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The paper investigates inference in non-linear and non-Gaussian models with moderately time-
varying parameters. We show that for many decision problems, the sample information about the
parameter path can be summarized by an artificial linear and Gaussian model, at least asymptotically.
The approximation allows for computationally convenient path estimators and parameter stability tests.
Also, in contrast to standard Bayesian techniques, the artificial model can be robustified so that in
misspecified models, decisions about the path of the (pseudo-true) parameter remain as good as in a
corresponding correctly specified model.

1. INTRODUCTION

One of the central concerns in time series modelling is the stability of parameters through
time. A large body of econometric work has developed around testing the hypothesis that
parameters are time invariant; see Stock (1994) and Dufour and Ghysels (1996) for surveys
and references. Empirically, there is substantial evidence of instabilities in the parameters
of finance and macroeconomic models as documented in Stock and Watson (1996), Ghysels
(1998), Primiceri (2005) and Cogley and Sargent (2005), just to name a few.

Once instabilities are suspected, a natural next step is to document their form. Knowledge of
the parameter path is useful for a number of purposes. First, the estimated path is an interesting
descriptive tool, as it helps to understand potential sources of the instability. Second, the end
point of the parameter path is useful for forecasting purposes. Third, economic theory might
imply certain features of parameter paths (think, for instance, of convergence models with
time-varying mean growth of GDP), for which one might want to test in econometric models.
Finally, the time-varying value of the parameter can sometimes be given a useful structural
interpretation, such as a time-dependent marginal effect in a regression model.

There are several approaches to estimating the parameter path. One strand develops fre-
quentist inference for the break date in models where the parameters are known a priori to be
subject to a small number of sudden shifts, such as Bai (1997), Bai and Perron (1998), and
Elliott and Miiller (2007). A Bayesian literature (e.g. Hamilton, 1989; Chib, 1998; Sims and
Zha, 2006) posits a finite number of regimes for the parameter values and obtains posterior
probabilities for each regime through time. Priestley and Chao (1972), Robinson (1989, 1991),
Wu and Zhao (2007), and Cai (2007), among others, develop non-parametric kernel estimators
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of the time-varying parameter. Finally, a large frequentist and Bayesian literature estimates
models under the assumption of a smooth stochastic evolution of the parameter. When the
parameters enter the model linearly and disturbances are assumed Gaussian, then these models
can be estimated by variants of Kalman filtering and smoothing—see Harvey (1989) for a
review. This is not possible for models with time-varying parameters that affect, say, variances
and covariances, and considerably more involved numerical techniques have been developed to
deal with such models: see, for instance, Harvey, Ruiz, and Shephard (1994), Jacquier, Polson,
and Rossi (1994), Durbin and Koopman (1997), Shephard and Pitt (1997), Kim, Shephard,
and Chib (1998), and Primiceri (2005) for the estimation of models with time-varying second
moments. In general, the estimation of time-varying parameter models outside the Gaussian
state space framework requires fairly complicated and model-specific numerical techniques.

This paper is closely related to this last strand. We consider a general parametric model with
local time variation, in the sense that good tests would detect the instability with probability
smaller than 1 even in the limit. We analyse estimators and tests that minimize weighted average
risk (WAR) and maximize weighted average power over the set of possible parameter paths,
where the weighting function is proportional to the distribution function of a Gaussian process,
and focuses on such local parameter variability. The main contribution is an asymptotically
accurate approximation to the sample information about the parameter path. This approximation
turns the problem of inference about the parameter path in the general likelihood model into
the problem of inference about the parameter path in a linear Gaussian pseudo model, with the
sequence of scores (evaluated at the usual maximum likelihood estimator) as the observations.
Asymptotically efficient parameter path estimators and test statistics thus become straightfor-
ward to compute, and the estimation and testing problem are unified in one coherent asymptotic
framework. In the special case of an underlying parametric model that is stationary for stable
parameters, and a weighting that corresponds to the distribution of a Gaussian random walk,
the approximate pseudo model can be chosen as a local level model in the sense of Harvey
(1989), and optimal path estimators are obtained by an exponential smoothing of the sequence
of score vectors. From a Bayesian perspective with the weighting function interpreted as the
prior, our results provide an asymptotically accurate multivariate Gaussian approximation to
the posterior distribution of the parameter path.

When the likelihood is misspecified, exact Bayesian inference no longer minimizes WAR
by construction, even for losses about the pseudo-true parameter value in the sense of White
(1982). We extend the ideas in Miiller (2009) to construct a robustified pseudo model around the
“sandwich” covariance matrix which yields as good asymptotic inference about the parameter
path as one would obtain from a correctly specified model with Fisher information equal to
the inverse of the sandwich covariance matrix. This robustness property further strengthens the
appeal of the suggested approximation over the computationally intensive Bayesian solution,
which cannot be easily robustified in the same fashion. Even if the original model is Gaussian
and linear, so that the pseudo model approximation can be chosen to be exact in the correctly
specified model, inference becomes more reliable in large samples by replacing the original
likelihood by the robustified pseudo model.

The asymptotics considered in this paper are such that the magnitude of the instability
decreases as the sample size increases. Even asymptotically, there is only limited information
about the form of the instability (in contrast to the set-up underlying the non-parametric kernel
estimators). We stress that parameter variations that are “small” in the statistical sense of
being non-trivial to detect need not be small in an economic sense. For instance, in a stylized
model, a sudden shift of 1.2 percentage points in yearly GDP mean growth in the middle
of a sample of 180 quarterly observations is detected less than half the time by 5% level
efficient stability tests (Elliott and Miiller, 2007), yet such a shift is arguably of major economic
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(and policy) relevance. Many instabilities that economists care about, such as those arising
from Lucas-critique arguments (for instance Linde, 2001), the stability of monetary policy
(for instance Bernanke and Mihov, 1998), or reduced-form bivariate econometric relationships
between macroeconomic variables in general (Stock and Watson, 1996) have been difficult (or at
least non-trivial) to determine empirically and are hence “small” in the statistical sense. In these
instances, accurate approximations might well be generated by a modelling strategy in which,
correspondingly, there is only limited statistical information about the instability asymptotically.

Our results are driven by a quadratic approximation to the log-likelihood of the general
model. Such approximations of the likelihood for models with a finite dimensional parameter
have a long history in statistics and econometrics and allow the substitution of a complex
decision problem by a simpler one—see, for instance, LeCam (1986). Recent applications in
time-series econometrics include Andrews and Ploberger (1994), Phillips and Ploberger (1996),
and Ploberger (2004). The sample information about the parameter path is more difficult to
approximate, as the path is not finite dimensional. Some numerical methods for time series
models with latent variables, such as those developed by Durbin and Koopman (1997) and
Shephard and Pitt (1997)—see Durbin and Koopman (2001) for an overview—employ sim-
ilar quadratic expansions of the log-likelihood at some stage. Brown and Low (1996) and
Nussbaum (1996) prove the asymptotic equivalence of some specific infinite dimensional deci-
sion problems with the continuous time problem of observing Gaussian white noise with some
unknown drift. These papers (essentially) establish the asymptotic equivalence of the frequentist
risk for any bounded loss function. Compared to this literature, our results are more specific,
as we only show equivalence with respect to WAR, where the weighting functions correspond
to the distribution of a (finite mixture of) Gaussian processes. At the same time, our results are
substantially more general, as they apply to a wide class of parametric time series models.

The remainder of the paper is organized as follows. The next section heuristically derives
the approximating pseudo model, provides a simple algorithm for the path estimator and
parameter stability test statistics for a random walk weighting function, and numerically illus-
trates the ideas with the problem of estimating time-varying variances. Section 3 contains
the formal discussion of our results, and Section 4 concludes. All proofs are collected in the
Appendix.

2. MOTIVATION AND DEFINITION OF EFFICIENT PARAMETER PATH
ESTIMATORS AND STABILITY TESTS

2.1. Heuristic derivation of approximating pseudo model

Consider a stationary and stable time series model with known log-likelihood function of
the form Zthl 1,(9), with parameter § € ® C R¥. The corresponding unstable model has the
same likelihood with time-varying parameter {6,}th1 =1{0+ 6,}th1. Suppose the researcher is
interested in obtaining path estimators of low expected loss for some given loss function, that
is, low risk. Risk depends on the true parameter path {6 + 8t}tT:1, and no estimator achieves
uniformly low risk over all such paths. A reasonable frequentist criterion for the quality of
a path estimator thus is WAR, where the weighting is over alternative true parameter paths.
In particular, in this paper we derive asymptotically WAR minimizing path estimators for a
diffuse weighting of baseline value 6, and a weighting function for the deviations {§, thl that
correspond to the distribution of a Gaussian process of magnitude 7~'/2.

