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1. Introduction

Competing estimators are typically evaluated by their bias and risk properties, such as their mean bias and mean-squared
error, or their median bias. Often estimators have no known small sample optimality. What is more, if the estimation problem
does not reduce to a Gaussian shift experiment even asymptotically, then in many cases, no optimality claims can be made
evenin large samples. For example, the analysis of the bias in the AR(1) model has spawned a very large literature (see, among
others, Hurvicz (1950), Marriott and Pope (1954), Kendall (1954), White (1961), Phillips (1977, 1978), Sawa (1978), Tanaka
(1983, 1984), Shaman and Stine (1988) and Yu (2012) ), with numerous suggestions of alternative estimators with less bias
(see, for instance, Quenouille (1956), Orcutt and Winokur (1969), Andrews (1993), Andrews and Chen (1994), Park and Fuller
(1995), MacKinnon and Smith (1998), Cheang and Reinsel (2000), Roy and Fuller (2001), Crump (2008), Phillips and Han
(2008), Han et al. (2011) and Phillips (2012)). With the exception of the conditional optimality of Crump’s (2008) median
unbiased estimator in a model with asymptotically negligible initial condition, none of these papers make an optimality
claim.

In this paper we consider parametric small sample problems, and seek estimators that come close to minimizing a
weighted average risk (WAR) criterion, under the constraint of having uniformly low bias. Our general framework allows for
a wide range of loss functions and bias constraints, such as mean or median unbiasedness. The basic approach is to finitely
discretize the bias constraint. For instance, one might impose zero or small bias only under m distinct parameter values.
Under this discretization, the derivation of a WAR minimizing unbiased estimator reduces to a Lagrangian problem with 2m
non-negative Lagrange multipliers. The Lagrangian can be written as an integral over the data, since both the objective and
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the constraints can be written as expectations. Thus, for given multipliers, the best estimator simply minimizes the integrand
for all realizations of the data, and so is usually straightforward to determine. Furthermore, it follows from standard duality
theory that the value of the Lagrangian, evaluated at arbitrary non-negative multipliers, provides a lower bound on the WAR
of any estimator that satisfies the constraints. This lower bound holds a fortiori in the non-discretized version of the problem,
since the discretization amounts to a relaxation of the uniform unbiasedness constraint.

We use numerical techniques to obtain approximately optimal Lagrange multipliers, and use them for two conceptually
distinct purposes. On the one hand, close to optimal Lagrange multipliers imply a large, and thus particularly informative
lower bound on the WAR of any nearly unbiased estimator. On the other hand, close to optimal Lagrange multipliers yield
an estimator that is nearly unbiased in the discrete problem. Thus, with a fine enough discretization and some smoothness
of the problem, this estimator also has uniformly small bias. Combining these two usages then allows us to conclude that
we have in fact identified a nearly WAR minimizing estimator among all estimators that have uniformly small bias.

These elements - discretization of the original problem, analytical lower bound on risk, numerical approximation - are
analogous to Elliott et al.’s (2015) approach to the determination of nearly weighted average power maximizing tests in the
presence of nuisance parameters. Our contribution here is the transfer of the same ideas to estimation problems. We do not
consider the construction of corresponding confidence intervals, but focus exclusively on the point estimation problem.

There are two noteworthy special cases that have no counterpart in hypothesis testing. First, under squared loss and
a mean bias constraint, the Lagrangian minimizing estimator is linear in the Lagrange multipliers. WAR then becomes a
positive definite quadratic form in the multipliers, and the constraints are a linear function of the multipliers. The numerical
determination of the multipliers thus reduces to a positive definite quadratic programming problem, which is readily solved
even for large m by well-known and widely implemented algorithms.'

Second, under a median unbiasedness constraint and in absence of any nuisance parameters, it is usually straightforward
to numerically determine an exactly median unbiased estimator by inverting the median function of a suitable statistic,
even in a non-standard problem. This approach was prominently applied in econometrics in Stock (1991), Andrews (1993)
and Stock and Watson (1998), for instance. However, the median inversion of different statistics typically yields different
median unbiased estimators. Our approach here can be used to determine the right statistic to invert under a given WAR
criterion: Median inverting a nearly WAR minimizing nearly median unbiased estimator typically yields an exactly median
unbiased nearly WAR minimizing estimator, as the median function of the nearly median unbiased estimator is close to the
identity function.

In addition to the estimation of the AR(1) coefficient, we apply our general approach to two other small sample time series
estimation problems. The first is the estimation of the degree of time variation in a Gaussian local-level model. After taking
first differences, this becomes the problem of estimating the coefficient in a Gaussian MA(1). When the true MA(1) coefficient
is close to being non-invertible, the maximum likelihood estimator suffers from the so-called pile-up problem, that is the
coefficient is estimated to be exactly unity with positive probability. Stock and Watson (1998) derive an exactly median
unbiased estimator by median inverting the Nyblom (1989) statistic. We derive an alternative, nearly WAR minimizing
median unbiased estimator under absolute value loss and find it to have very substantially lower risk unless the degree of
time variation is very small.

The second additional problem concerns forecasts from a stationary Gaussian AR(1) model. We use our framework to
determine nearly quantile unbiased forecasts, that is, in repeated applications of the forecast rule for the o quantile, the
future value realizes to be smaller than the forecast with probability «, under all parameter values. See Phillips (1979), Stock
(1996), Kemp (1999), Gospodinov (2002), Elliott (2006) and Miiller and Watson (2016) for related studies.

After imposing appropriate invariance constraints, the parameter space in our examples is always one dimensional. Our
general approach successfully determines an exactly or very nearly unbiased small sample estimator uniformly over this
scalar parameter, with a WAR that is within 1% of the lower bound. We provide corresponding Matlab code in the replication
files for sample sizes as small as T = 5 and as large as T = 400. For a given sample size, the computation of the Lagrange
multipliers takes seconds (for the nearly mean unbiased estimator) or a few minutes (for the nearly median or quantile
unbiased estimators) on a modern computer, suggesting that it might be possible to apply the technique also to, say, a two
dimensional problem.

The risk profile of our new estimators is comparable or more attractive than previously suggested, often biased
estimators. Doss and Sethuraman (1989) show that if no mean unbiased estimator exists, then the variance of a nearly mean
unbiased estimators is necessarily large. Our results thus suggest that an exactly mean unbiased estimator of the coefficient
in a Gaussian AR(1) exists. It would be interesting to corroborate this conjecture. At the same time, we view it as a strength
of our generic computational approach that it does not require the ingenious derivation of a (nearly) unbiased estimator.

An unbiasedness constraint may be motivated in a variety of ways. A first motivation may simply stem from the definition
of unbiasedness. For example, the average of individual unbiased AR(1) estimators in a panel with many independent
individuals but a common value of the autoregressive coefficients takes on values close to the true parameter with high
probability by the law of large numbers. Also, regulatory or other institutional constraints might make it desirable that, in
repeated quantile forecasts, the realized value takes on values smaller than the forecast 100a% of the time.

1 In this special case, and with a weighting function that puts all mass at one parameter value, the Lagrangian bound on WAR reduces to a Barankin
(1946)-type bound on the MSE of an unbiased or biased estimator, as discussed by McAulay and Hofstetter (1971), Glave (1972) and Albuquerque (1973).

2 Arecent example of an ingenious construction is Andrews and Armstrong (2017), who derive a mean unbiased estimator for the structural parameter
under potentially weak instruments.



20 U.K. Miiller and Y. Wang / Journal of Econometrics 209 (2019) 18-34

A second potential motivation relies on unbiasedness as a device to discipline estimators. As is well known, minimizing
weighted risk without any side constraint leads to the Bayes estimator that, for each data draw, minimizes posterior expected
loss, with a prior proportional to the weight function. The weight function then has an enormous influence on the resulting
estimator; for example, a degenerate weight with all mass on one parameter value leads to an estimator that entirely ignores
the data. In contrast, imposing unbiasedness limits the influence of the weight function on the resulting estimator. For
instance, in the Gaussian shift experiment, imposing mean unbiasedness yields the MLE as the unique non-randomized
estimator, so the MLE is weighted risk minimizing among all unbiased estimators, for any weight function. Correspondingly,
in our applications, we find that the weight function plays a very limited role, with the risk of the nearly unbiased risk
minimizing estimator with all weight on one parameter value only slightly below the risk of the nearly unbiased estimator
under a more diffuse weighting function.

Finally, one may simply point to the long tradition of evaluating competing estimators by their bias. For instance, the large
literature on the estimation of the AR(1) parameter, as partially reviewed above, focuses heavily on the mean or median bias.
Under this “revealed preference” it makes sense to take a systematic approach to the derivation of estimators that perform
nearly optimally under this criterion.

