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Motivation

• Recent interest in non-standard inference problems

1. Weak instruments

2. Inference involving local-to-unity regressors

3. Moment inequalities

4. Regressor selection problems

• How to construct tests with well-defined optimality property?
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This paper

• Deals with generic non-standard testing problem

• Derives set of bounds on weighted average power of any valid test

• Suggests algorithm that numerically determines test with weighted average
power close the bound

• Derives nearly optimal tests in six non-standard problems
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Literature

• Power bound closely related to Minimax Theorem of classical decision the-
ory

⇒ discussed and employed in weak instrument problem by Andrews, Mor-
eira and Stock (2008)

• Numerical determination of optimal decision rules and tests
⇒ Kempthorne (1987), Sriananthakumar and King (2006), Chiburis
(2009)
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Example: Nuisance Parameter with Known Sign

• Bivariate normal regression model with non-negative coefficient on control
variable 

 =  +  + ,  ∼ N (0 2), 2 known

leads via sufficiency argument to testing problemÃ
̂

̂

!
=  =

Ã



!
∼ N

ÃÃ



!
Σ

!

0 :  = 0,  ≥ 0 vs 1 :  6= 0,  ≥ 0

• Can normalize  [] =  [] = 1, so problem is effectively indexed by
scalar  = Cov( ).
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Example: Nuisance Parameter with Known Sign

• Testing problem

 =

Ã



!
∼ N

ÃÃ



!


Ã
1 
 1

!!

0 :  = 0,  ≥ 0 vs 1 :  6= 0,  ≥ 0

arises more generally (after suitably normalizations) as limiting problem in
LeCam’s Limits of Experiment theory in LAN model with partial knowledge
of a nuisance parameter.

• Parameter of interest is . Presence of nuisance parameter  makes both
null and alternative hypothesis composite. How to construct optimal test?
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Outline

1. Introduction

2. Approximate Least Favorable Distributions: Theory

3. Approximate Least Favorable Distributions: Implementation

4. Applications:

(a) Nuisance parameter with known sign

(b) Break date

(c) Set-identified parameter

(d) Regressor selection

(e) Mean of AR(1) with coefficient possibly close to one
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Generic Problem

• We observe single observation  ∈  with density () wrt , where
 ∈ Θ ∈ R. Want to test

0 :  ∈ Θ0 against 1 :  ∈ Θ1 (1)

where Θ0∩Θ1 = ∅ and Θ0 is not a singleton, so that the null hypothesis
is composite.

• Tests are  7→ [0 1] functions, where () indicates rejection probability
conditional on  = .

If 0  ()  1 for some , then test is randomized.

Test is of level  if sup∈Θ0[( )] = sup∈Θ0
R
()() ≤ .
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Weighted Average Power

• Typical, no uniformly most powerful test

• Focus on weighted average power for given weight function  on Θ1

WAP() =
Z µZ


¶
 ()

• By Fubini’s Theorem, WAP is equivalently WAP() =R
 (
R
 ()) , so that testing problem effectively becomes

0 : the density of  is ,  ∈ Θ0

1 : the density of  is  =
Z
 ()

• Choice of  matters
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Power Bounds

• Testing problem
0 : the density of  is ,  ∈ Θ0

1 : the density of  is  =
Z
 ()

• Lemma: Let  be any level  test of0 against1 . For any probability
distribution Λ, let Λ be the Neyman-Pearson level  test of

Λ : the density of  is
Z
Λ()

against 1 . Then Λ is at least as powerful as .

• Proof: Since  is of level  under 0, it is also a valid level  test of
Λ against 1 . But by assumption, Λ is the best level  test in this
problem, so its power is at least as high.

• Least favorable distribution Λ∗∗: Λ∗∗ is of level  under 0.
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Two Uses for Upper Bounds on Power

1. Compare power bound to power of an ad hoc test that is known to control
size under 0. If the power of the ad hoc is close to the bound, then it is
close to optimal (cf. Müller and Watson (2009)).

2. Use numerical methods to find powerful test. Power bound can tell us
when to stop searching.
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Approximately Least Favorable Distributions

• Neyman-Pearson tests of 0 against 1 are of the form (with continu-
ously distributed LR statistic)

Λ() =

(
1 if ()  cv

R
()Λ()

0 if ()  cv
R
()Λ()

• Definition: An -ALFD is a probability distribution Λ∗ on Θ0 satisfying

(i) the Neyman-Pearson test with Λ = Λ∗ and cv = cv∗, Λ∗, is of level
 under 0Λ∗, and has power ̄ against 1 ;

(ii) there exists cv∗  cv∗ such that the test with Λ = Λ∗ and cv = cv∗,
Λ∗, is of level  under 0, and has power of at least ̄− against 1 .