The sample information about the path {6 + §; thl is fully contained in the function
> 1,(6 + 8;), where “>°” denotes a sum over t =1,...,T. Let # be the maximum like-

~

lihood estimator of 6 ignoring parameter instability, i.e. & maximizes »_/,(6). Denote by
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5:(0) = 31,(0)/930 the sequence t = 1,...,T of k x 1 score vectors, and by h;(9) = —ds;(0)/96’
the sequence of k x k Hessians. By T second-order Taylor expansions of [, around 0

SO +8) — 1(6) = Ylsi () (O + 8 — ) — 50 + 8 — ) (GO +8 —O)] (1)

where 6, lies on the line segment between 6 + 8, and . Suppose the likelihood model is regular
enough to ensure a “Local Law of Large Numbers” for the Hessians, such that for sequences
{6,}1_, with 6, close to § for t =1,...,T, T~' Y h(6,) — H 2.0, where the matrix A is
defined as H = T~'>" h,(9). Since the deviations {6;}_, are persistent and of order T~!/2,
and the maximum likelihood estimator & is a ~/T-consistent estimator of the baseline value 6,
the sequence {6 + 6; — é}thl is persistent and of order 7~!/2. Also, because the stable model
is assumed stationary, smooth averages of h,(6;) are close to H in all parts of the sample, so
that

S0+ 8 — 0V h(0)O + 8 — ) =Y (0 + 8 —OYH (O + 5 — D). )

One might think that a more accurate approximation of hy(6,) is given by h,(0) rather than by
A as in (2). But this is not necessarily the case. A (local) average of h:(9) might well be a
good approximation to the (local) average of ht(é,) even if the approximation h,(é,) ~ h; (é) is
poor, and given that §, is persistent, only the (local) average of h,(é,) matters.

Using (2), we obtain

D U0 +8) — L(0) = 35,0 A 5,(0))
~ LY (s(0) = HO + 8, — O)Y A (5:(0) — H©O + 8 — ), 3)

Neither > ,(9) nor " s5,(0)H ~'s;(6) depend on {0 + 8,}IT=1, so that ignoring these constants,
the log-likelihood of the path {6 + zS,}th1 is well approximated by a quadratic form.' In fact,
the right-hand side of (3) is recognized as the log-likelihood function of the Gaussian random
variable s,(8) + H6 with mean H (0 + 8;) and covariance matrix . The information in the

sample about 6 + §; can therefore be approximately summarized by the pseudo model
sOH+HO=HO+8)+v,t=1,...,T 4)

with v, ~ i.i.d.N(O,ﬁ ). The pseudo model (4) links the observed variables on the left-hand
side with the object of interest {0 + 6,}sz1 in a particularly straightforward manner, as the
matrix multiplying 6 + §, does not depend on .

For a weighting function for the baseline value 6 that is diffuse, the weighting on the mean
T='>"6, in (4) has no bearing on the analysis. For convenience, one might thus assume a
weighting function for {8,}th1 that corresponds to the distribution of a demeaned Gaussian
process (so that > 8, = 0 and &, is the deviation at date ¢ from the average parameter value
#). Under that assumption, we trivially have ZS;I:I (6 —6) =0, and also Y s,(f) =0 from
the first-order condition of the maximum likelihood estimator. Thus, the right-hand side of (3)
becomes

=313 (s/(0) — H8,YH " (5:(0) — HS,) — 3T(0 — 6YH (0 — 0)

1. Shephard and Pitt (1997) and Durbin and Koopman (1997) employ second-order Taylor expansion of the
log-likelihood as in (1) to derive proposal densities for their simulation based analysis of non-Gaussian state space
models, but they do not consider the additional simplification of the approximating model provided by (2).
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a

and the sample information about ¢ and {4,},_,

by the pseudo model

is approximately independent and described

0=0+T""2A " 5)
s =H8 +v, t=1,...,T (6)

with v, ~ i.i.d. N(0, H). The approximation in (5) is the standard Bernstein—von Mises result
that in large samples, the likelihood about a parameter converges to that of a Gaussian random
variable with mean 6 and covariance matrix 7~'A~!. The focus and contribution of this
paper is to argue for the Gaussian “local level” model (6) (or, equivalently, for (4)) as an
asymptotically efficient summary of the sample information about the deviations {8,}ZT= - For
weighting functions for {4, [T: | that are Markovian, the information about the parameter path
can then be extracted by variants of the Kalman smoother. Also, asymptotically efficient tests
of parameter instability in the general likelihood model can be obtained by performing an
optimal test in the pseudo model.

Now suppose that the likelihood is misspecified. As demonstrated by White (1982), § then
consistently estimates the pseudo-true parameter 6 in a stable model, and § has an asymptoti-
cally Gaussian sampling distribution with the “sandwich” covariance matrix S, v7(0 — 6y) =
MO, S). This sandwich matrix is typically consistently estimated by § = A~'VH !, where V
is a consistent estimator of the long-run variance of s;(6y), such as V=71 > 5:(0)s,(0) if the
scores remain uncorrelated under misspecification, or a Newey and West (1987)-type estimator
if not. At the same time, the Taylor expansions leading to (5) and (6) are heuristically valid
even if Y /;(0) does not describe the true likelihood. There is a mismatch between the pseudo
model (5),  ~ N(®,H~"/T), and the approximate sampling distribution & ~ A8, S /T) under
misspecification. Miiller (2009) shows that due to this discrepancy, lower risk decisions about
the pseudo-true parameter value are obtained by using the “correct” model 6 ~ N(0,8/T)
under parameter stability. The analogous robustified pseudo model in the context of inference
about the pseudo-true parameter path is given by

0=60+T""8y, (7)
AV '@ =818 +v, t=1,....T (8)

with v, ~ i.i.d. MO0,S —1). Note that the long-run variance of the robustified scores A V‘ls,(eo)
equals the robustified average Hessian S ~!, so that (7) and (8) behave like a correctly specified
model with Fisher Information S ~'. Also, if the model is correctly specified, V — H 2o by
the information matrix equality and S—' — A 2,0, so that the robustified pseudo model is
large sample equivalent to the pseudo model (5) and (6).

2.2. Parameter path estimator and test statistic for random walk parameter evolution

We now turn to an explicit description of the optimal parameter path estimator and test statis-
tics assuming an approximately stationary model and a weighting function for §, that is a
(demeaned) multivariate Gaussian random walk. We allow for a potential misspecification of
the likelihood, and assume that under misspecification, the object of interest is the evolution
of the pseudo-true parameter, so that inference is based on the robust local level pseudo model
(7) and (8).

A random walk weighting function (or prior in a Bayesian context) has been used exten-
sively in econometric applications: see, for instance, Harvey (1989), Stock and Watson (1996),
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Stock and Watson (1998), Stock and Watson (2002), Boivin (2003), Primiceri (2005), and Cog-
ley and Sargent (2005). Without loss of generality, let the first p < k parameters of 6, denoted
B, be those whose path is to be estimated (so that the last k — p elements of §; are zero). A
theoretically attractive choice for the covariance matrix of the Gaussian random walk is to let
the first p elements of {3t}zT=1 to be proportional to the corresponding elements of S, the inverse
of the information. This choice equates the degree of uncertainty about the time variation of
B in any given direction with the average sample information about that direction, and hence
leads to equal signal-to-noise ratios in all unstable directions. Also, under this choice, asymp-
totic results remain identical under re-parameterizations of 8. For the factor of proportionality
c?/T?, we suggest a default choice of minimizing WAR relative to an equal-probability mixture
of ng = 11 values ¢ € {0,5,10,...,50}. The value c is interpreted as the standard deviation
of the end point of the random walk weighting function, measured in multiples of the standard
deviation of the full sample parameter estimator. The suggested list of values for ¢ thus cover
a wide range of magnitudes for the time variation. An approximately WAR minimizing path
estimator under truncated quadratic loss with large truncation point, and large sample weighted
average power maximizing parameter stability test, are obtained as follows:

1. For t =1,...,T, let x, and y, be the first p elements of ﬁ’ls,(é) and I:I‘A/’ls,(é),
respectively.
2. For ¢; € C ={0,5,10,...,50},i =0,...,10, compute

@ ri=1-¢/T,zip=x1and z;y = riZi;—1 +% —x-1,t =2,...,T,
(b) the residuals {Z,}7_, of a linear regression of {z;,}"_, on {r/~'1,}T_;
© Zir=Zirand Zjy = rZigr1 + g — Zgr, t =1,...,T = 1;

@ Bt =0 +x —rzid;
(&) qLL(c;) = 1y (rZa —x) 5 and W = \/T(1 — 2]~ /(1 — r27) expl—LqLL(c)]
(set wo = 1).

3. Compute w; = W;/ Z}go wj.

4. The parameter path estimator is given by {ﬁ,}tT:1 = {Zilio w; ﬁ,-,,}thl.
5. The statistic qLL(10) tests the null hypothesis of stability of 8 and rejects for small values.
Critical values depend on p and are tabulated in Table 1 of Elliott and Miiller (2006).