The remainder of the paper is organized as follows. Section 2 sets up the generic problem, derives the lower bound on
WAR, and discusses the numerical implementation. Section 3 considers the two special cases of mean unbiased estimation
under squared loss, and of median unbiased estimation without nuisance parameters. Section 4 extends the framework to
invariant estimators. Throughout Sections 2-4, we use the small sample problem of estimating the coefficient in a Gaussian
AR(1) as our running example. In Section 5, we consider the two additional problems of median unbiased estimation of the
degree of time variation in a local-level model, and the quantile AR(1) forecast problem. Section 6 briefly investigates the
performance of the new estimators in misspecified models with non-Gaussian innovations. Section 7 concludes.

2. Estimation, bias and risk
2.1. Set-up and notation

We observe the random element X in the sample space X. The density of X relative to some o -finite measure v is fj,
where 8 € © is the parameter space. We are interested in estimating n = h(6) € H with estimators § : X +> H. For scalar
estimation problems, H C R, but our set-up allows for more general estimands. Estimation errors lead to losses as measured
by the function £ : H x ® — [0, o0) so that £(8(x), 0) is the loss incurred by the estimate §(x) if the true parameter is 6. The
risk of the estimator § is given by its expected loss, (8, 6) = Eo[£(5(X), 08)] = f L(8(x), 0)fo(x)dv(x).

Beyond the estimator’s risk, we are also concerned about its bias. For some functionc : H x ® — H, the bias of § is
defined as b(8, 6) = Ey[c(8(X), 8)]. For instance, for the mean bias, c(n, 8) = n — h(6), so that b(8, 6) = E¢[5(X)] — h(), and
for the median bias of a scalar parameter of interest n, c(n, ) = 1[n > h(0)] — % so that b(§, 8) = Py[§(X) > h(0)] — %

We are interested in deriving estimators § that minimize risk subject to an unbiasedness constraint. In many problems
of interest, a uniformly risk minimizing § might not exist, even under the bias constraint. To make further progress, we thus
measure the quality of estimators by their weighted average risk R(3, F) = f (8, 0)dF(0) for some given non-negative finite
measure F with support in ©.

In this notation, the weighted risk minimal unbiased estimator §* solves the program

mﬁinR((S, F) st (1)

b(8,0)=0V0 € . (2)

More generally, one might also be interested in deriving estimators that are only approximately unbiased, that is solutions
to (1) subject to

—e<b8,0)<eV9e® (3)

for some ¢ > 0. Allowing the bounds on b(§, 8) to depend on 6 does not yield greater generality, as they can be subsumed
in the definition of the function c. For instance, a restriction on the relative mean bias to be no more than 5% is achieved by
setting c(n, 6) = (n — h(0))/h(6) and ¢ = 0.05.

An estimator is called risk unbiased if Eq,[£(8(X), 60)] < Eg, [£(8(X), 8)] for any 6p,6 € ©. As discussed in Chapter 3
of Lehmann and Casella (1998), risk unbiasedness is a potentially attractive property as it ensures that under 6y, the estimate
8(x) is at least as close to the true value 6, in expectation as measured by £ as it is to any other value of 0. It is straightforward
to show that under squared loss £(8(x), 8) = (8(x) — h(#))? a risk unbiased estimator is necessarily mean unbiased, and
under absolute value loss ¢(5(x), 8) = |5(x) — h(0)], it is necessarily median unbiased. From this perspective, squared loss
and mean unbiased constraints, and absolute value loss and median unbiased constraints, form natural pairs, and we report
results for these pairings in our examples. The following development, however, does not depend on any assumptions about
the relationship between loss function and bias constraint, and other pairings of loss function and constraints might be more
attractive in specific applications.

In many examples, the risk of good estimators is far from constant, as the information in X about h(6) varies with 6. This
makes risk comparisons and the weighting function F more difficult to interpret. Similarly, also the mean bias of an estimator
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is naturally gauged relative to its sampling variability. To address this issue, we introduce a normalization function n(6) that
roughly corresponds to the root mean squared error of a good estimator at 6. The normalized risk r,(8, ) is then given by
m(8,0) = Eg[(8(X) — 0)21/n(6)? and ry(8, 6) = E»[|8(X) — h(0)|]/n(#) under squared and absolute value loss, respectively,
and the normalized mean bias is b, (8, 8) = (Eo[8(X)] — h(6))/n(0). The weighted average normalized risk with weighting
function F,, f r.(8, 6)dF,(8), then reduces to R(8, F) above with dF(68) = dF,(8)/n(6)? and dF(0) = dF,(0)/n(#)in the squared
loss and absolute value loss case, respectively, and b,(8, 6) = b(8, 8) with c(n, 8) = (n — h(#))/n(6). The median bias, of
course, is readily interpretable without any normalization.

Running example: Consider a Gaussian autoregressive process of order 1, Y; = 0Y;_{ +¢&,t =1,...,T,withYy = 0 and
g ~ i.i.d.N(0, o). We assume for now that the variance of the innovations &, is known and equal to unity (we relax this in
Section 4). With X = (Y, ..., Yr), the density is then given by

folx —EXD[—*Z —0yi—1)’]. (4)

The aim is to estimate 6 in a way that (nearly) minimizes weighted risk under a mean or median bias constraint. We set the
parameter space equal to ® = [—0.95, 1]. The lower bound of —0.95 avoids complications that arise for roots very close to
minus one, which have very little empirical relevance. We rule out explosive roots to ensure comparability to the stationary
model below. While ® is compact, estimators may take arbitrary valuesin H = R.

The usual OLS estimator for 6 (which is also equal to the MLE) is §o;s(x) = Z[ 1YeYe— 1/Zt 1 y[ 1 For 6 not too close to

one and T large, 8ors(X) ~ ~ N(6, (1 — 62)/T). We thus use the normalization function n(6) = /(1 — 62)/T + 862/T2. The

additional term 802 /T? ensures that n(#) > 0 also for & = 1, and with this choice, the normalized mean squared error of
good estimators turns out to be roughly equal to unity. a

2.2. A lower bound on weighted risk of unbiased estimators

In general, it will be difficult to analytically solve (1) subject to (3). Both X and H are typically uncountable, so we are
faced with an optimization problem in a function space. Moreover, it is usually difficult to obtain analytical closed-form
expressions for the integrals defining r(§, 8) and b(8, 6), so one must rely on approximation techniques, such as Monte Carlo
simulation. For these reasons, it seems natural to resort to numerical techniques to obtain an approximate solution.

There are potentially many ways of approaching this numerical problem. For instance, one might posit some sieve-type
space for §, and numerically determine the (now finite-dimensional) parameter that provides the relatively best approximate
solution. But to make this operational, one must choose some dimension of the sieve space, and it is unclear how much better
of a solution one might have been able to find in a different or more highly-dimensional sieve space.

It would therefore be useful to have a lower bound on the weighted risk R(3, F) that holds for all estimators § that satisfy
(3). If an approximate solution § is found that also satisfies (3) and whose weighted risk R(§, F) is close to the bound, then
we know that we have found the nearly best solution overall.

To derive such a bound, we relax the constraint (3) by replacing it by a finite number of constraints: LetG;,i=1,..., m
be probability distributions on @, and define the weighted average bias B(3, G) of the estimator § as B(8, G) = f b(é, G)dG(Q)
Then any estimator that satisfies the uniform unbiasedness constraint (3) clearly also satisfies

—& <B(5,Gj) <gforalli=1,...,m. (5)

A special case of (5) has G; equal to a point mass at 6;, so that (5) amounts to imposing (3) at the finite number of parameter
values 04, ..., 6. In some problems, it is computationally more attractive to rely on non-degenerate G;. In that case, (5)
only imposes that all G;-weighted averages of the bias are close to zero, so negative and positive biases might cancel in each
average.

Now consider the Lagrangian for the problem (1) subject to (5),

L(8, ) = R(8, F)+ Y M(B(8,G)— &)+ ) _ M(—B(5,G) — ¢) (6)

i=1 i=1

where A = (A1,...,Ap)and A; = (kﬂ, Al). By writing R(8, F) and B(3, G;) in terms of their defining integrals and by assuming
that we can change the order of integration, we obtain

f(/fe 0)dF(0 +Zx ([ e, 06(0) ) )

+Zk /fg 0)dGi(6) — )) dv(x).

