accurate description of low-
frequency behavior, while allowing for unrestricted behavior of the series at
higher frequencies.

Figure 4 compares the power of the S test to the power of the LFUR and
LFST tests, with alternatives of the form Σ1 =ΛΣ0Λ, where Λ= diag(exp(δ1)�
� � � �exp(δq)). Because Λ is diagonal, the power of the S test does not depend
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FIGURE 4.—Power of 5%-level S, LFST, and LFUR tests (q = 13, demeaned data).
The alternatives have the form Σ1 = ΛΣ0Λ, where Λ = diag[exp(δ1)� � � � �exp(δ13)], where
δi = κ(i − 1)/(q − 1) in panel A, and δi = κ(i − 1)/6 for i ≤ 7 and δi = δ14−i for 8 ≤ i ≤ 13
in panel B. The LFST results are for the I(0) model for Σ0, the LFUR results are for the I(1)
model, and the S results are for a model with diagonal Σ0.

on Σ0 when Σ0 is diagonal, and because Σ0 is exactly or approximately diagonal
for all of the models considered in Table II, the power results for S apply to
each of these models. In contrast, the LFST and LFUR tests utilize particular
values of Σ0, so the results for LFST apply to the I(0) null and the results
for LFUR apply to the I(1) null. In panel A, δi follows the linear trend δi =
κ(i − 1)/(q − 1), where κ = 0 yields Σ1 = Σ0, κ < 0 produces models with
more persistence than the null model, and κ > 0 produces models with less
persistence. In panel B, {δi} has a triangular shape: δi = κ(i − 1)/6 for i ≤ 7
and δi = δ14−i for 8 ≤ i≤ 13. As in panel A, κ= 0 yields Σ1 = Σ0, but now non-
zero values of κ correspond to nonmonotonic deviations in the persistence of
ut across frequencies. Because the LFST test looks for alternatives that are
more persistent than the null hypothesis, it acts as a one-sided test for κ < 0 in
panel A and it has power less than its size when κ > 0. Similarly, LFUR acts
as a one-sided test for alternatives that are less persistent than the null and is
biased when κ < 0. In contrast, the S test looks for departures from the null
in several directions (associated with realizations from draws of a demeaned
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random walk), and panel A indicates that it is approximately unbiased with a
symmetric power function that is roughly comparable to the one-sided LFST
and LFUR tests under this alternative. Panel B, which considers the triangular
alternative, shows a power function for S that is similar to the trend alternative,
while the power functions for LFST and LFUR indicate bias, and (because of
the nonmonotonicity of the alternative) these tests have one-sided power that
is substantially less than the one-sided power for the trend alternative shown
in panel A.

Figure 5 presents the power of the H test. Because low-frequency het-
eroskedasticity in ut leads to serial correlation in X , we compare the power
of the H tests to two tests for serial correlation in X: let ρi = (∑q−i

j=1XjXj+i)×
(
∑q

j=1X
2
j )

−1; the first test statistic is |ρ1| (and thus checks for first-order serial
correlation), while the second is

∑q−1
i=1 |ρi|/i (and checks for serial correlation

at all lags). Figure 5 shows results for the I(0) null model where ln(h(s)) fol-
lows a linear trend model in panel A (ln(h(s)) = κs) and a triangular model
in panel B (ln(h(s))= κs for s ≤ 1/2 and ln(h(s))= κ(1 − s) for s > 1/2). In
panel A, the power of H is slightly smaller than the power of the |ρ1| test for

FIGURE 5.—Power of 5%-level H� |ρ1|, and
∑q−1

i=1 |ρi|/i tests for the I(0) model (q = 13, de-
meaned data). The alternatives are generated by the I(0) model with ln[h(s)] = sκ in panel A,
and ln[h(s)] = sκ for s ≤ 1/2 and ln[h(s)] = κ(1 − s) for s > 1/2 in panel B.
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values of κ near zero, slightly larger for more distant alternatives, and the |ρ1|
test appears to dominate the

∑q−1
i=1 |ρi|/i test. All of the tests are approximately

unbiased with symmetric power functions. In panel B, where the alternative
involves a nonmonotonic heteroskedasticity function h(s), the H test remains
approximately unbiased with a power function that is symmetric, but the two
other tests are biased and show better power performance for κ < 0.

3.4.2. Finite Sample Performance

There are three distinct issues related to the finite sample performance of
the tests. First, the data used in the tests (XT ) are weighted averages of the
original data (yt) and, by virtue of the central limit theorem, the probability
distribution of XT is approximated by the normal distribution. Second, as we
implement the tests in the empirical section below, the covariance matrix of
XT is approximated by the covariance matrix of X , that is, by the expression
below equation (4). Finally, our analysis is predicated on the behavior of the
process over a set of low frequencies, but as the R2 functions shown in Figure 1
indicate, there is some contamination in XT caused by leakage from higher
frequencies.

