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APPENDIX B: DETAILS OF THE ALGORITHM USED TO COMPUTE
THE POWER BOUNDS IN SECTION 4.3

SIMILARLY TO THE DISCUSSION IN SECTION 3, discretize Θ1�S by defining
M1 base distributions Ψ1�i with support in Θ1�S , and denote f1�i = ∫

fθ dΨi�1.
The constraint infθ∈Θ1�S [

∫
ϕfθ dν − πS(θ)] ≥ 0 on ϕ thus implies

∫
ϕf1�i dν ≥∫

ϕ̃f1�i dν, i = 1� 	 	 	 �M1. For notational consistency, denote the discretization
of Θ0 by f0�i, i = 1� 	 	 	 �M0. Let μ = (μ′

0�μ
′
1)

′ ∈ R
M0 × R

M1 , and consider tests
of the form

ϕμ = 1

[
g +

M1∑
i=1

exp(μ1�i)f1�i >

M0∑
i=1

exp(μ0�i)f0�i

]
	

The algorithm is similar to the one described in Section A.2.1, but based on
the iterations

μ(i+1)
0�j = μ(i)

0�j +ω

(∫
ϕμ(i)f0�j dν − α

)
� j = 1� 	 	 	 �M0�

μ(i+1)
1�j = μ(i)

1�j −ω

(∫
ϕμ(i)f1�j dν −

∫
ϕ̃f1�i dν

)
� j = 1� 	 	 	 �M1	

More explicitly, the importance sampling estimators for
∫
ϕμ(i)f0�j dν and∫

ϕμ(i)f1�j dν are given by

R̂P0�j(μ) = (M0N0)
−1

M0∑
k=1

N0∑
l=1

f0�j

(
Y 0

k�l

)
f̄0

(
Y 0

k�l

) 1

[
g
(
Y 0

k�l

)
+

M1∑
i=1

exp(μ1�i)f1�i

(
Y 0

k�l

)
>

M0∑
i=1

exp(μ0�i)f0�i

(
Y 0

k�l

)]
�

R̂P1�j(μ) = (M1N0)
−1

M1∑
k=1

N0∑
l=1

f1�j

(
Y 1

k�l

)
f̄1

(
Y 1

k�l

) 1

[
g
(
Y 1

k�l

)
+

M1∑
i=1

exp(μ1�i)f1�i

(
Y 1

k�l

)
>

M0∑
i=1

exp(μ0�i)f0�i

(
Y 1

k�l

)]
�
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where f̄0(y) = M−1
0

∑M0
j=1 f0�j(y) and f̄1(y) = M−1

1

∑M1
j=1 f1�j(y), and Y 0

k�l and Y 1
k�l

are N0 i.i.d. draws from density f0�k and f1�k, respectively. For future reference,
for two given points Λ̂∗

0 = (λ̂∗
0�1� 	 	 	 � λ̂

∗
0�M0

) and Λ̂∗
1 = (λ̂∗

1�1� 	 	 	 � λ̂
∗
1�M1

) in the M0-
and M1-dimensional simplex, respectively, define

R̂P0�j(cv0� cv1)= (M0N0)
−1

M0∑
k=1

N0∑
l=1

f0�j

(
Y 0

k�l

)
f̄0

(
Y 0

k�l

) 1

[
g
(
Y 0

k�l

)
+ cv1

M1∑
i=1

λ̂∗
1�if1�i

(
Y 0

k�l

)
> cv0

M0∑
i=1

λ̂∗
0�if0�i

(
Y 0

k�l

)]
�

R̂P1�j(cv0� cv1)= (M1N0)
−1

M1∑
k=1

N0∑
l=1

f1�j

(
Y 1

k�l

)
f̄1

(
Y 1

k�l

) 1

[
g
(
Y 1

k�l

)
+ cv1

M1∑
i=1

λ̂∗
1�if1�i

(
Y 1

k�l

)
> cv0

M0∑
i=1

λ̂∗
0�if0�i

(
Y 1

k�l

)]
�

R̂Pg(cv0� cv1)= N−1
1

N1∑
l=1

1

[
g(Yl)+ cv1

M1∑
i=1

λ̂∗
1�if1�i(Yl)

> cv0

M0∑
i=1

λ̂∗
0�if0�i(Yl)

]
�

where Yl are N1 i.i.d. draws from density g. The algorithm now proceeds in the
following steps:

1. For each k, k = 1� 	 	 	 �M0, generate N0 i.i.d. draws Y 0
k�l, l = 1� 	 	 	 �N0,

with density f0�k, and for each k = 1� 	 	 	 �M1, generate N0 i.i.d. draws Y 1
k�l, l =

1� 	 	 	 �N0, with density f1�k. The draws Y 0
k�l and Y 1

k�l are independent across k
and l.