Let §, be the estimator such that for a given A, (Sx(x) minimizes the integrand on the right hand side of (7) for each x. Since
minimizing the integrand at each point is sufficient to minimize the integral, §, necessarily minimizes L over .
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This argument requires that the change of the order of integration in (7) is justified. By Fubini’s Theorem, this is always
the case for R(8, F) (since ¢ is non-negative), and also for B(§, G;) if ¢ is bounded (as is always the case for the median bias, and
for the mean bias if H is bounded). Under squared loss and mean bias constraints, and unbounded H, it suffices that there
exists some estimator with uniformly bounded mean squared error (MSE). A sufficient condition is a compact parameter
space ®.

Standard Duality Theory for optimization implies the following lemma.

Lemma 1. Suppose 8 satisfies (5), and for arbitrary A > 0 (that is, each element in A is non-negative), 8, minimizes L(8, 1) over
8. Then R(8, F) > L(8y, A).

Proof. For any 8, L(8, A) > L(8;, A) by definition of §;, so in particular, (5, ») > L(§;, A). Furthermore, R(8, F) > L(5, 1) since
A > 0and § satisfies (5). Combining these inequalities yields the result. ®

Note that the bound on R(8, F) in Lemma 1 does not require an exact solution to the discretized problem (1) subject to
(5). Any A > 0 implies a valid bound L(§;, 1), although some choices for A yield better (i.e., larger) bounds than others. Since
(5) is implied by (3), these bounds hold a fortiori for any estimator satisfying the uniform unbiasedness constraint (3).

If A* > 0 is such that §,» satisfies (5) and the complementarity slackness conditions A{*(B(8, G;) — ¢) = 0 and
Af*(—B((S, Gi) — ¢) = 0 hold, then (6) implies L(8+, A*) = R(8y+, F), so that by an application of Lemma 1, L(8;x, A*) is
the best lower bound.

2.3. Numerical approach

Solving the program (1) subject to (5) thus yields the largest, and thus most informative bound on weighted risk R(§, F).
In addition, solutions §;+ to this program also plausibly satisfy a slightly more relaxed version of original non-discretized
constraint (3). The reasoning is as follows. Suppose the bias function b(§,+, 8) of §,+ is smooth in 6. If the G; are equal to
points masses on 6; that form a fine discretization of @, then low bias in the discretized problem B(8+, G;) = b(8,+, 6;) for
i=1,..., mnecessarily implies that |b(3;+, 6)| is small uniformly in 6 € ®. The same applies for G; that are non-degenerate
but with supports equal to (potentially overlapping) small neighborhoods of 6;, as the degree of cancellation in the averages
B(8,x, G;) = f b(8;+, 0)dG;(0) cannot be large if b(8,+, 0) is smooth. Of course, b(3;+, 8) might not be smooth, but this can be
checked numerically.

These considerations suggest the following strategy to obtain a nearly weighted risk minimizing nearly unbiased estimator,
that is, for given eg > 0 and e > 0, an estimator ¢ that (i) satisfies (3) with ¢ = gg; (ii) has weighted risk R(, F) <
(14 eg)R(8, F) for any estimator § satisfying (3) with ¢ = ¢3.

1. Discretize ® by point masses or other distributions G;, i=1,...,m
2. Obtain approximately optimal Lagrange multipliers AT for the problem (1) subject to (5) for ¢ = &5, and associated
value R = L(8;+, AT).
3. Obtain an approximate solution (é*, §*) to the problem
min eg s.t. R(6, F) < (1+ &g)R (8)

EBZO,(S
and —eg < B(8,G;)<egi=1,...,m (9)

and check whether §* satisfies the uniform unbiasedness constraint (3). If it does not, go back to Step 1and use a larger
m or more concentrated distributions G;. If it does, § = §* has the desired properties by an application of Lemma 1.

Importantly, neither 83 nor §* have to be exact solutions to their respective programs to be able to conclude that 5% is
indeed a nearly weighted risk minimizing nearly unbiased estimator as defined above, that is, it satisfies the uniform near
unbiasedness property (3) (and not only the discretized unbiasedness property (5)), and its WAR is no more than a multiple
(1 4 eg) larger than the WAR of any such estimator.

The solution §* to the problem in Step 3 has the same form as §;, that is §* minimizes a weighted average of the integrand
in (7), but A now is the ratio of the Lagrange multipliers corresponding to the constraints (9) and the Lagrange multiplier
corresponding to the constraint (8). These constraints are always feasible, since § = §3; satisfies (9) witheg = g (atleast if At
is the exact solution), and R(8;+, F) = R < (14 &g)R. The additional slack provided by & is used to tighten the constraints on
B(3*, G;) to potentially obtain a 5 satisfying (3). A finer discretization implies additional constraints in (5) and thus (weakly)
increases the value of R. At the same time, a finer discretization also adds additional constraints on the bias function of 5%,
making it more plausible that it satisfies the uniform constraint (3).

We suggest using simple fixed point iterations to obtain approximate solutions in Steps 2 and 3, similar to Elliott, Miiller
and Watson’s (2015) approach to numerically approximate a least favorable distribution. See Appendix B for details. Once
the Lagrange multipliers underlying §* are determined, 3*(x) for given data x is simply the minimizer of the integrand on the
right hand side of (7).
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Fig. 1. Normalized mean bias and MSE in AR(1) with known mean and variance.

3. Two special cases
3.1. Mean unbiased estimation under squared loss

Consider the special case of squared loss £(, ) = (n — h(8))? and normalized mean bias constraint c(, ) = (n —
h(#))/n(6) (we focus on a scalar estimand for expositional ease, but the following discussion straightforwardly extends to
vector valued n). Then the integrand in (7) becomes a quadratic function of §(x), and the minimizing value §, (x) is

JF(ORO)dF(©) — S, & [ 28 dGi(6)
[ fo(x)dF(6)

a linear function of A; = %()L}‘ - Aﬁ). Plugging this back into the objective and constraints yields

JE8dGi(0) [ L28dG(0)

(x) =

) (10)

— 2V OX . n(g)
R(8:,F) = M QX + wg, 25 = / T ,00dF(®) (x),
- JERdG(6) [ fo(0n(O)F®) [ fy(x)
8(8)»» GI) = wj — Qi)‘-v Wi = /. ( ffg(X)dF(@) — Tg)h(e)dcl(e) dV(X)
where
_ o - LR
W = / (/ h(6)"fo(x)dF(0) 0 dv(x),

and £2; is the ith column of the m x m matrix §2. Note that §2 is symmetric and positive semi-definite. In fact, §2 is
positive definite as long as f %dcf(e) cannot be written as a linear combination off %de(O),]’ # i almost surely. Thus,
minimizing R(3, F) subject to (5) becomes a (semi)-definite quadratic programming problem, which is readily solved by
well-known algorithms. In the special case of ¢ = 0, the solution is A* = 2 'w, where w = (w1, ..., w,). Step 3 of the
algorithm generally becomes a quadratically constrained quadratic program, but since e is scalar, it can easily be solved by
conditioning on eg, with a line search as outer-loop.

Either way, it is computationally trivial to implement the strategy described in Section 2.3 under mean square risk and a
mean bias constraint, even for a very fine discretization m.

Running example: We set F,, uniform on ® = [—0.95, 1] and G; equal to point masses at the 103 points {—0.95, 1.0} U
{tanh(—1.83 + 5.03i/ 100)}100 This choice of grid is finer for values of || close to one, where standard estimators exhibit
larger normalized bias. We set eg = 0.005 and g = 0.01, and focus in the main text on results for T = 50. The replication files
contain tables for {1; }103 that determine nearly unbiased WAR minimizing estimators with these choices forall T € T = {5,
6,7,8,9, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300,
320, 340, 360, 380, 400}. The remaining bias in §* is very small: with the normalized mean sguared error of 8* close to one,
eg = 0.005 implies that about 40,000 Monte Carlo draws are necessary for the largest bias of 6* to be of the same magnitude
as the Monte Carlo standard error of its estimate.

Fig. 1 plots the normalized bias and risk of 6* for T = 50. As a point of reference, we also report the normalized bias and risk
of the OLS estimator §¢;s, and of the WAR minimizing estimator without any constraints. By construction, the unconstrained
WAR minimizing estimator (which equals the posterior mean of & under a prior proportional to F) has the smallest possible
average normalized risk on & € ©. As can be seen from Fig. 1, however, this comes at the cost of a substantive mean bias.
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Fig. 2. Median bias and normalized MAD in AR(1) with known mean and variance.