The first of these issues—the quality of the normal approximation to the dis-
tribution of a sample average—is well studied and we say nothing more about
it except to offer the reminder that because XT is a weighted average of the
underlying data, it is exactly normally distributed when the underlying data yt
are normal. As for the second issue—the approximation associated with using
the asymptotic form of the covariance matrix forXT—we have investigated the
quality of the approximation for empirically relevant values of T , and found it
to be very good. For example, using T = 200, q= 13, and i.i.d. Gaussian data,
the size of the asymptotic 5%-level LFUR test is 0�05 and the power for the
stationary AR(1) model (1 − 0�95L)yt = εt is 0�36, which can be compared to
the asymptotic power for c = 10, which is 0�35.

To investigate the third issue—leakage of high frequency variability into
XT—consider two experiments. In the first experiment stationary Gaussian
data are generated from a stochastic process with spectrum s(ω) = 1 for
|ω| ≤ 2π/R and s(ω)= κ for |ω|> 2π/R, where R is a cutoff period used to
demarcate low-frequency variability. When κ= 1 the spectrum is flat, but when
κ = 1, the spectrum is a step function with discontinuity at |ω| = 2π/R. With
R= 32 and T = 208 this corresponds to 52 years of quarterly data with a cutoff
frequency corresponding to a period of 8 years and implies that q = 13 (and
the choice with T/R a natural number maximizes potential leakage). Since
the spectrum is constant for low frequencies independent of the value of κ,
one would want the small sample rejection probability of LFST, S, and H tests
under the I(0) null hypothesis to be equal to the nominal level. A second ex-
periment uses partial sums of the data from the first experiment to compute
the small sample rejection probability of LFUR, S, and H tests under the I(1)
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null. In both experiments, size distortions of 5%-level tests based on asymp-
totic critical values are small for 0 ≤ κ ≤ 3: The largest size is 7�1% for the S
test in the I(1) model, and the smallest is 3�6% for the LFST test in the I(0)
model, both with κ= 3.

4. EMPIRICAL RESULTS

In this section we use the low-frequency tests to address four empirical ques-
tions. The first is the Nelson–Plosser question: after accounting for a determin-
istic linear trend, is real gross domestic product (GDP) consistent with the I(1)
model? The second is a question about the cointegration of long term and short
term interest rates: is the term spread consistent with the I(0) model? We an-
swer both of these questions using postwar quarterly U.S. data and focus the
analysis on periods greater than 32 periods (that is, frequencies lower than
the business cycle). The third question involves the behavior of real exchange
rates where a large literature has commented on the connection between the
persistence of real exchange rates and deviations from purchasing power par-
ity. Here we use the LFST test to determine whether a long-annual series on
real exchange rates is consistent with the I(0) model over any set of low fre-
quencies, and this allows us to construct a confidence set for the range of low
frequencies consistent with the I(0)model. Finally, we use the S andH tests to
construct confidence sets for the parameters of the five low-frequency models
for below-business-cycle variability in twenty U.S. macroeconomic and finan-
cial time series.

4.1. Testing the I(0) and I(1) Null for Real GDP and the Term Spread

Table III shows selected empirical results for quarterly values (1952:1–
2005:3) of the logarithm of (detrended) real GDP and the (demeaned) term
spread—the difference between interest rates for 10 year and 1 year U.S.
Treasury bonds. Panel A shows results computed using standard methods:
p-values for the DFGLS unit root test of Elliott, Rothenberg, and Stock
(1996), the stationarity test of Nyblom (1989) (using a heteroskedasticity-
autocorrelation robust (HAC) variance estimator as suggested in Kwiatkowski,
Phillips, Schmidt, and Shin (1992)), and the estimated values of d and stan-
dard errors from Geweke and Porter-Hudak (1983) or “GPH regressions” as
described in Robinson (2003). Panel B shows p-values for the LFST, LFUR, S,
and H tests under the I(0) and I(1) nulls.

Looking first at the results for real GDP, the traditional statistics shown
in panel A suggest that the data are consistent with the I(1) model, but not
the I(0) model: the p-value for the “Dickey–Fuller generalized least squares”
(DFGLS) test is 0�16, while the Nyblom/KPSS test has a p-value less than 1%;
the GPH regressions produce point estimates of d close to the unit root null,
and the implied confidence intervals for d include the I(1) model but exclude
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TABLE III

RESULTS REAL GDP AND TERM SPREADa

A. DFGLS, Nyblom/KPSS, and GPH Results

Nyblom/
KPSS
p-Value

GPH Regressions: d̂ (SE)

DFGLS
p-Value

Levels Differences

Series [T 0�5] [T 0�65] [T 0�5] [T 0�65]

Real GDP 0.16 <0.01 1.00 (0.17) 0.98 (0.11) −0.19 (0.17) −0.09 (0.11)
Tbond spread <0.01 0.01 0.18 (0.17) 0.61 (0.11) −0.80 (0.17) −0.41 (0.11)

B. p-Values for I(0) and I(1) Models

I(0) I(1)