2. Compute and store g(Yk�l), f0�j(Y
0
k�l), f̄0(Y

0
k�l), j�k = 1� 	 	 	 �M0, l =

1� 	 	 	 �N0, as well as f1j(Y
1
k�l) and f̄1(Y

1
k�l), j�k= 1� 	 	 	 �M1, l = 1� 	 	 	 �N0.

3. Compute the (estimated) power πj ≈ ∫
ϕ̃f1�j dν of ϕ̃ = χϕS under f1�j via

πj = (M1N0)
−1
∑M1

k=1

∑N0
l=1

f1�j (Y
1
k�l

)

f̄1(Y
1
k�l

)
χ(Y 1

k�l)ϕS(Y
1
k�l), j = 1� 	 	 	 �M1.

4. Set μ(0) = (−2� 	 	 	 �−2) ∈R
M0+M1 .

5. Compute μ(i+1) from μ(i) via μ(i+1)
0�j = μ(i)

0�j + ω(R̂P0�(μ
(i)) − α), j =

1� 	 	 	 �M0 and μ(i+1)
1�j = μ(i)

1�j −ω(R̂P1�j(μ
(i))−πj), j = 1� 	 	 	 �M1 with ω = 2, and

repeat this step O = 600 times. Denote the resulting elements in the M0- and
M1-dimensional simplex by Λ̂∗

0 = (λ̂∗
0�1� 	 	 	 � λ̂

∗
0�M0

) and Λ̂∗
1 = (λ̂∗

1�1� 	 	 	 � λ̂
∗
1�M1

),
where λ̂∗

0�j = exp(μ(O)
0�j )/

∑M0
k=1 exp(μ(O)

0�k ) and λ̂∗
1�j = exp(μ(O)

1�j )/
∑M1

k=1 exp(μ(O)
1�k ).
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6. Compute the number cv∗
0�0 such that the test 1[g > cv∗

0�0

∑M0
i=1 λ̂

∗
0�if0�i] is

exactly of (Monte Carlo) level α under the mixture
∑M0

j=1 λ̂
∗
0�jf0�j , that is, solve∑M0

j=1 λ̂
∗
0�jR̂P0�j(cv0�0�0) = α for cv0�0. If the resulting test has power under the

mixture
∑M1

j=1 λ̂
∗
1�jf1�j larger than

∑M1
j=1 λ̂

∗
1�jπj , that is, if

∑M1
j=1 λ̂

∗
1�j(R̂P1�j(cv∗

0�0�0)−
πj)≥ 0, then the power constraint does not bind, and the power bound is given
by R̂Pg(cv∗

0�0�0).
7. Otherwise, compute the two numbers cv∗

0 and cv∗
1 such that the test

1[g + cv∗
1

∑M1
i=1 λ̂

∗
1�if1�i > cv∗

0

∑M0
i=1 λ̂

∗
0�if0�i] is of (Monte Carlo) level α under the

mixture
∑M0

j=1 λ̂
∗
0�jf0�j , and of power equal to

∑M1
j=1 λ̂

∗
1�jπj under the mixture∑M1

j=1 λ̂
∗
1�jf1�j , that is, solve the two equations

∑M0
j=1 λ̂

∗
0�jR̂P0�j(cv0� cv1) = α and∑M1

j=1 λ̂
∗
1�jR̂P1�j(cv0� cv1) = ∑M1

j=1 λ̂
∗
1�jπj for (cv0� cv1) ∈ R

2. The power bound is
then given by R̂Pg(cv∗

0� cv∗
1).

APPENDIX C: ADDITIONAL DETAILS FOR THE APPLICATIONS

The following lemma is useful for obtaining closed form expressions in many
of the applications.

LEMMA 6: For c > 0,
∫ a

−∞ exp[sd − 1
2s

2c2]ds = √
2πc−1 exp[ 1

2d
2/c2]�(ac −

d/c), where � is the c.d.f. of a standard normal.

PROOF: Follows from “completing the square.” Q.E.D.