In many applications, it will be of interest to get some sense of the accuracy of the path
estimator {,3,}?:1. One such measure is given by the variances

10 2 2ct/T 2¢(1—t/T)
1A N PO N cl+e“+e +e )
Q = ;‘wi(T Spri(c) + Bia = B)Bia = B wile) = e

where S',g is the upper left p x p block of § = H~'VH " and «,(0) = 1. From a Bayesian
perspective with the weighting function for {zS,}tT:1 and 6 interpreted as priors, €2, is the
covariance matrix of the approximate posterior for 8;. This approximate posterior distribution is
a mixture of multivariate normals ./\/(ﬁ,-,,, T_ISﬂK;(Ci)), i =0,...,10, with mixing probabilities
w;. The interval [3,J —1.96,/%; j;, ﬁ,,,' + 1.96,/€2, ;1 with ﬁ,,,' the j-th element of ,& and 2, j;
the (j,j) element of €2, is thus approximately the 95% equal-tailed posterior probability interval
for B, the j-th component of § at time ¢ (one could, of course, also determine the exact 95%
interval for the given mixture of normals posterior, with typically very similar results). This
interval is not a confidence interval in the frequentist sense, but it can be justified without
explicit Bayesian reasoning as a WAR minimizing interval estimator—see Chapter 5.2.5 of
Schervish (1995) and the example below.
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TABLE 1

Weighted average risks in time varying variances model

c=4 c=238 c=12

df [} 12 6 00 12 6 00 12 6

Average square loss, T = 160

Known ¢, local level 1.02 1.02 1.02 1.17 1.17 1.13 1.58 1.55 143
Known ¢, Kalman 1.01 1.01 1.01 1.05 1.06 1.05 1.17 1.19 1.16
Unknown ¢, Bayesian 1.25 1.55 2.10 1.13 1.26 1.53 1.10 1.16 1.33
Unknown c, local level 1.17 1.22 1.21 1.29 1.30 1.25 1.73 1.70 1.57
Unknown ¢, Kalman 1.15 1.18 1.17 1.12 1.13 1.11 1.24 1.25 1.21
Average square loss, T = 480
Known ¢, local level 1.01 1.00 0.99 1.07 1.06 1.03 1.25 1.20 1.15
Known ¢, Kalman 1.00 1.00 0.99 1.02 1.01 0.99 1.04 1.04 1.02
Unknown ¢, Bayesian 1.26 1.67 2.89 1.13 1.32 1.93 1.09 1.20 1.58
Unknown c, local level 1.19 1.21 1.26 1.20 1.18 1.18 1.37 1.32 1.29
Unknown ¢, Kalman 1.17 1.19 1.21 1.11 1.10 1.09 1.12 1.11 1.09
End point interval estimation loss, 7 = 160
Known ¢, local level 1.01 1.01 0.93 1.09 1.10 0.99 1.39 1.36 1.21
Known ¢, Kalman 1.01 1.00 0.93 1.03 1.04 0.96 1.10 1.09 1.02
Unknown ¢, Bayesian 1.22 1.31 1.37 1.14 1.17 1.17 1.13 1.12 1.11
Unknown c¢, local level 1.20 1.22 1.15 1.26 1.26 1.15 1.56 1.53 1.36
Unknown ¢, Kalman 1.20 1.22 1.16 1.20 1.20 1.12 1.28 1.27 1.21
End point interval estimation loss, 7 = 480
Known ¢, local level 1.01 0.98 0.91 1.03 1.01 0.92 1.15 1.10 1.01
Known ¢, Kalman 1.01 0.98 0.91 1.01 1.00 0.91 1.03 1.02 0.95
Unknown ¢, Bayesian 1.24 1.35 1.65 1.13 1.16 1.30 1.11 1.13 1.18
Unknown c¢, local level 1.21 1.21 1.21 1.20 1.17 1.11 1.29 1.26 1.17
Unknown ¢, Kalman 1.21 1.21 1.20 1.17 1.15 1.09 1.18 1.18 1.11

Notes: Data generating process parameters are in columns, estimation procedures in rows. Entries are weighted average risk relative
to Bayesian inference in model (9) with ¢ known based on 3200 data draws. “Unknown c¢, local level” inference is as described
in Section 2.2, and “Known ¢, local level” inference is based on the pseudo model (7) and (8) and the column weighting func-
tion. “Kalman™ inference is based on the pseudo model (23) below with s/(9) = AV ~ls;(0) and i} = AV~! ZZ:] ST —
) (0)/ ZZ;I ¢(T*4/5(s — 1)), where ¢ is the density of MO, 1), combined with the column weighting function in the “Known ¢”
rows, and with an equal probability mixture of random walks weighting function with variances CZS‘/TZ, ¢ € C, in the “Unknown ¢”
rows as described in Theorems 4 and 5 below, implemented using the algorithm in the Appendix. “Unknown ¢, Bayesian” inference
is based on a uniform discrete prior on {0, 1,2,...,50} for c. Posteriors are estimated by a combination of importance sampling (with
a “Kalman”-type approximation as proposal) and Gibbs sampling using the algorithm described in Kim, Shephard, and Chib (1998).

2.3. Time varying variances example

We now turn to a numerical illustration of these ideas. Specifically, consider the problem of
estimating the path of the log-standard deviations of a univariate time series,

v = explOle;, & ~i.id. NO, 1), t=1,...,T 9)

so that, up to a constant, /,(0) = —6 — %exp[—ZO]ytz, s5;(0) =—1+ exp[—29]yt2, h(0) =
2exp[—20]y2, 6 = 2In[T~'>"y?] and H = H = 2. The specification (9) has been used as
a building block to model time-varying variances in macroeconomics and finance—see, for
instance, Jacquier, Polson, and Rossi (1994), Durbin and Koopman (1997), Kim, Shephard,
and Chib (1998), Shephard and Pitt (1997), Stock and Watson (2002), Primiceri (2005) and
Cogley and Sargent (2005). These papers develop and apply Bayesian methods for estimat-
ing the parameter path ;. By minimizing posterior expected loss for each observed data set,
Bayesian methods also minimize WAR with weights equal to the prior in a correctly specified
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model. It thus makes sense to use Bayesian inference as a benchmark for the WAR of the path
estimator described above. While the estimation of all models is based on the likelihood of
(9), we also compute risk for data that is drawn from

df — 2
df

so that the maintained model (9) is misspecified for df < co. Note that 6;, the log-standard
deviation of y;, remains the pseudo-true parameter in (10) when estimating (9).

In addition to the path estimator based on the local level pseudo model (7) and (8) of
Section 2.2, we also consider inference based on a robustified pseudo model that does not
replace 5, @) by the constant A in (2), but by a kernel smoothed average of /,(6). This pseudo
model leads to a somewhat more involved Kalman-smoother-based algorithm for obtaining an
optimal parameter path estimate described in the Appendix. The potential advantage is higher
approximation accuracy, as the smoother takes into account some low-frequency movements
in h,(0,).

We compare WAR in two decision problems: (i) estimation of the parameter path under
mean square error loss, so that for a path estimate {a,}thl, loss is given by 77! (6, — a,)* (and
risk becomes mean squared error averaged over t); (ii) estimation of an interval [a;, a;] for the
end point of the parameter path 07, with loss equal to a; — a; + 40 - 1[07 < a;1(a; — 6r) + 40 -
1[07 > a,](0r — a,) (so that a 10% increase in risk is equivalent to systematically reporting
10% longer intervals with the same coverage probability, and with end points that are no closer
to 7 when 67 falls outside the interval).? Under the approximation discussed in Section 2.2
(with p =k =1 and {B,}_, = {§;}_,), the best decisions are given by {a}_, = {9,}"_,
and, using Proposition 5.78 of Schervish (1995), [4;,a,] = [6r — 1.96, /i Or + 1.96, /i1,
respectively.

WAR equals expected loss for data that is generated with parameters randomly drawn from
the weighting function. Table 1 reports relative WAR estimated in this way for the weighting
function 0y ~ N0, 100) and 6, — 6,_; ~ i.i.d. N(0,c?/HT?) for ¢ = 4,8,12 and T = 160, 480
(think of 40 years of quarterly and monthly data, respectively). Under this weighting function,
the median range of {9,},T=1 is approximately 1.1¢/+/T, and 1.1¢/+/T ~ 0.70 for ¢ = 8 and
T = 160, which compares with the estimated range of the log-standard deviation of the US
four-quarter growth rate of about 0.59 (cf. Table 1, Stock and Watson, 2002). By inverting
the QLR test statistic, Stock and Watson (1996) obtain median unbiased estimates for ¢ for
the parameters of 76 univariate AR(6) models of US post-war macroeconomic monthly time
series, and never find an estimate larger than 12. Cogley and Sargent (2005) estimate time-
varying coefficients and volatility of a monetary VAR and report that this time variation would
be detected by a 5% level parameter stability test about 25% of the time, which roughly
corresponds to the columns with ¢ = 4 in Table 1. This evidence suggests that the degree of
instability implied by the weighting functions considered in Table 1 are moderate to large by
an empirical standard.

Except for Monte Carlo error, the entries under “df = oo, known ¢” must be larger than
unity by the small sample optimality of Bayesian inference in the correctly specified model.
At the same time, the results of Section 3 show that these entries are approximately equal to
1 for large sample sizes. For “unknown c¢”, the moderately lower risk of pseudo-model-based
inference relative to Bayesian inference in the correctly specified model with ¢ = 4 seems to

v; = explé;] &, & ~i.i.d.student-t(df), df >2, r=1,...,T, (10)

2. The theoretical development in Section 3 assumes loss to be bounded. We computed WARs with truncated
loss functions and truncation point 40 times larger than the median loss, and found results very similar to those
reported in Table 1.
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stem from a moderate downward bias in the estimated ¢ induced by the robustification. Under
misspecification, Bayesian inference is no longer optimal by construction, and inference based
on robust pseudo models does relatively better. This effect is especially pronounced when ¢
is unknown, since Bayesian inference rationalizes outliers generated by the student-z distur-
bances by variation in 6, leading to an upward biased posterior for ¢, and a corresponding
under-smoothing of the parameter path. For very large instabilities ¢ = 12, the simple algo-
rithm of Section 2.2 has substantially larger WAR relative to Bayesian inference, but the more
complicated Kalman pseudo model continues to provide quite accurate approximations.