Series LFST S H LFUR S H

Real GDP <0.01 0.09 0.12 0.37 0.84 0.59
Tbond spread 0.25 0.46 0.14 <0.01 <0.01 0.05

aNotes. The entries in the column labeled DFGLS are p-values for the DFGLS test of Elliott, Rothenberg, and
Stock (1996). The entries in the column labeled Nyblom/KPSS are p-values for the Nyblom (1989) I(0) test (using a
HAC covariance matrix as suggested in Kwiatkowski, Phillips, Schmidt, and Shin (1992)). Results are computed using
a Newey–West HAC estimator with [0�75 × T 1/3] lags. The results in the columns labeled GPH Regressions are the
estimated values of d and standard errors computed from regressions using the lowest [T 0�5] or [T 0�65] periodogram
ordinates. The GPH regressions and standard errors were computed as described in Robinson (2003): specifically,
the GPH regressions are of the form ln(pi) = β0 + β1 ln(ωi) + error, where pi is the ith periodogram ordinate
and ωi is the corresponding frequency, the estimated value of d̂ = −β̂1/2, where β̂1 is the ordinary least squares
estimator, and the standard error of d̂ is SE(d̂)= π/√24m, where m is the number of periodogram ordinates used in
the regression.

the I(0) model. The low-frequency results shown in panel B reach the same
conclusion: the p-value for the LFUR test is 37%, while the p-value for the
LFST test is less than 1%. Moreover, the H statistic indicates that the well
known post-1983 decline in volatility of real GDP (the “Great Moderation”)
is not severe enough to reject the homoskedastic low-frequency I(1) model.
Thus for real GDP, the low-frequency inference and inference based on tradi-
tional methods largely coincide.

This is not the case for the term spread. Panel A indicates that the DFGLS
statistic rejects the I(1) model, the Nyblom/KPSS tests rejects the I(0) model,
and the results from the GPH regressions depend critically on whether [T 0�5]
or [T 0�65] observations are used in the GPH regression. In contrast, panel B
shows that the low-frequency variability in the series is consistent with the
I(0) model but not with the I(1) model. Thus, traditional inference meth-
ods paint a murky picture, while the low-frequency variability of the series
is consistent with the hypothesis that long rates and short rates are cointe-
grated.
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4.2. A Low-Frequency Confidence Interval for I(0) Variability in
Real Exchange Rates

A large empirical literature has examined the unit root or near unit root
behavior of real exchange rates. The data used here—annual observations on
the real dollar/pound real exchange rate from 1791 to 2004—come in large
part from one important empirical study in this literature: Lothian and Taylor
(1996). A natural question to ask in the context of the framework developed
here is whether real exchange rates are consistent with I(0) behavior over any
low-frequency band. That is, is there any value of q such that the low-frequency
transformed data XT are consistent with the I(0) model and, more generally,
what is the largest value of q (or the highest frequency) consistent with the I(0)
model? Figure 6 plots the p-value of the LFST test applied to the logarithm
of the (demeaned) real exchange rate for values of q ≤ 30, corresponding to
periods longer than approximately 14 years. The figure shows that the I(0)
model is rejected at the 5% level for values of q > 7 (periods shorter than
61 years) and at the 1% level for values of q > 10 (periods shorter than 43
years). Equivalently, a 95% confidence interval for periods for which the real
exchange rate behaves like an I(0) process includes periods greater than 61

FIGURE 6.—p-values for the LFST test as a function of q. The figure shows the p-value for
LFST computed using (X1T� � � � �XqT ) constructed from demeaned values of the logarithm of the
real $/£ exchange rate using annual observations from 1791–2004. The cutoff period (in years)
corresponding to q can be computed as period = 2T/q, with T = 214.
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years, while a 99% confidence interval includes periods greater than 43 years.
In either case, the results suggest very long departures from purchasing power
parity.

4.3. Confidence Intervals for Model Parameters

Confidence sets for model parameters can be formed by inverting the S
and H tests. Table IV presents the resulting confidence sets for twenty macro-
economic and financial time series that include postwar quarterly versions of
important macroeconomic aggregates (real GDP, aggregate inflation, nominal
and real interest rates, productivity, and employment) and longer annual ver-
sions of related series (real GNP from 1869 to 2004, nominal and real bond
yields from 1900 to 2004, and so forth). We also study several cointegrat-
ing relationships by analyzing differences between series (such as the long–
short interest rate spread discussed above) or logarithms of ratios (such as
consumption–income or dividend–price ratios). A detailed description of the
data is given in the Appendix. As usual, several of the data series are trans-
formed by taking logarithms and, as discussed above, the deterministic com-
ponent of each series is modelled as a constant or a linear trend. Table A.I
summarizes these transformations for each series. The postwar quarterly se-
ries span the period 1952:1–2005:3, so that T = 215, and q= [2T/32] = 13 for
the demeaned series and q= 12 for the detrended series. Each annual time se-
ries is available for a different sample period (real GNP is available from 1869
to 2004, while bond rates are available from 1900 to 2004, real exchange rates
from 1791 to 2004, for example), so the value of q is series-specific. One series
(returns on the SP500) contains daily observations from 1928 to 2005, and for
this series, q= 17.