The thick line plots a lower bound on the risk envelope for nearly unbiased estimators: For each 6, we set the weighting
function equal to a point mass at that 6, and then report the lower bound on risk at & among all estimators whose G; averaged
normalized bias is no larger than eg = 0.005 in absolute value for all i (that is, for each 6, we perform Step 2 of the algorithm
in Section 2.3, with F equal to a point mass at 8). The risk of §* is seen to be approximately 10% larger than this lower bound
on the envelope. This implies that our choice of a uniform normalized weighting function F,, on 6 € ® has a fairly limited
influence: no other weighting function can lead to a nearly unbiased estimator with substantially less risk, for any 6. In fact,

to the extent that 10% is considered small, one could call §* approximately uniformly minimum variance unbiased. a
3.2. Median unbiased estimation without nuisance parameters

Suppose h(6) = 6, that is there are no nuisance parameters, and ® C R. Let §z be an estimator taking on values in R,
and let m,(0) be its median function, Py(8p(X) < ms,(6)) = 1/2forall @ € ©.1f ms,(6) is one-to-one on & with inverse
m’1 : R — O, then the estimator §y(X) = mg1(83( )) is exactly median unbiased by construction (cf. Lehmann (1986),
p. 23) In general, different estimators &3 yield different median unbiased estimators my, 1(85(X)), which raises the question
how &g should be chosen for §; to have low risk.

Running example: Stock (1991) and Andrews (1993) construct median unbiased estimators for the largest autoregressive
root based on the OLS estimator. Their results allow for the possibility that there exists another median unbiased estimator
with much smaller risk. a )

_ Agood candidate for &g is a nearly weighted risk minimizing nearly median unbiased estimator 4. A small median bias of
4 typically also yields monotonicity of my, so if Py(8;; = 6) < 1/2 at the boundary points of ® (if there are any), then m;

has an inverse mg‘l, and Su(x) = m;l(é(x)) is exactly median unbiased. Furthermore, if §is already nearly median unbiased,
then ms‘1 : R — O is close to the identity transformation, so that R(SU, F)is close to the nearly minimal risk R(S, F).

This suggests the following modified strategy to numerically identify an exactly median unbiased estimator 5u whose
weighted risk R(8y, F) is within (1 + &g) of the risk of any other exactly median unbiased estimator.

1. Discretize @ by the distributions G;,i = 1,

2. Obtain approximately optimal Lagrange multlpllers At for the problem (1) subject to (5) for ¢ = 0, and associated
value R = L(83;, A1). Choose G; and AT to ensure that Py(8 5+ = 6) < 1/2 for any boundary points of ®. If m, N still
does not have an inverse, go back to Step 1 and use a finer dlscretlzatlon A

3. Compute R(zST , F) for the exactly median unbiased estimator SU(X) ms. 1T (85+(X)). IfR(BL, F) > (1+ &g)R, go back to

Step 1 and use a finer discretization. Otherwise, Su = (SU has the desired properties.

Running example: As discussed in Section 2.1, we combine the median unbiased constraint on § € ® = [—0.95, 1]
with absolute value loss. We make largely similar choices as in the derivation of nearly mean unbiased estimators: the
normalized weighting function F, is uniform on @&, with risk now normalized as r,(8,0) = Eo[|6(X)— 6]]1/n(0) with

ne) = \/(1 — 62)/T + 8602 /T2, as before. Under a median bias constraint and absolute value loss, using point masses for
G; leads to a discontinuous integrand in the Lagrangian (7) for given x . In order to ensure a smooth estimator §;, it makes
sense to instead choose the distributions G; in a way that any mixture of the G;'s has a continuous density. To this end we
set the Lebesgue density of G;,i = 1, ..., m proportional to the ith third-order basis spline, with the knots on the 53 points
{—0.95, 1.0} U {tanh(—1.83 + 5.03i/50) ?ﬁo (with “not-a-knot” end conditions).

We again focus on T = 50, with results for other T € T relegated to the replication files. Fig. 2 reports the median bias
and normalized mean absolute deviation (MAD) of 85, the OLS-based median unbiased estimator &y ors(x) = mgolLs(SOLg(x)),
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and the estimator that minimizes weighted risk relative to F without any median unbiased constraints. The risk of &, is
indistinguishable from the risk of 6y ors. Consequently, this analysis reveals dy ;s to be (also) nearly weighted risk minimal
unbiased in this problem. The thick line again plots the envelope for the normalized risk among all exactly median unbiased
estimators, which is seen to be roughly 10% below the risk of 8 and §y.os- A

4. Invariance

In this section, we consider estimation problems that have some natural invariance (or equivariance) structure, so that it
makes sense to impose the corresponding invariance also on estimators. We show that the problem of identifying a (nearly)
minimal risk unbiased invariant estimator becomes equivalent to the problem of identifying an unrestricted (nearly) minimal
risk unbiased estimator in a related problem with a sample and parameter space generated by maximal invariants. Imposing
invariance then reduces the dimension of the effective parameter space, which facilitates numerical solutions.

Consider a group of transformations on the sample space g : X x A — X, where a € A denotes a group action. We write
a, o a; € A for the composite action g(g(x, a;), a;) = g(x, a o a;) for all a;, a; € A, and we denote the inverse of action a by
a ,thatisg(x,a” oa) =xforalla e Aand x € X.

Now suppose the problem is invariant in the sense that there exists a corresponding group g : ® x A — © on the
parameter space, and the distribution of g(X, a) under X ~ Py is P q), for all 0 and a € A (cf. Definition 2.1 of Chapter 3
in Lehmann and Casella (1998)). Let M(x) and M(#) for M : X — X and M : ® — © be maximal invariants of these two
groups. Assume that M and M select a specific point on the orbit induced by g and g, that is M(x) = g(x, O(x)~) forallx € x
and M(0) = g(0,0(9)") for all & € © for some functions O : X > Aand O : ® — A (as discussed on page 216-217
in Lehmann and Romano (2005)). Then by definition of a maximal invariant, M(M(x)) = M(x), M(M(0)) = M(#), and we
have the decomposition

x = g(M(x), 0(x)) (11)
6 = g(M(9), 0(0)). (12)

We further assume that group actions a are distinct in the sense that g(M(x), a;) = g(M(x), a;) for some x € X implies
a; = ayp. _

By Theorem 6.3.2 of Lehmann and Romano (2005), the distribution of M(X) only depends on M(8). The following lemma
provides a slight generalization, which we require below. The proof is in Appendix A.

Lemma 2. The distribution of (M(X), (6, O(X)~)) under 6 is the same as the distribution of (M(X), g(M(6), O(X)™)) under M(9).

Suppose further that the estimand h(6) is compatible with the invariance structure in the sense that h(6;) = h(6,) implies
h(g(61, a)) = h(g(0,, a)) for all 61, 6, € ® and a € A. As discussed in Chapter 3 of Lehmann and Casella (1998), this induces
agroup g : H x A — H satisfying h(g(0, a)) = g(h(0), a) forall® € ® and a € A, and it is natural for the loss function and
constraints to correspondingly satisfy

Un,0) = £(&(n,a),gd,a)foralln e H,0 € ®anda € A (13)
c(n,8) = c(&(n,a),g®,a)foralln € H,0 € ® and a € A. (14)

Any loss function (7, 8) that depends on 6 only through the parameter of interest, £(5, 8) = £(, h(#)) for some function
£ H x © — [0, 0o), such as quadratic loss or absolute value loss, automatically satisfies (13). Similarly, constraints of the
form c(n, ) = ci(n, h(8)), such as those arising from mean or median unbiased constraints, satisfy (14).

With these notions of invariance in place, it makes sense to impose that estimators conform to this structure and satisfy

8(g(x, a)) = g(8(x), a)forallx € X and a € A. (15)
Eqs. (11) and (15) imply that any invariant estimator satisfies
8(x) = g(8(M(x)), O(x)) for all x € X. (16)

It is useful to think about the right-hand side of (16) as inducing the invariance property: Any function §, : M(X) — H
defines an invariant estimator §(x) via §(x) = g(8,(M(x)), O(x)). Given that any invariant estimator satisfies (16), the set of
all invariant estimators can therefore be generated by considering all (unconstrained) 8,, and setting §(x) = g(8.(M(x)), O(x)).