• Λ∗ not necessarily a good approximation to least favorable distribution
Λ∗∗, but by Lemma, Λ∗ has power within  of the bound.
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Numerical Determination of the ALFD

• Discretize the problem by specifying distributionsΨ onΘ0,  = 1 · · · 

• Let  be a subset of  of the baseline indices,  ⊂ {1 2 · · · },
and consider first the simpler problem where it is known that  is drawn
from  =

R
Ψ(),  ∈  under the null

— NP test ∗ is described by cv∗ and ∗ ≥ 0 with
P
∈ ∗ = 1.

—
R
∗ ≤  for  ∈  and

R
∗   only if ∗ = 0.

⇒ Translate these conditions into a numerical nonlinear optimization
problem

• Algorithm seeks  so that the corresponding test ∗ with slightly larger
critical value cv∗ has null rejection probability below  under 0

⇒ feasibility and magnitude of  depend on problem and Ψ
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Switching to Standard Tests

• In appropriate parameterization, nonstandard problem typically approaches
a standard problem as nuisance parameter  becomes large, ||||→∞.

— In weak instrument problem, large concentration parameter implies that
instruments are "almost" strong

— Large local-to-unity parameter implies that standard stationary theory
"almost" applies

— etc.
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Switching to Standard Tests ctd

• Focus on tests of the form
() = (1− ())() + ()()

with

—  7→ {0 1} is a "switching rule" (such as () = 1[||̂||  ])

—  is a "Standard" test

—  is the test for the "Difficult" part of the parameter space

• Positive nuisance parameter example: () = 1[||  196], () =
1[  6]

• Optimality now conditional on "switching rule" as described by  and ,
that is find WAP test maximizing over 
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Choice of Weighting Function 

• With switching,  only needs to measure performance in genuinely non-
standard part of problem

• Our choice of  is guided by

— ensure smooth transition of critical region across switching boundary

— in two-sided problems that are symmetric in standard portion, but equal
weight on both sides also in non-standard portion

— focus on alternatives where good 5% level tests achieve power of ap-
proximately 50% (cf. King (1988))

⇒ in positive nuisance parameter problem,  is uniform on  ∈ [0 8],
with equal mass on the two points  ∈ {−2 2}.
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Positive Nuisance Parameter Problem,  = 07
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Positive Nuisance Parameter Problem,  = 07

Dashed lines: Power of standard test () = 1[||  196]
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Inference about the Break Date

• Simplest model has
 = + 1[ ≥  ]+ ,  ∼ N (0 1)

and moderate (=contiguous) break magnitude arises as  12→  ∈ R.

• Limiting problem (after partial summing and invariance to translations)
involves single Gaussian process observation  where

() = ()−  (1)− (min( )− )

 is a standard Wiener process and  =  .

• Testing problem is 0 :  = 0,  ∈ R against 1 :  6= 0,
 ∈ R.

• Weighting function  is uniform on  ∈ [015 085] and  ∼ N (0 100)
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Sample Realization of (·)
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Results for Inference about the Break Date

Dashed lines: Power of Elliott and Müller (2007) test
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Set Identified Parameter

• Similar to Imbens and Manski (2004), Stoye (2009) and Hahn and Ridder
(2011), we observe

 =

Ã



!
∼ N

ÃÃ



!


Ã
1 
 1

!!
where  ≤ , and  ∈ (−1 1) is known.

• We want to test 0 :  = 0, where
 ≤  ≤ 

so that [ ] is identified set.
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Set Identified Parameter ctd

• Reparametrize ( ) in terms of (  ) ∈ R3 as follows:

—  =  −  is length of identified set [ ],

—  is distance of identified set [ ] from 0

—  = −

⇒ Hypothesis testing problem becomes

0 :  = 0,  ≥ 0,  ∈ [0 ] against 1 :   0,  ≥ 0

• Switch to () = 1[  1645 or   −1645] according to () =
1[̂  6], where ̂ =  − 

•  is chosen to be uniform on  ∈ [0 8], with equal mass on the two points
 ∈ {−2 2}.
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Results for Set Identified Parameter
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Results for Set Identified Parameter

Dashed lines: Stoye’s (2009) test ST() = 1[  196 or   −196]
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Regressor Selection Problem

• Bivariate normal regression model, necessity of control variable  in doubt
 =  +  + ,  ∼ N (0 2), 2 known

leads via sufficiency and suitably normalization to testing problemÃ
̂

̂

!
=  =

Ã



!
∼ N

ÃÃ



!