In all applications, the M base distributions on Θ0 are either uniform dis-
tributions, or point masses. Size control is always checked by computing the
Monte Carlo rejection probability at all δ that are end or mid-points of these
intervals, or that are simple averages of the adjacent locations of point masses,
respectively (this check is successful in all applications). The power bound cal-
culations under the power constraint of Section 4.3 use the same M0 =M base
distributions under the null, and the M1 base distributions with support on Θ1�S

all set β to the same value as employed in F , and use the same type of base
distribution on δ as employed in the discretization of Θ0.

C.1. Running Example

The base distributions on Θ0 are the uniform distributions on the inter-
vals {[0�0	04]� [0�0	5]� [0	5�1]� [1�1	5]� 	 	 	 � [12�12	5]}. The base distributions
on Θ1�S have β ∈ {−2�2} and δ uniform on the intervals {[9�9	5]� [9	5�10]� 	 	 	 �
[13�13	5]}.
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C.2. Behrens–Fisher

Limit Experiment and Standard Best Test

We analyze convergence as δ → ∞, that is, as σ2/σ1 → 0. The convergence
as δ → −∞ follows by the same argument.

Consider the four-dimensional observation Ỹ = (x̄1� x̄2� s1� s2), with density
√
n1n2

σ2
1σ

2
2

φ

(
x̄1 −μ1

σ1/
√
n1

)
φ

(
x̄2 −μ2

σ2/
√
n2

)
fn1

(
s1

σ1

)
fn2

(
s2

σ2

)
�

where φ is the density of a standard normal, and fn is the density of a
chi-distributed random variable with n − 1 degrees of freedom, divided by√
n− 1. Now set μ2 = 0, so that b = β = (μ1 − μ2)/

√
σ2

1/n1 + σ2
2/n2 implies

μ1 = b
√
σ2

1/n1 + σ2
2/n2. Also, set σ1 = exp(d) and σ2 = exp(−Δn), so that

δ = log(σ1/σ2) = Δn + d. This is without loss of generality as long as one re-
stricts attention to tests that are invariant to the transformations described in
the main text.

Let fn�h be the density of Ỹ in this parameterization, where h = (b�d).
Further, let fX�h be the density of the bivariate vector X = (Xb�Xd) where
Xb ∼ N (bexp(d)�exp(2d)) and Xd is an independently chi-distributed ran-
dom variable with n − 1 degrees of freedom, divided by

√
n− 1. With Ỹ dis-

tributed according to fn�0, and X distributed according to fX�0, we find, for any
finite set H ⊂R

2,{
fn�h(Ỹ )

fn�0(Ỹ )

}
h∈H

=
{(

exp(2d)φ
(
x̄1 − b

√
exp(2d)/n1 + exp(−2Δn)/n2

exp(d)/
√
n1

)
× fn1

(
s1

exp(d)

))/(
φ

(
x̄1

1/
√
n1

)
fn1(s1)

)}
h∈H

⇒

⎧⎪⎪⎨⎪⎪⎩
exp(2d)φ

(
Xb − bexp(d)/

√
n1

exp(d)/
√
n1

)
fn1

(
Xd

exp(d)

)
φ

(
Xb

1/
√
n1

)
fn1(Xd)

⎫⎪⎪⎬⎪⎪⎭
h∈H

=
{
fX�h(X)

fX�0(X)

}
h∈H

�

so that Condition 1 is satisfied. Thus, tests of H0 :b= 0 against H1 :b 
= 0 based
on X form an upper bound on the asymptotic power as Δn → ∞ of invari-
ant tests based on Ỹ . The standard (and admissible) test ϕlim

S based on X is
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the usual t-test 1[|Xb|/Xd > cv]. Further, a straightforward calculation shows
that the invariant test ϕS = 1[| x̄1−x̄2√

s2
1/n1+s2

2/n2
| > cv] = 1[|Yβ| > cv] has the same

asymptotic rejection probability as ϕlim
S for all fixed values of h.

Computational Details

It is computationally convenient to consider the one-to-one transformation

(t� r) = ((x̄1 − x̄2)/s2� s1/s2) = (
√

e2Yδ

n1
+ 1

n2
Yβ�e

Yδ) with parameters η = μ1 −
μ2 = β

√
σ2

1/n1 + σ2
2/n2 and ω = σ1/σ2 = exp(δ). A transformation of variable

calculation shows that the density of (t� r) is given by

f (t� r) = (n1 − 1)n1/2(n2 − 1)n2/2ω

r2�

(
1 + n1

2

)
�

(
1 + n2

2

)√ n1n2

π
(
n1 +ω2n2

)( r

ω

)n1

× 2(1−n1−n2)/2 exp
[
−1

2
η2n1n2

n1 + n2ω
2

]
×
∫ ∞

0
sn1+n2−2 exp

[(
2ηn1n2st − s2

(
(n2 − 1)n2ω

4 + n2
1r

2

− n2ω
2r2 + n1

(
n2ω

2
(
1 + r2 + t2

)−ω2 − r2
))
/ω2

)
/ (

2
(
n1 + n2ω

2
))]

ds

where � denotes the Gamma function. The integral is recognized as being pro-
portional to the (n1 +n2 −2)th absolute moment of a half normal. In particular,
for c > 0,