Running example: Consider estimation of the AR(1) coefficient in a stationary model with unknown mean and variance:
Y, =+ U up = pue_q + &, & ~ ii.d. N(0,02)and ug ~ N(0, 02/(1 — p?)). With X = (Y, ..., Yr), the distribution
of X is indexed by 6 = (p, u, o), and the parameter of interest is o = h(6). The problem is invariant to transformations
g(x,a) = a,(x 4+ a,)witha = (a,, a,) € A= R x (0, 0o), and corresponding group g((p, 1, o), a) = (p, as(n + a,), a, o).
One ehoice for maximal invariants are M(x) = g(x,0(x)”) where O(x)~ = (—yl, l/sy) and 5}2, = ZtT e — y1)%,
and M((p, u,0)) = gl(p, 1, o), (— 1) = (p, 0, 1). Lemma 2 asserts that M(X) = (Y; — Yq,..., Yy — Y1)/sy and
g(0,0(X)7) = (p, (0 — Y1)/sy, a/sy) have a joint distribution that only depends on 6 through p. The mduced group g is
given by g(p,a) = p for all @ € A. Under (13), the loss must not depend on the location and scale parameters p and
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o. Invariant estimators § are numerically invariant to scale and translation shifts of X, and can all be written in the form

A

8(x) = g(84(M(x)), O(x)) = 84((Y1 — Y1, ..., Yr — Y1)/s,) for some function 6,. 4
Now under these assumptions, we can write the risk of any invariant estimator as
r(8,0) = Ep[£(8(X), 0)]
= Ep[¢ (8(M(X)), g6, 0(X)7))]  (by(11)and (13)witha = 0(X)")
= Eyg)l¢ (8(M(X)), g(M(0), 0(X)~ )] (by Lemma 2)
= Ejto)Eqao) £ (SIM(X)), (M(6), O(X) 7)) IM(X)]]
and similarly
b(8,6) = Eglc((X), 0)] .
= Eyyo oy lc (8(M(X)), E(M(6), O(X)7)) IM(X)]].
Now set 0* = M(9) € ©@* = M(®), h(6*) = n* € H* = h(©*), x* = M(x) € A* = M(X)and
E(8(x"), 0%) = Eg«[£ (8(X*), §(6%, 0(X)7)) IX* =x"] (17)
c*(8(x*), 6%) = Ep«[c (8(X*), &(6%, O(X)7)) IX* = x*]. (18)

Then the starred problem has exactly the same structure as the problem considered in Sections 2 and 3, and the same solution
techniques can be applied to identify a nearly weighted average risk minimal estimator §* : x* +— H* (with the weighting
function a nonnegative measure on @*). This solution is then extended to the domain of the original sample space X via
8( )= g(8*( (x)), O(x)) from (16), and the near optimality of 5 implies the corresponding near optimality of § in the class
of all invariant estimators.

Running example: Since p = h(#), and g(0, a) does not affect h(0), £(6(X*), g(6*, 0(X)™)) = £(5(X*),6*) and
c(8(X™), g(8*, 0O(X)™)) = c(8(X*), 6*). Thus the starred problem amounts to estimating p from the observation X* = M(X) =
(Y1 = Yq, ..., Yr — Y1)/s, (whose distribution does not depend on (u, 0)). Let X(p) be the T x T covariance matrix of a
stationary AR(1) with coefficient p and unit innovation variance, and let e be a T x 1 vector of ones. Then by King (1980)
and Kariya (1980),

(
(

(Z(p) " = S(p)"e(e T(p) ') e T(p) ) "
1

forx*) = C (19)
Vdet(e' Z(p)~e)det X(p)
T+p o s 1) ~(T=1)/2
=C |z (X' Z(p)'%") (20)
T(1—-p)+2p
where C is a constant that does not depend on p or x*, and ¥* = (&%, ..., X}) are the GLS residuals of a regression of x* on

e with X(p)~! as the GLS weighting matrix (see the Appendix for an explicit expression). Note that fy«(x*) is well defined
even at p = 1(cf. Elliott (1998)).
The algorithms discussed in Section 3 can now be applied to determine nearly WAR minimizing invariant unbiased esti-

mators in the problem of observing X* with density (19). We set ® = [—0.95, 1], n(6*) = \/(l — 02)/T +8(p + 0.4)2/T?,
and make the same choices for 3, €, F, and G; as in the problem with known mean and variance. We compute nearly WAR
minimizing unbiased estimators for all T € T; see the replication files.

Figs. 3 and 4 show the normalized bias and risk of the resulting nearly weighted risk minimizing unbiased invariant
estimators for T = 50. We also plot the performance of the analogous set of comparisons as in Figs. 1 and 2. The mean
and median bias of the OLS estimator is now even larger, and the (nearly) unbiased estimators have substantially lower
normalized risk. The nearly WAR minimizing mean unbiased estimator § still has risk only about 10% above the (lower
bound) on the envelope. In contrast to the case considered in Fig. 2, the WAR minimizing median unbiased estimator now
has perceptibly lower risk than the OLS based median unbiased estimator for | p| large, but the gains are still fairly moderate.

Fig. 5 compares the performance of the nearly mean unbiased estimator with some previously suggested alterna-
tive estimators: The analytically bias corrected estimator by Orcutt and Winokur (1969) (T8grs(x) + 1)/(T — 3), the
weighted symmetric estimator analyzed by Pantula et al. (1994) and Park and Fuller (1995), and the MLE 8y e(x*) =
arg max,e—o.95,11fo=(x*) based on the maximal invariant likelihood (19) (called “restricted” MLE by Cheang and Reinsel

(2000)). In contrast to 8*, all of these previously suggested estimators have substantial biases for some values of p. a

5. Further applications
5.1. Degree of parameter time variation

Consider the canonical local-level model in the sense of Harvey (1989),
t

Ve= ¢ Y et (e ) ~ LLAN(O, 0°L) (21)
s=1
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with only y, observed, t = 1,...,T and parameters (¢, i, c%). The parameter of interest is ¢ > 0, the degree of

time variation of the “local level” u + ¢ ZE:] &s. As discussed by Stock (1994), (21) is intimately linked to the MA(1)
model Ay, = ¢& + Auy = v — nue_q, where n = (2 + ¢* — ¢p/4+¢2) and v, ~ i.i.d.N(0, % /n). Since the
mapping from ¢ to 7 is one-to-one, and {Ay; /+/ ZLZ(AyS )Z}tT:2 forms a maximal invariant to the group of transformations
{yt}le — {a,(yr + aﬂ)}f=l for (a,, a,) € R x (0, 0o), the problem is recognized as equivalent to scale invariant inference
about the MA(1) coefficient 0 < n < 1 in a stationary zero-mean Gaussian MA(1) model.

It has long been recognized that the maximum likelihood estimator of the MA(1) coefficient exhibits non-Gaussian
behavior even asymptotically under non-invertibility = 1(correspondingto ¢ = 0in(21)); see Stock (1994) for a historical

account and references. In particular, the MLE 7 suffers from the so-called pile-up problem P(7 = 1| = 1) > 0, and Sargan
and Bhargava (1983) derive the limiting probability to be 0.657.
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Fig. 6. Median bias and normalized MAD in local-level model.

With P(7 = 1) > 1/2 under n = 1, at least for large T, it is not possible to base a median unbiased estimator of n on 7, as
the median function mj is not one-to-one for values of # close to one. Stock and Watson (1998) derive an (asymptotically)
exactly median unbiased estimator on the Nyblom (1989) statistic "1_, (3" _, (ys—7)2)/ 31—, (ye—¥)? which is also invariant
to the transformations above.

We now determine an alternative median unbiased estimator for 5 that comes close to minimizing weighted average risk
under absolute value loss. With X = (Y1, ..., Y7), we can choose the maximal invariants X* = M(X) = (Y; — Yq,..., Y1 —
Y1)/sy and M((n, u, o)) = (1, 0, 1), as in the example of the previous section. The density fy+ of X* is then of the same form
as (19), with X(p) replaced by the covariance matrix of {¢ ZE:] &+ ut}tT:1 under ¢ = (1 —n)/,/nand o = 1(and by the
covariance matrix of {Zgzl es}f:1 if n = 0). We provide an explicit expression in the Appendix.

Under standard large sample theory, one would expect 7 < N(n, (1—=n?)/T). We set the parameter space equal to [0, 1],
ne*) = \/(1 —n?)/T + 6n2/T2, F, uniform on [0, 1], and choose the Lebesgue density of G; to be proportional to the ith
basis spline on the 53 knots {0.0, 1.0} U{0.5+ 0.5 tanh(—3 4 6i/50) ,520 (with “not-a-knot” end conditions). With eg = 0.01,
the algorithm successfully delivers an exactly median unbiased nearly weighted risk minimizing estimator 3{1. Results for
all T € T are in the replication files.

Fig. 6 displays its median bias and normalized risk, along with Stock and Watson’s (1998) median unbiased estimator
and the weighted risk minimizing estimator without any bias constraints for T = 50. The new estimator 8[1 is seen to have
very substantially lower risk than the previously suggested median unbiased estimator by Stock and Watson (1998) for all
but very large values of 7. The risk envelope for exactly median unbiased estimators is never more than 10% below the risk
of 65. As in the previous examples, this again implies that the impact of our choice of F is fairly limited, and that 8;5 comes
reasonably close to being uniformly median absolute deviation minimizing among all exactly median unbiased estimators.