In the Supplementary Materials,® we report additional computations for true paths that are
either a linear trend or a step function with known or unknown break date. As expected, path
estimators that impose the correct parametric restriction have lower risk relative to the Local
Level and Kalman smoother path estimators, at least if the magnitude of the instability is large.
At the same time, in the single break model with small or moderate break (less than 6 standard
deviations of the full sample estimator #), the Local Level and Kalman estimators outperform
estimators of the path that rely on a break date estimated by the least squares mean shift of

lye| or y2.

3. ASYMPTOTICALLY EFFICIENT INFERENCE IN UNSTABLE
TIME SERIES MODELS

‘We begin by introducing some additional notation and definitions. Consider a standard paramet-
ric model for data Y7 = (yr1,...,yr.1) € R™ in a sample of size 7', a random vector defined
on the complete probability space (F,§,P), with parameter 6 € ® C R¥, and known density
]_LTZI Jfr.+(0) with respect to some o -finite measure (7. This form of likelihood arises naturally
in the “forecasting error decomposition” of models, where fr,(6) is the conditional likelihood
of yr, given §r,—1, where §r, C § is the o-field generated by {yT,S}gzl. In models with
weakly exogenous components, fr,(6) can be decomposed into two pieces fr,(6) = le,t(Q)sz’t,
where szJ captures the contribution of the evolution of weakly exogenous components and does
not depend on 6. If this is the case, only le,t (0) needs to be specified. Define /7 ,(0) = Infr,(6),
s74(0) = alr,(0)/90, and hy ,(6) = —ds7,(0)/96". In the following definitions and conditions,
we omit the dependence on T of §r, Ir;, ST+, hr,, and so forth, to enhance readability. Let
[-] indicate the largest lesser integer function, let || - || denote the spectral norm, let “®” be the
Kronecker product, and let «2.» and “=” denote convergence in probability and convergence
in distribution as T — oo, respectively. Convergences of cadlag functions on the unit interval
are relative to the usual Billingsley (1968)-metric.
We assume the following condition on this model with true and stable parameter 6.

Condition 1 (MEAS). The functions leJ :R™ x © +— R are jointly measurable for t =
1,...,T.

(DIFF) 0y is an interior point of ®, and in some neighbourhood ®y C ® of 6y, [, is twice
continuously differentiable a.s. fort =1,...,T.

(ID) There exists n > 0 such that for all € > 0 there exists K (¢) > O for which P(supug_gol‘Ze
T3 supyyy cr-1/241 g 1y eo (0 +v) — 1i(6)) < —K(€)) — 1

(LLLN) (i) For any decreasing ball By around 0y, i.e. By =1{0 : |0 — 0y|| < br} for a
sequence of real numbers by — 0, T~ Z,T:1 supgep, |11:(0) — hi(0o)|| Lo, (i) T~! Zthl

11 60| = Op(1) and (iii) supypo 1y | T~ S0 b (00) — fiy Tyl || L> 0 for some nonstochas-

=1
tic matrix function I (possibly indexed by 0y), with T'(X) positive definite for all ) € [0, 1].

3. Supplementary Materials are located on the ReStud website. See http://www.restud.org.uk/supplementary.asp
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(MDA) {s:(60),3S:} is a martingale difference array, there exists € > 0 such that 7! Z;T: |
EIs:00)]**§-11 = 0,(1) and  sup,cio 1T~ 2 ELsi(60)s,(00) 1§11 — [y T()al|

2oo.

Condition 1 is a set of fairly standard high-level assumptions on the “forecast error decom-
position” part of the likelihood. (DIFF) assumes existence of two derivatives. (ID) is similar to
the global identification condition assumed in Schervish (1995, p. 436), somewhat strengthened
to ensure that even a slightly perturbed evaluation of the likelihood at parameter values different
from 6, still yields a lower likelihood with high probability. (LLLN) is a Local Law of Large
Numbers for the second derivatives h;. Part (i) controls the average variability of the second
derivative h; as a function of the parameter. Part (iii) allows the information accrual to vary
over the sample, and I'(A) describes the average information at time # = [AT]. This allows, for
instance, accommodating regression models with a time trend 7/7 as regressor (the scaling by
1/T ensures that the probability limit of 7! ZP:TI] h¢(6p) remains O, (1) and positive definite).
If h(6p), t =1,...,T is positive semi-definite almost surely, part (ii) of (LLLN) is implied
by part (iii). (MDA) assumes the sequence of scores to constitute a martingale difference
array with slightly more than two conditional moments, with an average conditional variance
of I'(}) at time ¢t = [AT]. Whenever the relevant conditional moments exist, {s;(6p},T;} and
{s:(60)s,(00) — hy(6y),S,} are martingale difference arrays by construction—see Chapter 6.2
of Hall and Heyde (1980). Phillips and Ploberger (1996) and Li and Miiller (2009) make very
similar assumptions to (LLLN) and (MDA). Models with asymptotically stochastic information,
such as unit root models, are not covered by Condition 1.

Now consider an unstable version of this parametric model, with time-varying parameter
0, =0+6,t=1,...,T, so that the density of the data Y7 becomes

T
fr0.8) =] [fra@+8), 0+8 e®fort=1,..T (11)
=1
where 6 and §; are k x 1 and § = (8],...,8}) € R™.* Alternative estimators of {6 + &}’_,, or
generally actions, are evaluated via a loss function Ly : R x R™ x A7 + [0,L] C R, where
the action space A7 is a topological space and Ly is assumed Borel-measurable with respect to
the product sigma algebra on RF x R™* x Az. (For reasons that will become apparent below,
loss is also defined for parameter values outside ©.) The bound L is finite and does not depend
on T'; this assumption of bounded loss greatly facilitates the subsequent analysis. When the true
parameter evolution is {6 + 8,},T=] and action a € Ar is taken, the incurred loss is Ly (6,6, a).
A typical action could be an estimate of the entire parameter path, so that Ay = @7, or an
estimate of the parameter at a specific point in time, in which case Ay = ©®. Decisions a are
measurable functions from the data to Az. The risk of decision @ given parameter evolution
{6 + 5,}th1 is hence given as r(0,68,a) = fLT(G, 8,a)fr(0,8)d ur, which in general depends on
é and 6.
Let Q7 be a measure on R’%, and let w : ® > [0, c0) be a Lebesgue probability density. For
each 8 € O, let Vr(8) = {8 : 8, + 6 € OVt} C R’ . The WAR of decision 4 is then given by

WAR(&):/ w(0) r(6,8,a)dQr(8)do. (12)
(S] Vr(0)

4. In rational expectation models, the presence of time variation in 6 potentially affects the model’s solution,
and thus complicates the derivation of an appropriate likelihood compared to the corresponding model with stable
parameters; see Fernandez-Villaverde and Rubio-Ramirez (2007) for one possible computationally intensive approach.
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The weighting functions w and Q7 describe the importance attached to alternative true param-
eter paths in the overall risk calculations; the weight function w attaches different weights to
the baseline value 6, and Q7 describes the weight on deviations from this baseline value. In the
parameterization {9;}th1 ={0+ 5,}?:1, the average T~! > §, and 6 are obviously not uniquely
identified. The same WAR criterion may thus be expressed by different choices of w and Qr.
The parameterization is useful because the weighting schemes analysed in this paper assume
different asymptotic properties of Q7 and w as follows.

Condition 2 (GS). The weight function Qr is the distribution of {T~?G(t/ T)},T:p where
G is a k x 1 zero mean Gaussian semi-martingale on the unit interval with covariance kernel
E[G(r)G(s)] = kg(r,s). There exists a finite set of numbers © = {0,71,...,7,} C [0, 1] such
that ||8%kg (r, $)/drds|| and ||8%kg (r, s)/dr?|| are bounded when r,s ¢ T and r # s, kg admits
bounded left and right derivatives with respect to r forallr = s € [0, 1]1\t, and ||dkg(r,s)/0r||
is bounded for r € [0,s)\t and s € t.

(CNT) The weight function w does not depend on T and w is continuous at 0.

Under Condition 2 (GS), the weight function Q7 focuses on persistent paths of relatively
small variability, because Gaussian processes that satisfy the differentiability assumptions on
their kernel are almost surely continuous for all s € [0, 1]\t by Kolmogorov’s continuity
theorem. This concentration on persistent parameter paths drives the derivation of the asymp-
totic equivalence results below, and it is appealing in many applications, as parameter instability
is typically thought of as a low-frequency phenomenon. As discussed in Section 2 above, a pop-
ular choice in applied work has been the assumption that parameters vary as a Gaussian random
walk, which may be achieved by setting G equal to G(-) = Y'/2W(-), where W is a k x 1 stan-
dard Wiener process. Random walk parameter variability that only occurs in, say, the first half of
the sample is achieved by letting G(s) = 1[s < 1/2]T'?>W(s) 4+ 1[s > 1/2]Y'/2W(1/2). An
assumption of slowly mean reverting parameters can be expressed by letting G be a stationary
Ornstein—Uhlenbeck process, more weight on smoother paths by letting G be an integrated
Brownian motion G(s) = f(; W (r)dr, etc. Condition 2 also accommodates piece-wise constant
paths with finitely many jumps, as in the multiple breaks literature, although specification of
QOr requires knowledge of the break dates.