Looking at the table, it is clear that the relatively short sample (less than 60
years of data for many of the series) means that confidence sets often contain a
wide range of values for d, c, and g. That said, looking at the individual series,
several results are noteworthy:

The unit root model for inflation is not rejected using the postwar quarterly
data, while the I(0)model is rejected. Results are shown for inflation based on
the GDP deflator, but similar conclusions follow from the personal consump-
tion expenditure (PCE) deflator and consumer price index (CPI). Stock and
Watson (2007) documented instability in the “size” of the unit root component
(corresponding to the value of g in the local level model) over the postwar pe-
riod, but apparently this instability is not so severe that it leads to rejections
based on the tests considered here. Different results are obtained from the
long-annual (1869–2004) series, which shows less persistence than the postwar
quarterly series.

Labor productivity is very persistent. The I(0)model is rejected but the I(1)
model is not. The S test rejects values of c > 5 in the OU model and d < 0�84 in
the fractional model. The behavior of employee hours per capita has received
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TABLE IV

95% CONFIDENCE SETS FOR MODEL PARAMETERS USING S AND H TESTSa

Fractional Model (d) OU Model (c) LL Model (g) Integrated OU Model (c) Integrated LL Model (g)

Series S H S H S H S H S H

Postwar Quarterly Time Series
Real GDP (−0.06, 1.50) (−0.14, 1.50) (0.0, 30.0) (0.0, 30.0) (0.0, 30.0) (0.0, 30.0) (6.0, 30.0) (0.0, 30.0) (0.0, 30.0) (0.0, 30.0)
Tbond spread (−0.44, 0.54) (−0.50, 0.96) (15.0, 30.0) (0.5, 30.0) (0.0, 16.5) (0.0, 30.0)
Inflation (0.26, 1.48) (−0.50, −0.30) (0.0, 27.5) (0.0, 28.5) (7.5, 30.0) (3.5, 30.0) (12.5, 30.0) (0.0, 30.0) (0.0, 27.0) (0.0, 30.0)

(0.26, 1.50)
Productivity (0.84, 1.50) (−0.30, 1.50) (0.0, 5.0) (0.0, 30.0) (0.0, 30.0) (0.0, 30.0) (0.0, 30.0) (0.0, 30.0) (0.0, 30.0)
Hours (0.06, 1.50) (−0.50, 1.50) (0.0, 30.0) (0.0, 30.0) (2.5, 30.0) (0.0, 30.0) (10.0, 30.0) (0.0, 30.0) (0.0, 28.5) (0.0, 30.0)
10yrTbond (0.44, 1.48) (−0.50, 0.34) (0.0, 15.0) (0.0, 0.5) (10.5, 30.0) (0.0, 30.0) (6.5, 30.0) (30.0, 30.0) (0.0, 30.0) (0.0, 0.5)

(0.48, 1.08) (12.5, 30.0)
1yrTbond (0.22, 1.30) (−0.50, 1.42) (0.0, 30.0) (0.0, 30.0) (6.0, 30.0) (0.0, 30.0) (29.5, 30.0) (0.0, 0.0) (0.0, 10.5) (0.0, 30.0)

(6.0, 30.0)
3mthTbill (0.18, 1.28) (−0.50, 1.24) (0.0, 30.0) (0.0, 30.0) (5.0, 30.0) (0.0, 30.0) (29.0, 30.0) (17.0, 30.0) (0.0, 10.0) (0.0, 2.5)
Real Tbill rate (−0.24, 1.48) (−0.50, 1.38) (0.0, 30.0) (0.0, 4.0) (0.0, 30.0) (0.0, 30.0) (10.5, 30.0) (19.0, 30.0) (0.0, 24.0) (0.0, 2.5)

(12.0, 30.0)
Unit labor cost (−0.12, 0.76) (−0.50, 1.50) (6.5, 30.0) (0.0, 30.0) (0.0, 28.0) (0.0, 30.0) (0.0, 30.0) (0.0, 30.0)
Real C-GDP (0.52, 1.30) (−0.50, 0.26) (0.0, 9.0) (0.0, 10.5) (8.0, 30.0) (0.0, 30.0) (9.5, 30.0) (0.0, 30.0) (0.0, 8.0) (0.0, 30.0)

(0.40, 1.50) (17.5, 30.0)
Real I-GDP (0.38, 1.34) (−0.42, 0.34) (0.0, 13.0) (5.5, 30.0) (0.0, 17.0) (17.5, 30.0) (0.0, 13.0)

(Continues)
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TABLE IV—Continued

Fractional Model (d) OU Model (c) LL Model (g) Integrated OU Model (c) Integrated LL Model (g)

Series S H S H S H S H S H

Long-Annual Time Series
Real GNP (0.24, 1.18) (0.0, 30.0) (19.5, 30.0) (0.0, 16.5)
Inflation (0.06, 0.60) (−0.50, −0.06) (29.0, 30.0) (2.5, 30.0) (0.0, 3.0)