5.2. Quantile forecasts from an AR(1)

The final application again involves a stationary Gaussian AR(1) process, but now we are interested in constructing
quantile forecasts. The data generating process is as in Section 4, that is Y; = p + u;, u; = pu;_1 + &, & ~ i.i.d.N(0, 0?)
and uy ~ N(0, 02/(1 — p?)). The parameter is (p, i, o), and we observe X = (Y;, ..., Yr). For some given 0 < o < 1
and horizon 7 > 0, we seek to estimate the conditional « quantile of the future value Y .. In particular, it is potentially
attractive to construct estimators & that are quantile unbiased in the sense that

Py(Yrie < 8(X)) = a forall(p, 1, o) € [~0.95, 1) x R x (0, 00). (22)

This ensures that in repeated applications, Y7, indeed realizes to be smaller than the estimator §(X) of the « quantile with
probability «, irrespective of the true value of the parameters governing X.>

A standard calculation shows that Y7, |X ~ N(u;, o) with u; = p + (Yr — n)p® and 02 = o%(1 — p*)/(1 — p?), so
that the conditional quantile is equal to u, + o0,z,, where P(NV(0, 1) < z,) = «. It is not possible to use this expression as
an estimator, however, since u, and o, depend on the unknown parameter (p, , o). A simple plug-in estimator is given by
8pi(X) = i + 6,2, which replaces (p, i, o) by (Pors, fL, Gors), Where pors and 625 are the OLS estimators of p and o2, and
fo="T" ZtT=1y[-

In order to cast this problem in the framework of this paper, let § = (Y7, —u)y/1 — p2/o, sothat & ~ AN(0, 1). We treat
& € R as fixed and part of the parameter, 6 = (&, p, i, o). In order to recover the stochastic properties of &, we integrate

3 In contrast, Miiller and Watson (2016) determine predictive sets that contain the future value with at least 1 — « for all permissible data generating
processes, so they do not penalize overcoverage beyond the weighted average length criterion.
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Fig. 7. Bias and risk in 10 step ahead 5% quantile forecast from AR(1).

over & ~ N(0, 1) in the weighting functions F and G;. In this way, weighted average bias constraints over # amount to a bias
constraint in the original model with & stochastic and distributed A/(0, 1).
Now in this notation, Yr, |0 becomes non-stochastic and equals

7 ¢
V1= p? .
Furthermore, the quantile bias in (22) is equivalent to weighted average bias over & ~ A0, 1) with c¢(n, 8) equal to
1[h(0) < n] —a. We use the usual quantile check function to measure the loss of estimation errors, £(n, 8) = |(h ( )—mn)/ol-
lo — 1[A(O) < 7]I.

The problem is seen to be invariant to the group of translations g(x, a) = a,(x+a,)and g(9, a) = (§, p, as(+a,), ;o)
fora = (a,,a,) € A = R x (0, 00). One set of maximal invariants is given by X* = M(X) = Xa/s, with X, =
(Y1 —Yi,....¥p —Ypands2 = Y (Y; — Y1)?, and M((£, p. i, 0)) = &((£. p. . o). (—p.0~")) = (£, p. 0, 1), as in the
example discussed in Section 4. But in contrast to the case discussed there, the invariance here also leads to a corresponding
change in the parameter of interest h(9), £(n, a) = a,(n + a,,). Indeed, by (16), all invariant estimators can be written in the
form

h(8) = u +

8(X) = Yy + 8(X*)s,.

Note that f for(x*)p(&)dé with ¢ the density of a standard normal is equal to the right-hand side of (19), since with
& ~ NI(0, 1), one recovers the distribution of X* without the conditioning on &. Furthermore, a calculation shows that
Yri: — Y11Xa ~ N(@'X4, 03)withw; = (1= p)(1—p")/(T(1—p)+2p)fori=1,...,T—l,or =(1+p*(T(1—p)— 1+
20))/(T(1 = p) +2p),and 03 = (1 — )T + 1+ 3p = 2(1+ p)p" — (1= p)T ) 2r)/((1 — p*)T(1 — p)+2p)) (again
without conditioning on £). Let 5(p)? = ¥ X(p)~'** be the weighted sum of squared GLS re51duals as in (20). Furthermore,
evaluating the weighted averages of £*(5(x*), ™) and c*(6(x*), 6*) in (17) and (18) with weighting function & ~ AN/(0, 1)
yields

[ for(x*)c*(8(x ) 0* )¢($) 3
[ for(x*)gp(

S o () (8(x*), 9 )¢(§) 3
[ for(x*)p(€)d

where ¢, £ : R? — R with &5, n2) = 1[n2 < 111 — e and £(n1, n2) = |n1 — 02| - le — 1nz < 111, Z ~ A0, 1) and V is an
independent chi-distributed random variable with T — 1 degrees of freedom. We obtain an easily evaluated expression for
these expectations in the Appendix.

The problem now is thus exactly of the form discussed in Section 2, with effective density equal to f for (x*)p(&)dE,
bias and loss function equal to (23) and (24), and effective parameter space indexed only by p € [—0.95, 1.0]. We hence
implement the generic algorithm of Section 2.3. We normalize risk by n(6*) = \/(1 — p21)/(1 — p?), set g = 0.002 and
er = 0.02, and in addition to the integration over & ~ A0, 1), choose p uniform on [—0.95, 1.0] in F,, and G; equal
to point masses on the same grid as had been used in Section 3.2. We generated nearly WAR minimizing estimators for
T € {10, 20, 50, 100, 200, 300, 400}, t € {1, 2,4, 10,20},7 < T/2,and « € {0.01, 0.05, 0.1}.

Fig. 7 plots the results for T = 50, t = 10 and ¢ = 0.05, along with the plug-in estimator &p; defined above, and the
WAR minimizing estimator without any quantile bias constraints. The plug-in estimator is seen to very severely violate the
quantile unbiased constraint (22) for p close to unity: instead of the nominal 5%, Y7, takes on a value smaller than the
quantile estimator about 13% of the time.

= E[C((8(x™) — &@'X")V /5(p), 042)] (23)

= E[{((8(x") — &'X*)V /5(p), 0.4Z)] (24)
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Table 1
Mean unbiased estimation of AR(1) coefficient with unknown mean and variance.
Mean bias x 1000 MSE x 1000
0 —-0.3 0.5 0.8 0.90 0.95 0.99 -0.3 0.5 0.8 0.90 0.95 0.99
Dist'n T =50
New Xf —4 -0.9 —0.1 22 1.8 14 2.3 195 17.7 118 9.6 8.6 8.7
ow xi—4 —-1.6 -05 —-2.7 -75 —13.0 —20.6 19.8 17.4 118 9.7 8.6 8.3
New {-1,1} 1.7 -2.0 —-1.5 -1.3 -13 -13 203 19.0 12.6 10.1 9.1 8.8
ow {—-1,1} 0.5 —-14 —6.0 —10.2 —15.3 —23.1 20.9 19.3 13.0 104 9.3 8.7
T =200
New Xf —4 0.7 0.4 0.6 0.0 0.2 0.4 4.8 38 2.0 13 0.8 0.5
ow xi—4 -0.2 -0.2 0.0 —-0.8 —-15 —4.3 4.7 39 2.0 1.3 0.9 0.6
New {—1,1} 1.0 0.5 0.1 —0.2 —0.1 0.0 48 4.0 2.1 1.3 0.9 0.6
ow {—-1,1} 0.0 -0.1 —0.4 -1.0 -1.7 —4.6 4.8 4.0 2.2 13 0.9 0.6

Notes: Entries are mean bias and mean square error in the estimation of the coefficient in a stationary AR(1) with i.i.d. innovations that are either mean-
centered chi-squared with four degrees of freedom, or mean-zero discrete with two-point support on {—1, 1}. The two considered estimators are the
“new” nearly mean unbiased estimator under Gaussian innovations derived here, and the analytically bias corrected estimator by Orcutt and Winokur
(1969) “OW". Based on 100,000 simulations.