∫ ∞
0 exp[− 1

2s
2c2]sn ds = 2(n−1)/2�( 1+n

2 )c−(n+1), and following Dhrymes
(2005), ∫ ∞

0
exp

[
sd − 1

2
s2c2

]
sn ds = exp

[
1
2
d2

c2

]
dn

c2n+1

n∑
l=0

(
n
l

)(
− c

d

)l

Il

(
d

c

)
�

where

Il(h) =
∫ h

−∞
exp

[
−1

2
z2

]
zl dz

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2(l−1)/2

((
1 + (−1)l

)
�

(
1 + l

2

)
− �̃

(
1 + l

2
�
h2

2

))
for h> 0�

2(l−1)/2(−1)l�̃
(

1 + l

2
�
h2

2

)
for h≤ 0�
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with �̃ the upper incomplete Gamma function, �̃(a�x) = ∫ ∞
x

sa−1e−s ds.
The base distributions on Θ0 are uniform distributions for δ on the inter-

vals {[−12	5�−12]� [−12�−11	5]� 	 	 	 � [12�12	5]}, and the base distributions on
Θ1�S = {(β�δ) : |δ| > 9} have δ uniform on {[−14�−13	5]� [−13	5�−13]� 	 	 	 �
[−9	5�−9]} ∪ {[9�9	5]� [9	5�10]� 	 	 	 � [14	5�15]}. The corresponding integrals
are computed via Gaussian quadrature using 10 nodes (for this purpose, the
integral under the alternative is split up in intervals of length 2). For n1 = n2,
symmetry around zero is imposed in the calculation of the ALFD.

C.3. Break Date

Wiener processes are approximated with 1000 steps. Symmetry around zero
is imposed in the calculation of the ALFD, and the set of base distribution for
|δ| contains uniform distributions on {[0�1]� [1�2]� 	 	 	 � [19�20]}.

C.4. Predictive Regression

Limit Experiment

As in the main text, let δ = rδ(Δn�d) = Δn − √
2Δnd and β = rβ(Δn�β) =√

2Δn/(1 − ρ2)b. After some algebra, under h= 0,

ln
fn�h(G)

fn�0(G)
=
√

2Δn

((b− dρ)

∫ 1

0
W μ

x�Δn
(s)dWy(s)√

1 − ρ2

+ d

∫ 1

0
Wx�Δn(s)dWx(s)

)

−Δn

(
d2

∫ 1

0
Wx�Δn(s)

2 ds + (b− dρ)2

1 − ρ2

∫ 1

0
W μ

x�Δn
(s)2 ds

)
	

Now suppose the following convergence holds as Δn → ∞:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2Δn

∫ 1

0
Wx�Δn(s)dWx(s)√

2Δn

∫ 1

0
W μ

x�Δn
(s)dWy(s)

2Δn

∫ 1

0
Wx�Δn(s)

2 ds

2Δn

∫ 1

0
W μ

x�Δn
(s)2 ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⇒
⎛⎜⎝Zx

Zy

1
1

⎞⎟⎠ �(32)



NEARLY OPTIMAL TESTS 7

where Zx and Zy are independent N (0�1). Then, as Δn → ∞,

ln
fn�h(G)

fn�0(G)

⇒ −1
2
b2 − 2bdρ+ d2 − 2(b− ρd)

√
1 − ρ2Zy − 2d

(
1 − ρ2

)
Zx

1 − ρ2

=
(
Xb

Xd

)′(
1 ρ
ρ 1

)−1(
b
d

)
− 1

2

(
b
d

)′(
1 ρ
ρ 1

)−1(
b
d

)
�

where Xb = ρZx +√
1 − ρ2Zy and Xd = Zx, and Condition 1 follows from the

continuous mapping theorem.
To establish (32), note that

∫ 1

0
W μ

x�Δn
(s)2 ds =

∫ 1

0
Wx�Δn(s)

2 ds −
(∫ 1

0
Wx�Δn(s)ds

)2

�∫ 1

0
Wx�Δn(s)dWx(s)= 1

2
(
Wx�Δn(1)