Under Condition 2 (GS), the WAR criterion (12) focuses on parameter paths whose variabil-
ity is of order of magnitude 7~!/2. This choice is motivated by a desire to develop procedures
that work well when there is relatively little information about the parameter path. For parame-
ter paths of fixed magnitude and persistence, larger samples naturally contain more information,
as more adjacent observations can be used to pinpoint the value of the slowly varying param-
eter at a given date. The sample-size-dependent choice of the magnitude of {§,;} under Qr
counteracts this effect, making the estimation of the form of the scaled parameter variation
{T1/25,} difficult even asymptotically. In this way, the asymptotic arguments derived below
based on the sequence of weights as described in Condition 2 (GS) become hopefully rele-
vant to the small sample problem where there is in fact little information about the parameter
evolution. At the same time, Condition 2 (CNT) assumes w not to depend on the sample size,
reflecting a “global” uncertainty about the baseline level of the time-varying parameter path.
With the continuity at 6y, the weight function becomes asymptotically flat in the 7~!/2 local
neighbourhood around 6, so that sample information dominates inference about the baseline
value.

The order of magnitude 7~!/? for §, under Condition 2 (GS) corresponds to the local
neighbourhood in which efficient stability tests have non-trivial asymptotic power. The null
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hypothesis of a stability test is that the parameter path {Ol}szl =1{0 —G—B,}ITZ1 is con-
stant, i.e.

Hy:6,=0 fort=1,...,T (13)

against the alternative that the parameter is time varying. For the development of optimal param-
eter stability tests, it makes sense to restrict the parameter paths under the alternative such that
the difference to the corresponding stable model is the time variability of the path, rather than
a different average value of the path. The appropriate restriction is achieved by the multivariate
Gaussian measure Q7 of {T‘l/z(G(t/T) — (ZLI I(s/T))~! ZsT:I F(s/T)G(s/T))}thl. When
information accrual is constant, that is I'(s) = H for all s € [0, 1], then the restriction amounts
to a demeaning of §;, such that Y 8§, = 0 a.s. under Qj. In the general case, the restriction
forces > I'(¢/T)8; =0, so that the information weighed parameter path deviations sum to
zero, just as in the efficient tests derived by Andrews and Ploberger (1994). Intuitively, a
model with time-varying parameter is closest to the stable model with a parameter that is the
information-weighted average of the parameter path.

Possibly randomized parameter stability tests ¢ are measurable functions from the data
to the interval [0, 1], where ¢r(yr) indicates the probability of rejecting the null hypothesis
of parameter stability when observing Y7 = y7. Tests of the same size can then usefully be
compared by considering their weighted average power

WAP (¢r) = /fT(QO,S)‘PTd,U«TdQ;(S) (14)
Vr(6o)

similar to Andrews and Ploberger (1994). While 6 is typically unknown, we show below that
there exists a feasible test ¢ that asymptotically maximizes this weighted average power.

With the weighting of parameter paths specified as the distribution of a Gaussian process,
the problem of finding WAR-minimizing actions essentially becomes a non-linear smoothing
exercise. The WAR-minimizing decision is to choose the action a that minimizes

f@ W(Q) fVT(Q)fT(e» S)LT(Q» 8» a)dQT(a)de
f@ w(0) fVT(E?)fT(Q’ a)dQT(a)de

15)

for each data realization Y7 = yr. With the weighting functions normalized to integrate to
unity, this is simply Bayes Rule for minimizing Bayes risk (15), which can be interpreted as
finding the action that minimizes the posterior expected loss, i.e. loss integrated with respect
to the posterior distributions of (6,d) under a prior for (6, §) that corresponds to the weights
in Condition 2.

A large literature has developed around numerically finding exact posterior distributions
in non-linear filtering/smoothing problems, often by Monte Carlo simulation techniques, as
reviewed in the introduction. This paper complements this research by an asymptotic analysis.
First, this yields a deeper theoretical understanding of the link between the estimation testing
problems. Second, the asymptotic analysis suggests a computationally simple and asymptot-
ically efficient procedure for choosing the risk-minimizing action. Third, unlike the Bayes
Rule computed numerically from (15), the approximately risk-minimizing action can easily be
appropriately modified for potentially misspecified models.

Note that Condition 1 makes assumptions about the stable model only, that is, on its
behaviour when the parameter path is constant. Clearly, with a focus on the problem of esti-
mating the parameter path, we need to argue for the accuracy of approximations also when
the true data-generating process has time-varying parameters. In general, most models with
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time-varying parameters generate non-stationary data, to which standard asymptotic results are
not easily applicable. In a vector autoregressive regression model, for instance, parameter insta-
bilities lead to highly complicated interactions between the evolution of the lagged variables
and the unstable parameters. Our approach is thus to derive asymptotic results for unstable
models as an implication of the contiguity of models with time-varying parameters of order
T~1/2 to the corresponding stable model, similar to Andrews and Ploberger (1994), Phillips and
Ploberger (1996), Elliott and Miiller (2006), and Li and Miiller (2009). The following Lemma
follows from Lemma 1 of Li and Miiller (2009) and the additional discussion in their appendix.

Lemma 1. Let g : [0, 1] — R be a piece-wise continuous function with at most a finite
number of discontinuities and left and right limits everywhere. Under Condition 1, the sequence
of densities ]_[,T=l Sfr.(6o, T 12702 /T)) is contiguous to the sequence fr(0y,0). Furthermore,
under Conditions 1 and 2, the two sequences of densities fVT(Go)fT(QO’ 8)d0r(8)/ fVT(t‘)o) dQr(9)

and ]VT(GO)fT(OO’ 8)dQ;(8)/ er(Oo) dQ;(8) are contiguous to the sequence fr(6y,0).
The main result of the paper is the following Theorem.

Theorem 1.  Let the sequence of positive definite matrices {izt}thl = {fzr,,}thl satisfy

[AT]

A
Ty k- f ['(s)ds
0

t=1

sup 20 (16)

Arel0,1]

in the stable model with parameter 0y.

(i) Consider WAR (12) of alternative decisions a under Condition 2. If Condition 1 and (16)
hold for almost all 6y in the support of w, and for each Y1 = yr, the decision a* minimizes
WAR with weights as in Condition 2 or a flat weighting of 0 and the weight function Qr on §
in the pseudo model

5:0) + 0 = h,(8, + 0) + vi, v, ~ independent N(O, ), t=1,...,T, (17)

then for all a, liminfy_, . [WAR(a) — WAR(a™)] > 0.

(ii) Forany Y1 = yr, let Q; be the distribution of {T~'?>G(t)T) — T_I/Z(ZST=1 )™t Zstl
fzSG(s/ T)}IT=1 (induced by G), and let @7 be a test of (13) of asymptotic level o that maximizes
weighted average power with respect to the weighting function Q} in the pseudo model

5;(0) = hy8; +vi, v, ~ independent N(O,h;), t=1,...,T. (18)

Then under Conditions 1 and 2, for any other test o1 of (13) of asymptotic level o, liminfy_ o
[WAP(¢7) — WAP (¢r)] = 0.

(iii) Under Condition I, the total variation distance between the posterior distribution of
(6, 98) in model (11) with priors as in Condition 2 and the posterior distribution of (6,8) in the
pseudo model (17) with either the same priors or with a flat prior on 6 and prior Qr on §
converges in probability to zero in both the stable model with parameter 0y and any unstable
model that satisfies the condition of Lemma 1.

Theorem 1 asserts that asymptotically efficient decisions and tests are obtained from com-
bining the sample information from pseudo models (17) and (18), respectively, with the
weighting of Condition 2. Since both of these are Gaussian, the resulting distribution can
be computed explicitly. Let e be the Tk x k matrix e = (Ik,...,It), D; = diag(ﬁl, ... ,ET),
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%5 = E;5[88'], where Es denotes integration of § ~ Qr of Condition 2, K = Xs(Djp Xs + I) ™,
§=(s1),...,s7(@)) and

Y =K + (I;x — KDj)e(e'D;e — € D;KD;e)" '€ (Iye — D;K). (19)

Note that with § ~ M0, ¥s) and the measurements X, = fl,(S, + v;, v, ~ independent A0, fzt),
t =1,...,T, the distribution of § conditional on the measurements X = (X, ... ,X}) and Dj,
is 8|(X, D;) ~ M(KX, K). The second term in the definition of ¥ results from the uncertainty
concerning the baseline value 6. The matrix ¥ remains the same if ;s is substituted by the
covariance matrix of § under Q;, as defined in Theorem 1 (ii).

Theorem 2. Let I1 be the distribution N(ed + £8, T).

(i) The decision a* that minimizes expected risk relative to the distribution €0 + § ~ Il for
each Y1 = yr minimizes WAR in the pseudo model (17) with a flat weighting on 6.

(ii) A test that rejects for large values of § X8 is the optimal stability test in the pseudo
model (18), and under Conditions I and 2

Eg explfy G*(s)T(s)"2dW*(s) — L [ G*(s)T(5)G*(s)ds]
Egexpl—L [ G*(sYT(s)G*(s)ds]

§¥§=2In (

under the null hypothesis, where G*(s) = G(s) — (fol r(Wdr)~! fol (MG (M)A, the standard
k x 1 Wiener process W* is independent of G and Eg denotes integration with respect to the
probability measure of G.

(iii) The posterior distribution of €0 + § under a flat prior on 0 in the pseudo model (17) is
given by T1.