Table 2
Median unbiased estimation of AR(1) coefficient with unknown mean and variance.
Median bias x 100 MAD x 100
P —-0.3 0.5 0.8 0.90 0.95 0.99 -0.3 0.5 0.8 0.90 0.95 0.99
Dist'n T =50
New X} —4 -1.7 —-09 0.1 —0.1 0.2 0.4 11.0 104 8.3 7.2 6.2 47
3u.oLs Xf —4 -1.8 -0.7 0.2 0.1 0.1 0.5 11.0 104 8.6 7.6 6.6 5.1
New {—-1,1} —0.1 —0.1 —-0.5 —0.5 —-03 —-04 113 10.8 8.5 7.4 6.4 4.9
Su.oLs {—1,1} -0.1 0.2 —0.6 —-0.7 -0.5 —-0.5 113 10.9 8.9 7.9 6.8 53
T =200
New X} —4 —2.3 —0.3 0.9 —0.2 —0.1 0.3 5.4 49 35 2.8 2.2 1.5
Su.oLs xf —4 -2.3 -0.3 0.8 -0.3 0.0 0.4 5.4 49 35 2.8 2.3 1.6
New {-1,1} —-15 0.2 1.0 —-0.2 —-0.4 —0.1 5.4 5.0 3.6 2.8 22 1.5
Su.oLs {-1,1} —-15 0.2 0.9 —0.2 —-0.2 0.2 5.4 5.0 3.6 29 24 1.6

Notes: Entries are median bias and mean absolute deviation in the estimation of the coefficient in a stationary AR(1) with i.i.d. innovations that are either
mean-centered chi-squared with four degrees of freedom, or mean-zero discrete with two-point support on {—1, 1}. The two considered estimators are
exactly median unbiased under Gaussian innovations: the “new” nearly weighted risk minimizing estimator derived here, and the median inverted OLS
estimator 8y ;5. Based on 100,000 simulations.

6. Performance under non-Gaussian innovations

The estimators derived here have attractive unbiasedness and risk properties by construction in models with Gaussian
innovations. In this section, we briefly explore the performance of these estimators in misspecified models due to non-
Gaussian innovations.

We focus on two sample sizes T = 50 and T = 200, and two non-Gaussian distributions: the mean-centered chi-
squared distribution with 4 degrees of freedom, and the mean-zero discrete distribution with support equal to {—1, 1}, taken
from Andrews (1993). We report results for all previously considered examples, except that we omit the AR(1) example with
known mean and variance for brevity. Tables 1-4 report the corresponding (non-normalized) biases and risks of the new
estimators, as well as for a previously considered alternative estimator. Overall, the new estimators mostly perform quite
comparably to the Gaussian case, where they are close to optimal by construction. A notable but unsurprising exception is the
AR(1) forecast problem, where the non-Gaussian distribution of the future value induces severe quantile biases, especially
for p small.

7. Conclusion

We contend that the problem of identifying estimators with low bias and risk in parametric estimation problems may be
fruitfully approached in a systematic manner. In particular, we suggest a numerical approximation technique to the resulting
nonlinear program, and show that it delivers very nearly unbiased estimators with demonstrably close to minimal weighted
average risk in a number of classic time series estimation problems.

All examples in the paper concern small sample problems, whose parametric structure is induced by an assumption of
Gaussian innovations. It seems plausible that our numerical approach could also be usefully applied in the context of asymp-
totic limit problems, whose parametric structure either stems from LeCam type limit of experiment likelihood expansions,
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Table 3
Median unbiased estimation of local-level parameter.
Median bias x 100 MAD x 100
n 0.0 0.5 0.8 0.90 0.95 0.99 0.0 0.5 0.8 0.90 0.95 0.99
Dist'n T =50
New x3—4 0.8 0.1 —0.5 —0.6 0.0 0.0 6.0 114 8.6 6.9 5.7 47
SwW xi—4 —0.3 0.0 —0.3 —0.5 —0.2 0.4 30.3 32.8 17.6 8.9 6.0 44
New {-1,1} 0.0 —0.2 0.1 0.1 0.5 0.0 6.2 10.2 8.2 6.8 5.6 48
SwW {—1, 1} 0.2 0.1 0.3 0.3 0.5 0.4 30.8 32.8 171 8.6 5.9 45
T =200
New x3—4 0.8 0.4 0.4 0.3 -0.2 -0.2 29 5.4 3.8 2.8 2.2 13
SwW xi—4 0.0 0.4 0.5 —0.5 —0.5 —0.2 37.7 38.7 27.2 10.0 3.6 14
New {—1,1} —0.2 0.2 0.3 0.0 —0.2 —-0.3 2.9 4.6 35 2.7 2.2 1.3
SwW {—1, 1} —0.1 1.1 0.6 —0.2 -0.3 —0.2 37.6 38.6 27.0 9.7 3.6 1.4

Notes: Entries are median bias and mean absolute deviation in the estimation of n in the local-level model (21) with &; and u; independent and i.i.d. and
either distributed mean-centered chi-squared with four degrees of freedom, or mean-zero discrete with two-point support on {—1, 1}. The two considered
estimators are exactly median unbiased under Gaussian innovations: the “new” nearly weighted risk minimizing estimator derived here, and Stock and
Watson'’s (1998) median inverted Nyblom statistic “SW”. Based on 100,000 simulations.

Table 4
Quantile forecasts for AR(1) process.
Quantile bias x 100 Quantile risk x 100
P —-0.3 0.5 0.8 0.90 0.95 0.99 -0.3 0.5 0.8 0.90 0.95 0.99
Dist'n T =50
New Xf —4 —3.7 —38 —-2.0 —14 —1.2 —-0.7 26 29 50 70 84 98
PI Xf —4 —45 —4.0 -0.3 33 5.6 8.5 38 31 45 65 85 114
New {—1,1} —4.9 -1.7 —0.1 0.1 0.0 —0.1 9 11 20 27 32 36
PI {—1,1} —5.0 2.7 2.2 4.8 6.7 8.5 14 11 19 27 34 43
T =200
New Xf —4 —38 —4.1 —2.2 —1.7 —-15 —14 25 28 43 58 70 83
PI Xf —4 —46 —45 —2.2 -0.8 0.3 15 38 31 43 57 70 85
New {-1,1} —-5.0 —-2.4 0.0 0.1 0.1 0.2 9 10 17 23 27 32
PI {—1,1} —-5.0 -39 0.0 1.1 1.8 2.7 14 11 17 23 28 34

Notes: Forecasts §(X) are about the 5% quantile of Y710 (10 steps ahead). Entries are the bias P(Yr110 < (X)) — 0.05 and the risk E[|Yr 10 — 8(X)| -
|1[Yr4+10 < 8(X)] — 0.05|] in an AR(1) with i.i.d. innovations that are either mean-centered chi-squared with four degrees of freedom, or mean-zero discrete
with two-point support on {—1, 1}. The two considered estimators are the “new” nearly WAR minimizing unbiased estimator under Gaussian innovations,
and the plug-in estimator PI described in Section 5.2. Based on 100,000 simulations.

or from large sample distributional approximations. For instance, the statistical problem of estimating the AR(1) coefficient
from a Gaussian data set converges in the LeCam sense under local-to-unity asymptotics to the parametric problem of
estimating the mean reversion parameter from the observation of an Ornstein-Uhlenbeck process. Similarly, Stock and
Watson (1998) apply the functional central limit theorem to transform the small sample problem of estimating the degree
of time variation into a limit problem that involves the observation of a Gaussian process on the unit interval.

Such asymptotics naturally lead to an unbounded local parameter space. This does not impede our general approach to
yield lower bounds on risk of any (nearly) unbiased estimator in the parametric limit problem, which in turn are lower
bounds on the asymptotic risk of estimators in the underlying small sample problem. This can be useful to assess the
performance of a given candidate estimator. But the unbounded parameter space does preclude a purely computational
approach to the determination of a feasible estimator. To make further progress, it would presumably be necessary to rely
in part on an estimator that is known to perform well over most of the parameter space, and to focus the computational
approach on the bounded problematic region, similar to the switching approach suggested by Elliott et al. (2015) in the
context of hypothesis testing problems. We leave such extensions to future work.

Appendix A. Proofs

The proof of Lemma 2 uses the following lemma.
Lemma 3. Foralla e Aandx € X, 0(g(x,a))” =0(x)" oa

Proof. Replacing x by g(x, a) in (11) yields
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g(x,a) = g(M(g(x, a)), O(g(x, a)))
= g(M(x), 0(g(x, a))).
Alternatively, applying a on both sides of (11) yields
g(x, a) = g(g(M(x), O(x)), a) = g(M(x), a o O(x)).
Thus g(M(x), ac0(x)) = g(M(x), O(g(x, a))). By the assumption that group actions a are distinct, this implies that O(g(x, a)) =
a o O(x). The result now follows from (a; 0 a;)™ =a; ca,. W

Proof of Lemma 2. For an arbitrary measurable subset B C X x O,

Py((M(X), &(6, 0(X)™)) € B) )
= Pyinoo0)(M(X), 86, 0(X)7)) € B) (by 0 = §(M(6), 0(6)))

= Py ((M(g(X, 0(6))), 8(6, 0(g(X, 0(6)))")) € B) (invariance of problem)
= Py ((M(X), g(0, O(X)~ (9) ) € B)(mvarlance of M and Lemma 3)

= Py ((M(X), 8(&(M(9), 0(8)), O(X)™ 0 0(8) ")) € B) (by & = Z(M(6), 0(9)))
= Py (M(X), &(M(6), 0(X)")) € B). m

Appendix B. Details on algorithm of Section 2.3

The basic idea of the algorithm is to start with some guess for the Lagrange multipliers A, compute the biases B(;, G;),
and adjust (M, Af') iteratively as a function of B(6, G;),i=1,...,m.