Ã
1 
 1

!!

0 :  = 0,  ∈ R vs 1 :  6= 0,  = 0
(weighting function  puts all mass at  = 0).

• Coefficient of "short" regression of  on  corresponds to  − 

• Known uniformity issues with data driven model selection (Leeb and
Pötscher (2005), etc.)
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One-sided Problem

• In one-sided problem

 =

Ã



!
∼ N

ÃÃ



!


Ã
1 
 1

!!

0 :  = 0,  ∈ R vs 1 :  = 1  0,  = 0

exact least favorably distribution Λ∗∗ has point mass at ( ) =

(0−1), leading to the test 1[  cv].

• Analytical result: uniformly most powerful one-sided test rejects for large
values of , that is uniformly best inference under size constraint corre-
sponds to simply running the long regression.
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Two-sided Problem

• Corresponding two-sided analytical result for

 =

Ã



!
∼ N

ÃÃ



!


Ã
1 
 1

!!

0 :  = 0,  ∈ R vs 1 :  6= 0,  = 0
only holds under unbiasedness constraint. ⇒ WAP maximizing (biased)
test?

• Switch to () = 1[||  196] according to () = 1[||  6].

•  puts equal mass at the two points  ∈ {−2 2}.
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Numerical Results
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Numerical Results

Dashed line: Power of standard test () = 1[||  196]
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WAP as Function of 

Thick through line: upper bound
Thin through line: nearly optimal test
Dashed line: standard test () = 1[||  196]
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Inference about Mean of AR(1) Process

• We observe {}=1, which is a stationary Gaussian AR(1) with mean 
and unknown coefficient  ∈ [0 1). Optimal inference about ?

• Under local-to-unity asymptotics  =  = 1 −  , asymptotically
identical to nonstandard problem of inference about mean of stationary
Ornstein-Uhlenbeck process

• Special case of optimal "HAC" test for specific assumption about auto-
correlation structure (which is such that no consistent HAC estimator ex-
ists).

• Weighting function  is uniform on  ∈ (0 80), and√ ∼ N (0 9(1−
)2). Switch to standard HAC test if ̂  50.
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Small Sample Results

Mean of AR(1) Regression
A91 AM92 KVB Λ∗ A91 AM92 KVB Λ∗

 size
0.00 0.05 0.05 0.05 0.05 0.06 0.06 0.05 0.06
0.70 0.10 0.07 0.06 0.07 0.10 0.08 0.07 0.08
0.90 0.17 0.11 0.09 0.08 0.18 0.13 0.11 0.08
0.95 0.26 0.15 0.13 0.08 0.26 0.16 0.15 0.06
0.98 0.44 0.30 0.23 0.06 0.37 0.18 0.22 0.05

size adjusted power
0.00 0.50 0.50 0.37 0.50 0.50 0.50 0.36 0.50
0.70 0.74 0.75 0.57 0.76 0.95 0.94 0.81 0.94
0.90 0.96 0.96 0.87 0.88 1.00 0.99 0.98 0.95
0.95 1.00 0.99 0.96 0.42 1.00 0.99 1.00 0.67
0.98 1.00 1.00 1.00 0.75 1.00 0.99 1.00 0.44

 = 200 ’Regression’ has single AR(1) regressor and independent AR(1)
disturbance, and includes a constant.
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Decision Theoretic and Bayesian Interpretation

• Suppose a false rejection of 0 induces loss 1, a false acceptance of 

induces loss   0, and a correct decision has loss 0. Then Risk is

( ) = 1[ ∈ Θ0]
Z
 + 1[ ∈ Θ1](1−

Z
)

and the test Λ∗∗ relative to the (unknown) least favorable distribution
Λ∗∗ minimizes sup∈Θ( ) among all tests  for the specific choice
 = (1− ∗∗) with ∗∗ =

R
Λ∗∗.

• Approximately optimal test Λ∗ is correspondingly approximately minimax.

• Test Λ∗ corresponds to rejecting for large values of the Bayes factor with
priors Λ∗ on Θ0 and  on Θ1.

⇒ Endogenous determination of Λ∗ yields Bayes rule with attractive fre-
quentist properties.
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Conclusions

• General constructive method to obtain nearly optimal tests in the weighted
average sense for nonstandard problems

• Numerical difficulties of checking size control if nuisance parameter dimen-
sion is larger than 2
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