Comments:

1. Part (i) of Theorem 1 establishes that for arbitrary bounded loss functions, the decision
that minimizes WAR in the Gaussian pseudo model (17) is also asymptotically optimal in the
true model. As shown in part (i) of Theorem 2, this amounts to finding the risk-minimizing
action relative to a multivariate Gaussian distribution for the parameter path. Note that loss
may be defined arbitrarily (subject to the bound L) for parameter values outside ®, allowing
the problem in the pseudo model to be made entirely spherical. For the wide range of bounded
bowl-shaped loss functions for which one would choose the posterior mean in a Gaussian
model, an asymptotically efficient parameter path estimator is hence given by ed 4+ £§ by
Anderson’s (1955) Lemma. Note that such loss functions include those that consider a weighted
average of symmetric losses incurred by estimation errors in the parameter value, such as

T
Lr(0,8,a) =Y qr Lo(T©O + 8 — a) W0 + 8 — a,)) (20)
t=1
where a = (af,...,a}) € R™, inf,<r g, > 0, ST gr. =1, Wy is a non-negative definite

k x k matrix and Ly : [0,00) — [0, L] is a monotonically increasing function with Ly(0) = 0.
The scaling by 7 in (20) ensures that the loss does not become trivial as 7 — oo even for good
path estimators, although Theorems 1 and 2 remain true without this scaling. This class of loss

5. This follows from Theorem 2 (i): combined with the flat weighting on 6, all weighting functions for §; that
imply the same weighting for {8, — 7! Zstl 5.y},T:1 yield the same overall weighting function for {6 + 8,}th1.
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functions (20) contains the special case where one only cares about the parameter at time 7',
ie. grr =1 and gr, = 0 for all t < T, which arises naturally in a forecasting problem.

For more general losses and decision problems, the asymptotically efficient decision can
still be obtained by implementing the efficient decision in the Gaussian pseudo model. This
typically represents a very substantial computational simplification.

2. Part (ii) of Theorems 1 and 2 spell out the implications of the approximation for efficient
tests of the null hypothesis of parameter stability (13). Part (i) of Theorem 2 shows that
under symmetric loss, the asymptotically efficient parameter path estimator is ed + £8§ with an
asymptotic uncertainty described by a zero mean multivariate normal with covariance matrix
3. The asymptotically efficient test statistic § 8§ = (X8)' X T(X8), where = denotes a general
inverse, is recognized to be of the usual Wald form: efficient instability tests are based on
a quadratic form in the efficient estimator of the instability. Efficient estimation and testing
in (potentially) unstable models are hence unified in one framework. This ensures coherence
between the stability test and the path estimator, as § X§ can be large only if the path estimator
ef) + 8§ shows substantial variation.

3. Part (iii) of Theorems 1 and 2 describe the approximation result in Bayesian terms: the
posterior distribution of the parameter path ef + § comes arbitrarily close to the Tk-dimensional
multivariate normal distribution \V{ed + X8, X). This is a considerably stronger statement than
a convergence in distribution of, say, the posterior of 7'/2§.7| viewed as an element of the
space of cadlag functions on the unit interval. With G(s) = 0, so that ¥5 = K = 0, X becomes
Y = e(e’Dﬁe)_le’, and one recovers the standard result that the posterior distribution of 6
converges to NO, T'H™') where H =T! Zfz, LA f '(A)d A, the average information.

In practice, part (iii) of Theorem 1 is useful for Bayesian analyses, as it provides a simple
way to compute approximation to the posterior of the unstable parameter path. Even if the
exact small sample posterior is required, the approximation of Theorem 1 might be accurate
enough for a simple importance sampling algorithm to succeed.

4. The asymptotic distribution of the test statistic § 8§ is provided in Theorem 2 (ii).
This distribution is non-standard and depends on the weighting function G and the evolution
of the information I'. Even with I" known, a simulation based on this expression is quite
cumbersome due to the integration over the measure of G. Theorem 2 (ii) is still useful as it
shows the existence of an asymptotic distribution. It thus suffices to consider a computationally
convenient stable model that has the same asymptotic distribution, such as the stable Gaussian
location model X; = l;tQ +Z;,t=1,...,T with Z; independent and distributed A0, l;t). The
limiting distribution of Z/SZ with Z = (Z{,...,2}) and Z, = Z; — hy(X.'_, ho) ' S0 B Z,
is therefore the same as the asymptotic null distribution of § ©8, for {,} drawn both from the
stable model and under all local alternatives for which Lemma 1 implies (16) to also hold.®
Asymptotically justified critical values of the test statistic § X§ might hence be obtained by
considering the empirical distribution of sufficiently many draws from the distribution of 7’37,
similar to the approach of Hansen (1996).

5. The approximation results in Theorems 1 and 2 hold for any choice of positive definite
sequences {fz,} that satisfy (16) in the stable model: in the limit, it is only the average behaviour
of h; that determines the properties of the pseudo models (17) and (18). In particular, with
['(s) = H a constant function, this result allows us to choose 4, time invariant 4, = H for any
consistent estimator H of H, as exploited by the algorithm of Section 2. Without the assumption
of a constant I', it makes sense to set ﬁ, equal to a standard non-parametric estimator of I'(s),

6. Formally, this follows from replacing § by 7 in the derivation of the asymptotic null distribution in
Theorem 2 (ii).
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such as a kernel-smoothed average of &, () as studied in Robinson (1989). Lemma 3 (vi) in the
Appendix shows that fz, = h,(§), and thus for continuous I'(s), also kernel-smoothed averages
with bandwidth of order 7173, satisfy (16) under Condition 1. As explained in Section 2.2,
the smoothing extracts the pertinent low-frequency properties of I'(s) without imposing an
accurate quadratic approximation of the log-likelihood for each 7. Pronounced instabilities can
also lead to effectively time-varying I'(s), as in the example of Section 2.3; so choosing hy time
varying in this fashion might improve approximation accuracy even in models where formally
I'(s) =

6. For certain applications, it makes sense to make the scale of the weighting function in the
estimation (12) and testing problems (14) a function of the information I'. In a testing context,
for instance, it is often attractive to choose G such that alternatives that are equally difficult
to detect receive a similar weight, as in Wald (1943) and, conditional on the break date, in
Andrews and Ploberger (1994). Typically, of course, I' is unknown, and needs to be estimated
from the data. Optimal decisions and tests from the pseudo models (17) and (18) with respect
to an estimated weighting function generally continue to be asymptotically optimal decisions in
terms of (12) and (14), i.e. with respect to the data-independent weighting functions described
in Condition 2.

Theorem 3. Suppose {f\T,,}[T:1 are non-singular k X k statistics such that sup, .y | Az, —

I || L0 and Zthz ||[A\T,, — [A\T,,_1|| 2,0 in the stable model with parameter 6y. Then part
(ii) of Theorem 1 also holds for Q; replaced by the distribution of {T‘l/zf\T,,G(t/T) -T2
Oy b)Y Ay A G(s /T, (induced by G). Furthermore, if SUpgeq seqtt aen, ILT(0,
diag(Ar1,. .., AT,T)8,a) — L7(0,8,a)| — Oforall sequences {ATJ}[T=l satisfying sup, .7 || A,
—Itl| = 0 and Zt AT, — Ary—1ll = 0 as T — oo, then also part (i) of Theorem I holds
for Qr replaced by the distribution of {T~'/>Ar ,G(t/T)} _; (induced by G).

In a typical application of Theorem 3, suppose one aims at computing the asymptoti-
cally efficient test for a Condition 2 weighting function_with G()=cT "W(), where ¢
is a known scalar constant, but the average information I' = fol ['(AM)dA is not known. Then

Theorem 3 shows that this test may be computed from the pseudlo model (18) with an estimated

/2 : 1/2
weighting function that corresponds to the distribution of c¢I" W)= Fl/zG( -), 1.e.

based on the statistic § ©§ where X5 in the definition (19) of ¥ has i,j- th k x k block equal

to T-2c2 Y™ T ' as long as T %> T under 6 stable. In the more general case where
G(-) = R(:)Go(-) with Gy a known Gaussian process and R : [0, 1] — R¥** an unknown fixed
and nonsingular matrix function, Theorem 3 requires beyond consistency that the scaled esti-
mation error IA\T,, = IAQT,,R(z‘/T)’l is smooth by imposing ZIT:Z ||1A\T,t — ZA\T,,_1|| 2, 0. This
condition is typically satisfied for parametric estimators of R when R is of bounded variation,
such as, for example, when R is a linear trend of unknown slope or when R is a step function
with known step locations.

Moreover, optimal decisions from the pseudo model typically retain their WAR (12) opti-
mality under such estimated weights, such as the path estimator ed + X£§ under the class of
loss functions (20) when L is continuous. The restriction of the loss functions in the second
claim of Theorem 3 is necessary to rule out a somewhat pathological focus of Ly on the scale
of the weighting function for 8.

7. For example, with G(s) = W(s) and A7, = (1 + TV, Lr(0,8,a) = (TY2te(T S (A8)(AS) — I))* A
1, iy 0 EsL7(0,8,a) # limy_, o0 Es Ly (60, (1 + T7'/"8, a).
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7. For some purposes, it makes sense to consider weighting functions that are more agnostic
about the magnitude and/or form of the parameter instability than is possible under Condition 2.
One way to achieve this without foregoing the computational advantages of a Gaussian weight-
ing function is to consider weighting functions (or priors) for § that are a weighted average of
distributions of different Gaussian processes. The following Theorem shows how parts (i) and
(iii) of Theorems 1 and 2 need to be adapted in the case of such a finite mixture.