To facilitate the repeated computation of B(§, G;),i = 1, ..., m, itis useful to employ an importance sampling estimator.
We use the proposal density f,, where f, is the mixture density f,(x) = (244+m — 2)*1(12f9p‘] (%) + 12f, ,, (x) + Z?:z] fgp_i(x)),
where 6, ; are equal to the location of the m knots or point masses of G;, respectively. In other words, under f,, X is generated
by first drawing an indexJ uniformly from {—10, —9, ..., m+411}, thendraw X fromfgp «»whereJ* = max(min(J, m), 1). The
overweighting of the boundary values 6, ; and 6, ,, by a factor of 12 counteracts the lack of additional importance sampling
points to one side, leading to approximately constant importance sampling Monte Carlo standard errors in problems where
0 is one-dimensional, as is the case in all our applications once invariance is imposed.

LetX;, I=1,...,N bei.i.d. draws from f,. For a given estimator §, we approximate B(3, G;) by

%) . / X)
8,Gi) = ) ——dG;(0 dG;
B(.G)) = E, [/c( (X0 077 46 ] §: 5(X). f,,(xl) ().

We further approximate f c(n, 0)fo(X))dG;(0) for arbitrary n by quadratic interpolation based on the closest three points in
thegrid#; = {n1, ..., mm}, mi < mijfori < j(we use the same grid foralli = 1, ..., m).The grid is chosen large enough so
that §,(X;) is never artificially constrained for any value of A considered by the algorithm. Similarly, R(§, F) is approximated
by

R(S. F) 1fo le ){le (X))dF(9)
ol

and f £(n, 0)fe(X;)dF(0) for arbitrary n is approximated with the analogous quadratic interpolation scheme.
Furthermore, for given A, the minimizer 6, (X;) of the function; : R — R

L) = [ e6n. 000 +Zx“ ) [ <. ovxacio)

is approximated by first obtaining the global minimum over n € H,, followed by a quadratic approximation of L,(n) around
the minimizing n;j+ € #; based on the three values of Li(n) for n € {nj_1, nij, nij+1) C Hi.
For given ¢, the approximate solution to (1) subject to (5) is now determined as follows:

1. Generate i.i.d. draws X;,[ = 1, ..., N with density f,.

2. Compute and storefc(n, Yo (X)dGi(0) and [ €(n, 0)fp(X)dF(0),n € H,i=1,...,m=1,...,N.
3. Initialize A as A" = 1 = 0.0001 and @ = &}¥ = 0.05,i=1,...,m

4, Fork=0,...,K—1

(a) Compute 8Mk)(X,) as described above, [ =1, ..., N.

(b) Compute B(8,, G;) as described above,i =1, ..., m.

(c) Compute Al fromk" via Al 0D = (0 exp( “(k)( B(8,00, Gi) — &), Ay <Y = A exp(wr O (—B(8,w, Gi) —
eNi=1,



U.K. Miiller and Y. Wang / Journal of Econometrics 209 (2019) 18-34 33

(d) Compute """ = max(0.01, 0.50"“) if (B(8,u+1), Gi) — &)(B(8,1, Gi) — ¢) < 0, and """ = min(100,
1.03w;" &)y otherwise, and similarly a)l 41 = max(0.01, 0.50y V) if (B(8,us1), Gi) + £)(B(8,00, Gi) + €) < 0,

and 'V = min(100, 1.03w;®) otherwise.

The idea of Step 4.d is to slowly increase the speed of the change in the Lagrange multipliers as long as the sign of the
violation remains the same in consecutive iterations, and to decrease it otherwise.

In the context of Step 2 of the algorithm in Section 2.3, we iterate as described above until the relative improvement of R
over the last 25 iterations is less than 0.1%. For Step 3 of the algorithm in Section 2.3, we first initialize and apply the above
iterations 200 times for ey = £5. We then continue to iterate the above algorithm for another 400 iterations, but every 200
iterations increase or decrease e via a simple bisection method based on whether or not R(8,, F) < (14 &g)R. The check of
whether the resulting 5 = 8,k satisfies the uniform bias constraint (3) is performed by directly computing its bias b(S*, 0)
via the importance sampling approximation

~ =1 l)
Z )
over a fine but discrete grid 6 € &, C ©.

The computation of the median function ms., in Step 2 of the algorithm in Section 3.2 is based on the importance sampling
approximation

N

NT'Y 085 (X) < s, (0)]

=1

Jo(X))
fp(xl)

with ms.. +(0) determined by a simple bisection algorithm, and is performed on the same grid that is employed to check the
umform b1as property. The inverse function my_; is obtained by linear interpolation between these points.

We set the number of draws to N = 250, 060 in all applications. Computations for a given problem take no more than
minutes on a modern PC, and seconds for the mean unbiased problems.

~1/2

B.1. Additional application-specific details

AR(1) coefficient

We set © = {—0.95 + 1.95j/500}>% and, for the median unbiased estimator, #; = # where # subdivides the knot
locations into four equally long subintervals (so that M = 4(m — 1) + 1). Integration over G; and F is performed using a
Gaussian quadrature rule with 7 points separately on each of the intervals determined by the sequence of knots that underlie
Gi.

A stralghtforward calculation yields X* X (p Z: o = pr71)2 + (1= P2 — [(1 — p)xt + x5+ (1 —
P)Zt 2 X P —p)+2p).
Degree of parameter time variation

We set ©, = {j/500)?%) and use the same construction for #; as for the AR(1) coefficient.

Applying Lemma 4 in Elliott and Miiller (2006) yields

—(T-1)/2
(Zla@2)
VO =n®/(T(1 = n2))
T

* -1 s * __ * * * X __ %
where X{ are the residuals of a regression of{ut _;on{l,n, n%, ..., nT "'} with uf =nui_; +x;{ —x{_;and uj = xj.

for(x)=C

AR(1) quantile forecast
We set @5 = {—0.95 + 1. 95]/500}500 and #, is an equally-spaced grid of 100 points such that the endpoints cover the
quantile forecasts of level 0.1« and 5a conditional for all parameter values 6 in the grid for G; whose likelihood is at least
—5 of the average.
To obtain (24), note that with g(6*, O(X)™) = (§, p, —Y1/sy, 1/sy),

Eg«[€ (8(X*), 8%, 0(X)7)) IX* = x*] = Ep+[£ (8(X*)sy, h(6%) — Y1) IX* = x*].

Now conditioning on (s,, X*) and integrating out £, we obtain h(6*) — Y; ~ N (s,w'X", oj) since X, = syX*. Furthermore,
the joint density of (X, X5, ..., X}, sy) € Sr—1 x [0, 00), where Sy_; is the surface of the T — 1 dimensional sphere, is
proportional to exp[— %s§§( ,o)z]s}f*2 under 0* . Viewed as a function of s, this is recognized as the kernel of a chi-distributed
random variable with T — 1 degrees of freedom, scaled by 1/5(p). Eq. (24) thus follows from the law of iterated expectations,
and similarly for (23).
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Let f, 1(s) = C exp[—1s?]s*~T with 1/C = 2%/ 1I"(k/2) be the p.d.f. of a x distributed random variable, and F; x and f;
be the c.d.f. and p.d.f. of a student-t variate with k degrees of freedom. Then (23) is equal to

8 *Y) /3%
Fors ( T 1<X>_w><) L

$(p)oa
To obtain a more explicit expression for (24), first condition on V and integrate out Z to obtain

oAP(Vr) 4+ oAV (P(Vr) — o)

where @ and ¢ are the c.d.f. and p.d.f. of a standard normal variate, and r = (8(x*) — @'x*)/(5(p)o,). Note that
Jo7 o(rs)sfy (s)ds = fri(rv/k)Wk, so [° p(sT)f r-1(s)ds = /T — 23—:;ﬁ,r,2(n/r —2). Similarly, [~ ®(sr)sfy.r—1(s)ds =
Cg—;lF[,T(rﬁ). Finally, E[V] = Cr_1 = ~/2I'(T/2)/T((T — 1)/2) = Cr_1/Cr. Thus, (24) is equal to

Cro10alfer—a(VWT = 2)/N/T = 2 + 1F 1(VTr) — ra].
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