(1.50, 1.50)
Real ex. rate (0.52, 1.04) (−0.50, 1.50) (0.0, 16.5) (0.0, 30.0) (23.0, 30.0) (0.0, 30.0) (0.0, 30.0) (0.0, 2.5) (0.0, 30.0)
Bond rate (0.64, 1.44) (0.0, 13.0) (0.0, 28.0)
Real bond rate (−0.12, 0.66) (−0.50, −0.16) (20.5, 30.0) (0.0, 30.0)
Earnings/price (0.28, 0.90) (0.34, 0.86) (6.5, 30.0) (12.5, 30.0) (4.0, 30.0)

(1.50, 1.50)
Div/price (0.50, 1.26) (−0.50, 1.50) (0.0, 17.0) (0.0, 30.0) (18.0, 30.0) (0.0, 30.0) (0.0, 30.0) (0.0, 11.5) (0.0, 30.0)

Daily Time Series
Abs.returns (0.08, 0.88) (1.38, 1.50) (5.0, 30.0) (3.0, 30.0) (0.5, 4.0)

aNotes. The entries in the table show 95% confidence sets for the model parameters constructed by inverting the S and H tests. The sets were constructed by computing the
tests for a grid of parameter values, where −0�49 ≤ d ≤ 1�49, 0 ≤ c ≤ 30, and 0 ≤ g ≤ 30. The confidence sets are shown as intervals (a, b), where disconnected sets include more
than one interval, and empty sets are denoted by blanks.
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considerable attention in the recent vector autoregression (VAR) literature
(see Gali (1999), Christiano, Eichenbaum, and Vigfusson (2003), Pesavento
and Rossi (2005), and Francis and Ramey (2005)). The results shown here
are consistent with unit root but not I(0) low-frequency behavior. Francis and
Ramey (2006) discussed demographic trends that are potentially responsible
for the high degree of persistence in this series.

Postwar nominal interest rates are consistent with a unit root but not an I(0)
process, and the S statistic similarly rejects the I(0) model of the long-annual
nominal bond rates. In contrast, the I(0) model is not rejected using the S test
for real interest rates.

Several of the data series, such as the logarithm of the ratio of consumption
to income, represent error correction terms from putative cointegrating rela-
tionships. Under the hypothesis of cointegration, these series should be I(0).
Table IV shows that real unit labor costs (the logarithm of the ratio of labor
productivity to real wages, y−n−w in familiar notation) exhibit limited persis-
tence: the I(1) model is rejected but the I(0) model is not rejected. The “bal-
anced growth” cointegrating relationship between consumption and income
(e.g., King, Plosser, Stock, and Watson (1991)) fares less well, where the I(1)
model is not rejected, but the I(0) model is rejected. The apparent source of
this rejection is the large increase in the consumption–income ratio over the
1985–2004 period, a subject that has attracted much recent attention (for ex-
ample, see Lettau and Ludvigson (2004) for an explanation based on increases
in asset values). The investment–income relationship also appears to be at odds
with the null of cointegration (although, in results not reported in the table, this
rejection depends in part on the particular series used for investment and its
deflator). Finally, the stability of the logarithm of the earnings–stock price ratio
or dividend–price ratio, and the implication of this stability for the predictabil-
ity of stock prices, has been an ongoing subject of controversy (see Campbell
and Yogo (2006) for a recent discussion). Using Campbell and Yogo’s (2006)
annual earnings–price data for the SP500 from 1880 to 2002, both the I(0) and
I(1)models are rejected (and similar results are found for their dividend–price
data over the same sample period). Confidence intervals constructed using the
S statistic suggest less persistence than a unit root (for example, the confidence
interval for the fractional model includes 0�28 ≤ d ≤ 0�90). The shorter (1928–
2004) Center for Research in Security Prices (CRSP) dividend yield (also from
Campbell and Yogo (2006)) is consistent with more low-frequency persistence
and the I(1) model is not rejected.

Ding, Granger, and Engle (1993) analyzed the absolute value of daily re-
turns from the SP500 and showed that the autocorrelations decayed in a way
that was remarkably consistent with a fractional process. Low-frequency char-
acteristics of the data are consistent with this finding. Both the unit root and
I(0) models are rejected by the S statistic, but models with somewhat less per-
sistence than the unit root, such as the fractional model with 0�08< d < 0�88,
are not rejected.
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A striking finding from Table IV is the number of models that are rejected
by the H test. For example, the low-frequency heteroskedasticity in the long-
annual GDP series (in large part associated with the post-WWII decline in
volatility) leads to a rejection for all of the models. Several of the other se-
ries show similar rejections or produce confidence intervals for model parame-
ters with little overlap with the confidence intervals associated with the S tests.
These results suggest that for many of the series, low-frequency heteroskedas-
ticity is so severe that it invalidates the limiting results shown in Table I.