Theorem 4. Let G;, i = 1,...,n¢ be processes satisfying Condition 2 (GS). If Qr is the
distribution of the mixture of{T’l/zG,- (t/T)} with mixing probabilities p;, then parts (i) and (iii)
of Theorems 1 and 2 hold with T1 replaced by the mixture of ng multivariate normal distributions
Ned + £;8, =;) with mixing probabilities proportional to

Wi = pi|Dj sy + Ire|~/*|€'Dje — €D;K:Dje| ' exp[i§2:8], i=1,....ng, (1)

where K;, Xsy, and %; are defined as K, X5, and X in (19) with s replaced by X, the
covariance matrix of T~V*(G;(1/TY,G;(2/TY,...,Gi(1)) fori =1,...,ng.

Theorem 4 is a simple consequence of the fact that the Gaussian pseudo model (17) remains
an accurate approximation of the sample information for each of the ng weighting functions,
such that the likelihood ratios can be explicitly computed. The WAR-minimizing parameter
path estimator under mixture weightings generally depends much more on the loss function
than in the single Gaussian process case, as mixtures of normal distributions are not generally
symmetric around their mean. Under truncated quadratic loss (20) with Lo(x) = min(x, L), the
WAR-minimizing path estimator converges to Z?gl w; X;§/ Z?gl Ww; as L — 00.

8. So far we assumed that the model in Condition 1 is correctly specified. As demonstrated
by Huber (1967) and White (1982), in misspecified models maximum likelihood estimators are
consistent for the pseudo-true parameter value that minimizes the Kullback—Leibler divergence
of the true model from the maintained model. This pseudo-true parameter value sometimes
remains the natural object of interest as, for instance, in exponential models with correctly
specified mean (cf. Gourieroux, Monfort, and Trognon, 1984). We now discuss a modification
of the pseudo model (17) such that, under some conditions, the best decision about the pseudo-
true parameter path in a misspecified model yields the same asymptotic risk as the best decision
in a corresponding correctly specified model.

Suppose the evolution of the pseudo-true parameter through time is 6, = 6y + T~ /2mo(¢/T),
and let §, = 5,(0) and h, = h,(0) be the scores and Hessians in the misspecified model. Under
standard primitive assumptions, by the usual Taylor approximations, one would typically find
that

[-T] -1

. 1
T_1/2Z§t:>1(.)_/ E(M)dA (f E(A)dk) J(D),
t=1 0 0

-1

1
TY2@0 — 6y) = (f E(A)dk) J(1)
0

and
[-T]

T "k LN f E(\)dA,
=1 0
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where
J(s) = f ' V) 2dw (n) + / ' EW)mo(A)d A (22)
0 0

with V : [0,1] = R¥*K and E: [0, 1] — R¥*K positive definite, non-stochastic matrix func-
tions. See, for instance, Andrews (1993) and Li and Miiller (2009) for primitive conditions that
induce such convergences. The matrix V (s) is the average long-run variance of the scores s;(6y)
at the time ¢ = [s7'], which in a misspecified model is not in general equal to the average of the
Hessians E(s). The pseudo model (17) based on §;, 0 and h, directly thus behaves differently
than the pseudo model of any correctly specified model, even asymptotically. Note, however,
that if we premultiply the scores and Hessians by E(¢/T)V (t/T)~', we obtain a long-run vari-
ance for E(t/T)V (t/T) 's,(6y) of E(s)V (s)~'E(s) at time r = [sT'], which coincides with the
local average of &(r/T)V (t/T)"'h,. This adjustment is the time-varying parameter analogue
to the sandwich pseudo model suggested in Miiller (2009) for Bayesian inference in stable
misspecified models.

Condition 3. In the misspecified model with parameter path equal to 0, = 0y +
T=270(t/T), there exist sequences of invertible k x k matrices {@,}th1 and {VI}IT:1 such that
with§) = 8V, — T 'Y &V 8, and 0" =0 + (X, &0, h) ' S0, 80,715, we
have

~1

[-T] . 1
T2 8 =070 —/ T(A\)d A </ F(A)dk) J(1)
=1 0 0
and
1 —1
T'2(6" — 0% = (/ r@m) J (1),
0
where
J7(s) = / r(x)1/2dW(x)+/‘ T (W)mo(M)dA
0 0
and T'(s) = E(s)V (s)"' E(s). Further, there exist matrices {flt’}ITzl such that
~ A
Tk —/ [(s)ds
— 0

sup Zo.

r€l0,1]

The “robustified” estimator 6" and partial sums of the scores §/ and Hessians /2 of Con-
dition 3 behave just like the maximum likelihood estimator and partial sums of the scores
and Hessians would in a correctly specified model with average Fisher Information at time
t = [sT] equal to I'(s) = E(s)V (s)~' E(s). This suggests that asymptotically, best decisions in
the robustified pseudo model

8" 4+ h/0" =h!(8 +6)+ v, v ~independent N(0O,h)), t=1,...,T, (23)

have the same risk as best decisions in a correctly specified model with this Fisher Information.
At the same time, if the model ends up being correctly specified, then E(s) = V(s) by the
information equality, and 8" and partial sums of §/ and fl{ have the same asymptotic properties
as the original 0, 3, and A,.
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In general, for Condition 3 to follow from the weak convergences mentioned above, &; and
V, must be sufficiently accurate estimators of E(¢/7) and V (¢/T). Clearly, the construction
of appropriate estimators is the more difficult the less is known about the variability of Z(-)
and V (-). In the important special case of constant E(s) = H and V(-) =V, it suffices to
set 8, =H and V, =V for any consistent estimators (H,V) of (H,V) (and in this case,
6" = 6 and one possible choice for ﬁ[ is ﬁ[ =81 = AV~'H). Typically, the estimators A =
7! ZTzl h, and, as long as s,(6p) is serially uncorrelated in the stable misspecified model, V=
T-! > 11 8,8, are consistent, whereas if the misspecification leads to potentially autocorrelated
s¢(6p), one needs to apply a standard long-run variance estimator to the scores {S,}Ll. See Li
and Miiller (2009) for a discussion of possible primitive conditions for Condition 3.

Theorem 5.  Consider a correctly specified model satisfying Condition 1 and parameter
path equal to 0; = 0y + T 1274t /T), where mq satisfies the conditions of Lemma I, and let
a* be the decision that, for each draw, minimizes expected risk relative to the distribution of
I1 ~ Meb + X8, X). Similarly, consider a potentially misspecified model satisfying Condition 3,
and let @™ be the decision that, for each draw, minimizes expected risk relative to the distribution
of TI" ~ Mel" + £7§", £7), where § is the Tk x 1 vector of stacked scores {f,’}thl, and X7 is
constructed as ¥ in (19) with h; replaced by flt’ .

(i) Let a*(I1y) be the action that minimizes expected risk relative to the Tk x 1 multivariate
distribution Ty, and define g = (wo(1/TY,...,no(T/T)Y. If the common loss function Ly is
such that

Lr(6o, o, a*(Ii7)) — L (60, o, a*(ITar)) — O (24)

whenever the total variation distance between the two Tk x 1 normal distributions T11r and 1ot
converges to zero, then the difference between the sampling distributions of Ly (6y, Ty, a*) in the
correctly specified model and Ly(0y, Ty, a"™) in the potentially misspecified model converges to
zero in the Prohorov metric.

(ii) If (24) is strengthened to hold whenever the total variation distance between the two
mixtures of ng normal distributions T1 7 and T, converges to zero, then the conclusion of part
(i) also applies with T1 replaced by the mixture distribution of Theorem 4, and T1" defined as
the analogous mixture based on 07, s/ and fz,’ in the place of 0, s,(0) and ﬁt.

(iii) The test statistics § £§ and §"'Z"8" have the same asymptotic distribution.

Theorem 5 formalizes the link between best inference based on the pseudo model in a
misspecified model using the robustified statistics of Condition 3, and best inference based on
the pseudo model in a corresponding correctly specified model. The key assumption (24) for
part (i) is that similar multivariate normal distributions IT;7 and I,z induce best actions of
similar loss. This holds, for instance, for the loss function (20) as long as Ly is continuous.
Under this assumption, the sampling distribution of the losses in these two models is asymp-
totically identical, which—given that the loss is assumed bounded—also implies identical
(frequentist) risk of the best decisions @* and a"*. Thus, from a decision theoretic perspective,
ignoring the misspecification is not costly in the sense that one still obtains inference of the
same asymptotic quality as in the corresponding correctly specified model. Similarly, part (iii)
shows that the test statistic §/3"§" has the same asymptotic distribution as § X8 does in the
corresponding correctly specified model, and thus the same local power. In particular, if Con-
dition 3 holds for 7(-) = 0, one may simulate the null distribution by many draws of Z"' %" Z"
with 27 = (Z0,..., 250, 2] =77 —h/(X!_ k)" 21 h7Z! and Z, independent A(O, i)
pseudo random variables, as discussed in Comment 4.
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It is easy to see that these correspondences do not hold in general without the robustification
detailed in Condition 3 and, in analogy to the formal results in Miiller (2009), one would expect
that asymptotic risk is generally smaller in the robustified pseudo model. The reason is that
under misspecification, both the original likelihood and uncorrected pseudo model (17) convey
a misleading account of the sample information about the pseudo-true parameter, as the variance
of partial sums of §; is different from the partial sum behaviour of the Hessians /,. Whenever
the optimal action depends on the variance X", one therefore should obtain lower asymptotic
risk decisions from the robustified model. What is more, if the weighting function (or prior)
averages over alternative Gaussian processes as in Theorem 4, then a Bayesian or uncorrected
pseudo model (17) will in general lead to biased estimation of the magnitude of the parameter
time variation, as the variability of §, is mistakenly judged relative to &,. Inference based on the
robustified pseudo model (23) is thus not only more convenient computationally compared to a
fully fledged Bayesian analysis, but also provides more reliable inference about the pseudo-true
parameter path in misspecified models.