2 − 1
)+Δn

∫
Wx�δ(s)

2 ds�∫ 1

0
W μ

x�Δn
(s)dWy(s) =

∫ 1

0
Wx�Δn(s)dWy(s)−Wy(1)

∫ 1

0
Wx�Δn(s)ds	

Thus, with t = (t1� 	 	 	 � t4) and i = √−1,

φn(t) = E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
it ′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2Δn

∫ 1

0
Wx�Δn(s)dWx(s)√

2Δn

∫ 1

0
W μ

x�Δn
(s)dWy(s)

2Δn

∫ 1

0
Wx�Δn(s)

2 ds

2Δn

∫ 1

0
W μ

x�Δn
(s)2 ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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= E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
i

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−
√

2Δnt2√
2Δnt2

2Δnt3 + 2Δnt4 + √
2Δ3/2

n t1√
Δn/2t1

−2Δnt4

⎞⎟⎟⎟⎟⎟⎟⎟⎠

′

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Wy(1)
∫ 1

0
Wx�Δn(s)ds∫ 1

0
Wx�Δn(s)dWy(s)∫ 1

0
Wx�Δn(s)

2 ds

Wx�Δn(1)
2(∫ 1

0
Wx�Δn(s)ds

)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− it1

√
Δn/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
	

Note that

E

⎡⎢⎢⎣E
⎡⎢⎢⎣exp

⎡⎢⎢⎣i
(−

√
2Δnt2√

2Δnt2

)′
⎛⎜⎜⎝Wy(1)

∫ 1

0
Wx�Δn(s)ds∫ 1

0
Wx�Δn(s)dWy(s)

⎞⎟⎟⎠
⎤⎥⎥⎦
∣∣∣∣∣Wx

⎤⎥⎥⎦
⎤⎥⎥⎦

=E

⎡⎢⎢⎣exp

⎡⎢⎢⎣−1
2

(−
√

2Δnt2√
2Δnt2

)′

×

⎛⎜⎜⎝
(∫ 1

0
Wx�Δn(s)ds

)2 (∫ 1

0
Wx�Δn(s)ds

)2

(∫ 1

0
Wx�Δn(s)ds

)2 ∫ 1

0
Wx�Δn(s)

2 ds

⎞⎟⎟⎠

×
(−

√
2Δnt2√

2Δnt2

)⎤⎥⎥⎦
⎤⎥⎥⎦ 	
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Thus

φn(t) = E

⎡⎢⎢⎢⎢⎣exp

⎡⎢⎢⎢⎢⎣
⎛⎜⎝2Δnt3i+ 2Δnt4i+

√
2Δ3/2

n t1i−Δnt
2
2√

Δn/2t1i

−2Δnt4i+Δnt
2
2

⎞⎟⎠
′

×

⎛⎜⎜⎜⎜⎝
∫ 1

0
Wx�Δn(s)

2 ds

Wx�Δn(1)
2(∫ 1

0
Wx�Δn(s)ds

)2

⎞⎟⎟⎟⎟⎠− it1
√
Δn/2

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦

= E

⎡⎢⎢⎢⎢⎣exp

⎡⎢⎢⎢⎢⎣
⎛⎝ ln�1
ln�2
ln�3

⎞⎠′
⎛⎜⎜⎜⎜⎝

∫ 1

0
Wx�Δn(s)

2 ds

Wx�Δn(1)
2(∫ 1

0
Wx�Δn(s)ds

)2

⎞⎟⎟⎟⎟⎠− it1
√
Δn/2

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦

= det
(
I2 − 2V (γn)Ωn

)−1/2
exp

[
−it1

√
Δn/2 − 1

2
(γ −Δn)

]
�

where γn =√
Δ2

n − 2ln�1, Ωn = diag(ln�2 + 1
2(γn −Δn)� ln�3), and

V (γ) =
∫ ⎛⎝ e−γ(1−s)

1 − e−γ(1−s)

γ

⎞⎠⎛⎝ e−γ(1−s)

1 − e−γ(1−s)

γ

⎞⎠′

ds�

and the third equality applies Lemma 1 of Elliott and Müller (2006). Let Υn =
diag(1�

√
Δn). A calculation now shows that, as Δn → ∞,

ΥnV (γn)Υn → 0�

Υ−1
n ΩnΥ

−1
n =O(1)�

−it1
√
Δn/2 − 1

2
(γn −Δn)→ −1

2
t2
1 − 1

2
t2
2 + t3i+ t4i�

so that φn(t) converges pointwise to the characteristic function of the right
hand side of (32), which proves (32).