Two main findings stand out from these empirical analysis. First, despite fo-
cus on the narrow below-business-cycle frequency band, very few of the series
are compatible with the I(0) model. This hold true even for putative cointe-
gration error correction terms involving consumption, income, and investment,
and stock prices and earnings. Most macroeconomic series and relationships
thus exhibit pronounced nontrivial dynamics below business-cycle frequencies.
In contrast, the unit root model is often consistent with the observed low-
frequency variability.

Second, maybe the most important empirical conclusion is that for many
series there seems to be too much low-frequency variability in the second mo-
ment to provide good fits for any of the models. From an economic perspective,
this underlines the importance of understanding the sources and implications
of such low-frequency volatility changes. From a statistical perspective, this
finding motivates further research into methods that allow for substantial time
variation in second moments.

5. ADDITIONAL REMARKS

The analysis in this paper has focused on tests for whether a low-frequency
model with a specific parameter value is a plausible data generating mech-
anism for the transformed data vT . Alternatively, one might ask whether a
model as such, with unspecified parameter value, is rejected in favor of an-
other model. A large number of inference procedures have been developed
for specific low-frequency models, such as the local-to-unity model and the
fractional model. Yet, typically there is considerable uncertainty about the ap-
propriate low-frequency model for a given series. A high-power discrimination
procedure would therefore have obvious appeal.

Consider then the problem of discriminating between the three continu-
ous bridges between the I(0) and the I(1) models: the fractional model with
0 ≤ d ≤ 1, the local-to-unity model with c ≥ 0, and the local level model with
g ≥ 0. These models are obviously similar in the sense that they all nest (or
arbitrarily well approximate) the I(0) and I(1) model. More interestingly, re-
cent literature has pointed out that regime switching models and fractional
models are similar along many dimensions—see, for example, Parke (1999),
Diebold and Inoue (2001), and Davidson and Sibbertsen (2005). Since the
local level model can be viewed as a short-memory model with time varying
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mean, this question is closely related to the similarity of the fractional model
with 0< d < 1 and the local level model with g > 0.

This suggests that it will be challenging to discriminate between low-
frequency models using information contained in vT . A convenient way to
quantify the difficulty is to compute the total variation distance between the
models. Recall that the total variation distance between two probability mea-
sures is defined as the largest absolute difference the two probability measures
assign to the same event, maximized over all events. Let Σ0 and Σ1 be the co-
variance matrices of X induced by two models and specific parameter values.
Using a standard equality (see, for instance, Pollard (2002, p. 60)), the total
variation distance (TVD) between the two probability measures described by
the densities fv(Σ0) and fv(Σ1) is given by

TVD(Σ0�Σ1)= 1
2

∫
|fv(Σ0)− fv(Σ1)|dη(v)�

where η is the uniform measure on the surface of a q-dimensional unit sphere.
There is no obvious way to analytically solve this integral, but it can be evalu-
ated using Monte Carlo integration. To see how, write

TVD(Σ0�Σ1)=
∫

1[fv(Σ1) < fv(Σ0)](fv(Σ0)− fv(Σ1))dη(v)(9)

=
∫

1[LRv < 1](1 − LRv)fv(Σ0)dη(v)�

where LRv = fv(Σ1)/fv(Σ0). Thus, TVD(Σ0�Σ1) can be approximated by draw-
ing v’s under fv(Σ0) and averaging the resulting values of 1[LRv < 1](1 −
LRv).5

Let Σi(θ) denote the covariance matrix of X for model i ∈ {FR, OU, LL}
with parameter value θ and consider the quantity

Di�j(θ)= min
γ∈Γ

TVD(Σi(θ)�Σj(γ))�

where Γ = [0�1] for j = FR and Γ = [0�∞) for j ∈ {OU, LL}. If Di�j(θ) is
small, then there is a parameter value γ0 ∈ Γ for which the distribution of v
with Σ= Σj(γ0) is close to the distribution of v with Σ= Σi(θ), so it will be dif-
ficult to discriminate model i from model j if indeed Σ= Σi(θ). More formally,
consider any model discrimination procedure between models i and j based on
v, which correctly chooses model i when Σ= Σi(θ) with probability p. By de-
finition of the total variation distance, the probability of the event “procedure

5It is numerically advantageous to rely on (9) rather than on the more straightforward ex-
pression TVD(Σ0�Σ1)= 1

2

∫ |1 − LRv|fv(Σ0)dη(v) for the numerical integration, since 1[LRv <
1](1−LRv) is bounded and thus possesses all moments, which is not necessarily true for |1−LRv|.
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selects model i” under Σ= Σj(γ) is at least p− TVD(Σi(θ)�Σj(γ)). If Di�j(θ)
is small, then either the probability p of correctly selecting model i is small
or the probability of correctly selecting model j is small for some Σ= Σj(γ0),
γ0 ∈ Γ . In the language of hypothesis tests, for any test of the null hypothesis
that Σ= Σi(θ)� θ ∈Θ against Σ= Σj(γ)� γ ∈ Γ , the sum of the probabilities of
Type I and Type II errors is bounded below by 1 − maxθ∈ΘDi�j(θ).

The value of Di�j(θ) is an (increasing) function of q. Figure 7 plots Di�j(θ)
for each of the model pairs for q = 13� which corresponds to 52 years of data
with interest focused on frequencies lower than 8-year cycles. Panel A plots
DFR� OU(d) and DFR� LL(d), and panels B and C contain similar plots for the
OU and LL models. Evidently Di�j(θ) is small throughout. For example, for
all values of d, the largest distance of the fractional model to the local-to-
unity and local level model is less than 25%, and the largest distance between
the OU and LL models is less than 45%. For comparison, the total varia-
tion distance between the I(0) and I(1) model for q = 13 is approximately
90%. Total variation distance using detrended data is somewhat smaller than
the values shown in Figure 7. Evidently then, it is impossible to discriminate
between these standard models with any reasonable level of confidence us-
ing sample sizes typical in macroeconomic applications, at least based on the

FIGURE 7.—Total variation distance. Results are shown for the demeaned case with q= 13.
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below-business-cycle variability in the series summarized by vT . Indeed, to ob-
tain, say, max0≤d≤1DFR� OU(d)≈ 0�9, one would need a sample size of 480 years
(corresponding to q= 120).

These results imply that it is essentially impossible to discriminate between
these models based on low-frequency information using sample sizes typically
encountered in empirical work. When using any one of these one parameter
low-frequency models for empirical work, either one must rely on extraneous
information to argue for the correct model choice or one must take these mod-
els seriously over a much wider frequency band. Neither of these two options is
particularly attractive for many applications, which raises the question whether
econometric techniques can be developed that remain valid for a wide range
of low-frequency models.

APPENDIX

A.1. Proof of Theorem 1

By standard calculations

kμW (r� s)= min(r� s)+ 1
3

− (r + s)+ 1
2
(r2 + s2)�(10)

kτW (r� s)= min(s� r)+
4∑
l=1

ς5−l(r)ςl(s)�

where ς1(r)= 1
15 − 11

10 r+2r2 − r3, ς2(r)= 3
5 r−3r2 +2r3, ς3(r)= r, and ς4(r)= 1.

Noting that for any real λ = 0, s > 0, and φ,∫ s

0
sin(λu+φ)udu

= (
sin(λs+φ)− λs cos(λs+φ)− sin(φ)

)
/λ2�∫ s

0
sin(λu+φ)u2 du

= (
2sλ sin(λs+φ)+ (2 − λ2s2) cos(λs+φ)− 2 cos(φ)

)
/λ3�∫ s

0
sin(λu+φ)u3 du

= (
3(λ2s2 − 2) sin(λs+φ)+ λs(6 − λ2s2) cos(λs+φ)
+ 6 sin(φ)

)
/λ4�

it is straightforward, but very tedious, to confirm that
∫ 1

0 k
i
W (r� s)ϕ

i
j(s)ds =

λijϕ
i
j(r) for j = 0�1� � � � when i= μ and for j = −1�0�1�2� � � � when i= τ.
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Note that {ϕμj }∞
j=0 is necessarily the complete set of eigenfunctions, since

the cosine expansion is a basis of L2[0�1]. For the detrended case, it is
not hard to see that the two functions ϕτ−1 and ϕτ0 are the only possible
eigenfunctions of kτW (r� s) that correspond to a zero eigenvalue. Further-
more, Nabeya and Tanaka (1988) showed that eigenfunctions of kernels of
the form (10) corresponding to nonzero eigenvalues, that is, functions f sat-
isfying

∫ 1
0 k

τ
W (r� s)f (s)ds = λf(r) with λ = 0, are the solutions of the second-

order differential equation f ′′(s)+λf(s)= ∑2
l=1 alς

′′
l (s) under some appropri-

ate boundary conditions. Since ς′′
1 and ς′′

2 are linear, we conclude that f is of the
form f (s)= c1 cos(

√
λs)+ c2 sin(

√
λs)+ c3 + c4s. It thus suffices to show that∫ 1

0 f (s)ϕ
τ
j (s)ds = 0 for j ≥ −1 implies cl = 0 for l = 1� � � � �4. As ϕτ−1(s) and

ϕτ0(s) span {1� s}, and ϕτj , j ≥ 1, are orthogonal to ϕτ−1 and ϕτ0, this is equivalent
to showing

∫ 1
0 f (s)ϕ

τ
j (s)ds = 0 for j ≥ 1 implies c0 = 0 in the parameterization

f (s)= c0 sin(ω(s− 1
2)+φ), ω> 0 and φ ∈ (−π�π). A calculations yields that∫ 1

0 f (s)ϕ
τ
1(s)ds = 0 and

∫ 1
0 f (s)ϕ

τ
2[ω/2π]−1(s)ds = 0 imply φ = 0 or c0 = 0, and

c0

∫ 1
0 sin(ω(s− 1

2))ϕ
τ
2[ω/2π](s)ds = 0 implies c0 = 0.