Computational Details

Ornstein–Uhlenbeck and stochastic integrals are approximated with 1000
steps. The base distributions on Θ0 are point masses at the points δ ∈
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{02�0	52� 	 	 	 �14	252}, and the base distributions on Θ1�S are point masses on
δ ∈ {160�165� 	 	 	 �190}, with the corresponding value of β as in (24) with
b= 1	645.

Modified Version of Campbell and Yogo (2006) Test

In the main text, we compared our test to the Campbell and Yogo (2006)
(CY) test for predictive ability of a persistent regressor. As noted there, our
test controls size uniformly for δ ≥ 0. In contrast, the CY test inverts the DF-
GLS unit root test, which, as noted by Mikusheva (2007), results in a confi-
dence interval for the autoregressive parameter r that does not have uniform
coverage properties over all δ.

We modified the CY procedure so that the confidence set for r was con-
structed using pointwise t-tests of H0 : r = r0 for all possible values of r0 (as in
Hansen (1999)). As in CY, the nominal size for the subsequent (augmented)
t-test of γ = 0 with r known was set at 5%, and the coverage rate for the point-
wise confidence sets for r were determined so that the overall size of the test for
γ = 0 was 5%. Figure 8 compares the (asymptotic local) power of this particu-
lar modification of CY with the nearly optimal test derived in Section 5.3. As
expected, the modified CY test does not show a drop-off in power for large δ.
It does show somewhat lower power than the original CY test for moderate
values of δ, although this may be a reflection of the particular size correction
we employed.

C.5. Set Identified Parameter

Limit Experiment

We consider convergence for β ≥ 0 as ΔL → ∞; the convergence for β ≤ 0
follows analogously.

Set β = b, δP = dP , and δL = Δn + dL, so that in this parameterization, μl =
τ(b�dP) = 1[b > 0]b − 1[b = 0]dP and μu = Δn + dL + τ(b�dP). For any fixed
h= (b�dL�dP) ∈ R

2 × [0�∞), as Δn → ∞,

log
fn�h(Y)

fn�0(Y)
=
(

Yl

Yu −Δn

)′
Σ−1

(
τ(b�dP)

τ(b�dP)+ dL

)
− 1

2

(
τ(b�dP)

τ(b�dP)+ dL

)′
Σ−1

(
τ(b�dP)

τ(b�dP)+ dL

)
	

Because (Yl�Yu − Δn)
′ ∼ N (0�Σ) for h = 0 as Δn → ∞, Theorem 9.4 in van

der Vaart (1998) implies that Condition 1 holds with

X =
(
Xb

Xd

)
∼N

((
τ(b�dP)

τ(b�dP)+ dL

)
�Σ

)
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FIGURE 8.—Power comparison with modified Campbell and Yogo (2006) test. Dashed lines
are the power of the modified CY test, and solid lines are the power of the nearly optimal tests
ϕε

Λ∗�S�χ of Section 5.3 for b ∈ {0�1�2�3�4}.

The test of H0 :b = 0, (dL�dP) ∈ R × [0�∞) against H1 :b > 0, dL ∈ R in this
limiting experiment thus corresponds to H0 :E[Xb] ≤ 0 against H1 :E[Xb]> 0,
with E[Xd] unrestricted under both hypotheses. The uniformly best test is thus
given by ϕlim

S (x)= 1[xb > cv]: This follows by the analytical least favorable dis-
tribution result employed below (29) assuming dP = 0 known, and since ϕlim

S is
of level α also for dP > 0, putting all mass at dP = 0 is also least favorable in
this more general testing problem.

A test with the same asymptotic rejection probability for any fixed h is given
by ϕS(y)= 1[yl > cv].

Computational Details

The base distributions on Θ0 have δL uniform on the intervals {[0�0	1]�
[0�0	5]� [0	5�1]� [1�1	5]� 	 	 	 � [12	5�13]}, with δP an equal probability mixture
on the two points {0� δL}. The base distributions on Θ1�S have δL uniform on
the intervals {[9�9	25]� [9	25�9	5]� 	 	 	 � [11	75�12]}.

C.6. Regressor Selection

Symmetry around zero is imposed in the computation of the ALFD. The
base distributions on Θ0 are point masses at |δ| ∈ {0�0	2�0	4� 	 	 	 �9}.
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