A.2. Continuity of Fractional Process at d = 1/2

From Table I and (2), for −1/2< d < 1/2 and s ≤ r,

kμFR(d)(r� s)= 1
2
[
s1+2d + r1+2d − (r − s)1+2d + 2rs

− s(1 − (1 − r)1+2d + r1+2d)

− r(1 − (1 − s)1+2d + s1+2d)
]

and for 1/2< d < 3/2,

kμFR(d)(r� s)= 1
4d(1 + 2d)

[−r1+2d(1 − s)

− s(s2d + (r − s)2d + (1 − r)2d − 1)

+ r(s1+2d + 1 − (1 − s)2d + (r − s)2d)

+ sr((1 − s)2d + (1 − r)2d − 2)
]
�

Now for 0< s < r� using that for any real a > 0, limx↓0(a
x−1)/x= lna, we find

lim
d↑1/2

kμFR(d)(r� s)

1/2 − d = −(1 − r)2s ln(1 − r)− r2(1 − s) ln r(11)

− r(1 − s)2 ln(1 − s)
+ (r − s)2 ln(r − s)+ (r − 1)s2 ln s
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and

lim
d↑1/2

kμFR(d)(r� r)

1/2 − d = 2(1 − r)r(−(1 − r) ln(1 − r)− r ln r)�(12)

Performing the same computation for limd↓1/2 k
μ
FR(d)(r� s)/(d − 1/2) yields the

desired result in the demeaned case. The detrended case follows from these
results and (3).

A.3. Data Appendix

Table A.I lists the series used in Section 4, the sample period, data frequency
transformation, and data source and notes.

TABLE A.I

DATA DESCRIPTION AND SOURCESa

Sample
Series Period F Tr Source and Notes

Real GDP 1952:1–2005:3 Q lnτ DRI: GDP157
Real GNP 1869–2004 A lnτ 1869–1928: Balke and Gordon (1989)

(long annual) 1929–2004: BEA (series are linked in 1929)
Inflation 1952:1–2005:3 Q levμ DRI: 400×ln(GDP272(t)/GDP272(t − 1))
Inflation 1870–2004 A levμ GNP deflator (PGNP):

(long annual) 1869–1928: Balke and Gordon (1989)
1929–2004: BEA (series are linked in 1929)
Inflation series is 100 × ln(PGNP(t)/PGNP(t − 1))

Productivity 1952:1–2005:2 Q lnτ DRI: LBOUT (output per hour, business sector)
Hours 1952:1–2005:2 Q lnτ DRI: LBMN(t)/P16(t) (employee hours/population)
10yr Tbond 1952:1–2005:3 Q levμ DRI: FYGT10
1yr Tbond 1952:1–2005:3 Q levμ DRI: FYGT1
3mth Tbill 1952:1–2005:2 Q levμ DRI: FYGM3
Bond rate 1900–2004 A levμ NBER: M13108 (1900–1946)

DRI: FYAAAI (1947–2004)
Real Tbill rate 1952:1–2005:2 Q levμ DRI: FYGM3(t)− 400 × ln(GDP273(t + 1)/

GDP273(t))
Real bond rate 1900–2004 A levμ R(t)− 100 × ln(PGNP(t)/PGNP(t − 1))

R(t) = bond rate (described above)
PGNP = GNP deflator (described above)

Dollar/pound 1791–2004 A lnμ 1791–1990: Lothian and Taylor (1996)
real ex. rate 1991–2004: FRB (nominal exchange rate)

BLS (U.S. PPI finished goods)
IFS (U.K. PPI manufactured goods)

Unit labor cost 1952:1–2005:2 Q lnμ DRI: LBLCP(t)/LBGDP(t)
Tbond spread 1952:1–2005:3 Q levμ DRI: FYGT10 − FYGT1
Real C-GDP 1952:1–2005:3 Q lnrμ DRI: GDP 158/GDP157

(Continues)
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TABLE A.I—Continued

Sample
Series Period F Tr Source and Notes

Real I-GDP 1952:1–005:3 Q lnrμ DRI: GDP 177/ GDP 157
Earnings/price 1880–2002 A lnrμ Campbell and Yogo (2006)

(SP500)
Div/price 1926–2004 A lnrμ Campbell and Yogo (2006)

(CRSP)
Abs.returns 1/3/1928– D lnrμ SP: SP500(t) is the closing price at date t. Absolute

(SP500) 1/22/2005 returns are | ln[SP500(t)/SP500(t − 1)]|
aNotes. The column labeled F shows the data frequency (A, annual; Q, quarterly; D, daily). The column labeled

Tr (transformation) show the transformation: demeaned levels (levμ), detrended levels (levτ), demeaned logarithms
(lnμ), and detrended logarithms (lnτ), and lnr denotes the logarithm of the indicated ratio. In the column labeled
Source and Notes, DRI denotes the DRI economics database (formerly Citibase) and NBER denotes the National
Bureau of Economic Research historical data base.
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