9. Much applied work is based on the special case where the prior or weighting function
of a time-varying parameter is a Gaussian random walk, such that G(-) = Y/2W (-) for some
positive semidefinite matrix Y and standard Wiener process W; see the citations in Section 2.
The Markovian structure of the Wiener process enables the application of an iterative Kalman
smoothing algorithm. We provide such an algorithm in the Appendix, which also takes care
of the impact of the flat weighting of 6 in the smoothing, along similar lines as Jong (1991),
and enables computation of the statistics appearing in Theorems 2, 4, and 5 without matrix
computations of dimension Tk x Tk.

The algorithm described in Section 2 of this paper exploits the additional computational
simplifications when fzt’ =8 r=1,...,Tand Y = 625};, where S‘ﬂ is the upper left p x p
block of §.8 By Theorem 3, this choice of Y minimizes asymptotic WAR for the weighting
function induced by YT = ¢*H 5 ! for most loss functions in a correctly specified model with

I'(s) = H as long as 3’5 LN H; ', where Hﬂ_1 is the upper left p x p block of H~!.

10. A number of previous papers have considered parameter stability tests against random
walk-type alternatives: Nyblom (1989) derives locally best tests against general martingale
variability in the parameters for general likelihood models, Shively (1988) considers small
sample tests in a linear regression model, and Elliott and Miiller (2006) derive asymptotic results
for point optimal parameter instability tests in linear regression models for a class of weighting
functions that includes the Gaussian random walk case. The contribution of Theorems 1, 2,
and 5 with respect to this literature is the generalization of the point optimal tests to general,
potentially misspecified likelihood models, including non-stationary models with, say, a time
trend. Under the assumption of correct misspecification, the degree of generality of the results
here concerning parameter stability tests is similar to those of Andrews and Ploberger (1994),
but the focus there is on parameters that shift at unknown dates, which leads Andrews and
Ploberger (1994) to consider weighting functions that are a continuous mixture of piece-wise
constant parameter paths with Gaussian shifts.

Elliott and Miiller (2006) show that efficient tests for a Gaussian random walk in the
parameters and efficient tests for a single break at unknown date have asymptotic power that
is roughly comparable no matter what the true alternative is; the efficient tests for the Gaus-
sian random walk have the advantage that they avoid the need for trimming the break dates

8. The algorithm in Section 2.2 stems from combining our results with those of Elliott and Miiller (2006):
applying the matrix identity (AS5) in the Appendix, £" becomes (Ir — G.) ® Sﬁ with G, defined in Elliott and Miiller
(2006), and the expressions for gLL(c) = —§"X"8§", w; and «; in Section 2.2 follow.
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away from the beginning and end of the sample, and their computational convenience, at least
compared to efficient tests for more than one potential break.

4. CONCLUSIONS

Most economic relationships are potentially unstable over time. In empirical work, this trans-
lates into time-varying parameters of estimated models. It is often of interest to keep track
of this potential instability. Going beyond time variation in the coefficients of Gaussian lin-
ear regression models, however, typically leads to substantial numerical and computational
complications.

This paper considers a general likelihood model and focuses on parameter instabilities of a
magnitude that are non-trivial to detect, which seems a relevant part of the parameter space for
many instabilities economists care about. The main contribution is an asymptotically justified
approximation to the sample information about the time-varying parameter, so that under a
Gaussian weighting, WAR-minimizing path estimators and weighted average power maximizing
parameter stability tests become straightforward to compute. In addition to this computational
advantage, an appropriately robustified version of the approximating model yields decisions of
the same asymptotic risk as in a corresponding correctly specified model.

APPENDIX

A.1. Iterative formulas for the path estimator and related statistics when G(-) = Y'2W (-):

For notational convenience, we describe the algorithm for the pseudo models (17) and (18). For statistics based on

the robustified pseudo model (23), replace @, 5,(0), fl,,Z) by (é’,&‘f N ,2,’) throughout.
With 3, = s,(0), compute

¢ =81+ Py (P + 1) 7 S — )

N

Ar = At—l + Pr—l(ilrpr—l +1k)_l(ilr - ljerr—O

Po=P+T7T =P (Pt + L) Py
fort =1,...,T with ay = 0, Ao =0and Py = T-2Y. Further, compute
bi=a + U —T72YP b1 —ar)
B =A + U —T2YP Bt —A)

Ri=P ="+ =T >YP YRy — P —T>YPY

fort =T~ 1,....1 with by = ar, By = Ar and Ry = Pr = T2Y. Letd = (L1_, hu(le —1!},))_1 Y7\ G — hiby).
The rth k x 1 block of ef 4+ 8 is then given by 8 + b, 4+ (I, — B,)d, and the ¢, tth k x k block of ¥ is given by R, +
Uk = B0y (3, bt — By)) (1 —B)). Also, ¥58= YT b, + (6 - E,E,))/&, D; S5 + Ine| = 1, Ihs
Pi_1 + Ii| and |€'Dje — €' D;KD;e| = | ZLI hi(Iy — By)|. To compute 2/ £Z, replace §, by Z, throughout.

To generate a draw from Med + £8, %), one may proceed as follows. Draw 137 ~ Mar,Pr — T72Y), and then
draw iteratively forr =7 —1,...,1

by ~ Nthiy1 — T2YP byt — ), T2Y = T74rP7IY).
. R - e . . . -
Draw d ~ N, (ZL] h(I, — B, )) ) independent of {b,}7_,. Then {0 + b, + (Iy — B,)d}’_, constitutes a draw from

=1
Mef + 38, %).
If T is singular, then P,_1 is to be replaced by the Moore—Penrose generalized inverse of P;.
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A.2. Proofs

A.2.1. Notation. For notational ease, extend the domain of f7 by letting f7(6) = 0 for 6 ¢ ©, and let 5,(6) = 0
for 0 ¢ ("‘)(), t=1,...,T.
The following notation is used in the following Lemmas and proofs:

o the Tk x k vector e = (Iy,...,I)

o the k x k matrices I, = I'(¢/T), H = T~! Zﬁt and =731,

e the Tk x Tk matrices Dr = diag(T'y,...,I'r), D; = diag(hy,...,hr) and F = T~'/?Fy @ Iy, where F is a
T x T matrix with zeros above the main diagonal and 1’s elsewhere

o the k x 1 vectors u = T2 — ), & = T2 — ), § = 5,(0), 1 =1,...,T and 5 = 171 S 1,5,

o the Tk x 1 vectors § = (§{,...8;) and sy = (s1(6p)',...,s1(60)")

e the indicator functions Sy (8) = 1[T'/? sup, .7 [18;|| < T"], where 7 is defined in Condition 1 (ID) and we assume

n < 1/2 without loss of generality and A7 (u) = 1[||u|| < ar] with a7 — oo defined in Lemma 4 below

0+T 1208 5 R - o
g2 LRy, 8) = expl /8 — 3 X 61hud + T2 — uy

> hud — Su'Hu +a'Hu) and LR7(8) = exp[3_ 88, — 5 Y 8hidy + 3 (T2 3 81h)H ' T2 3 Iy 1)
o the scalars my = [ Esw (8o + T~"/2w)LRy (u, 8)du, fiy = w(80) [ EsLR7(u, 8)du and My = Es [[/_; 1[(60 + ;)
€ 0]

o the real valued functions LRr(u,d8) =

A.2.2. Proofs of theorems in the main text. The general strategy for the proof of Theorem 1 is as follows.
Given Lemma 1, it suffices to prove convergences in probability for data generated under the stable model. All
following probability calculations are thus made under the stable Condition 1 model, if not explicitly noted otherwise.
We first establish part (iii) of Theorem 1, from which part (i) follows relatively easily. The main thrust of the
proof of part (iii) is the argument that f Es |w(90 + T V2u)LRy(u, 8) — W(Q())ERT(L!, 3)| du converges in probability
to zero. Lemma 4 (i) below shows that replacing LRy (u,8) by Sr(8)Ar(u)LRy(u,d) in this expression induces a
negligible approximation error. The “main” approximation via Taylor series expansions is performed in Lemma 2,
whose statement and proof is below. The proofs of the additional Lemmas of Section A.2.3 may be found in the
Supplementary Materials.

Proof of Theorem 1. (iii) We focus on the claim for a flat weighting on 6; the claim for a weighting w on 6
follows very similarly.

Let f7(6, 8) be the density of the observations in the pseudo model (17), so that ﬁQT(u, 8) =fr +T"2u,8)/
fT(Go, 0). The total variation distance between the posterior distributions computed from the true model density f7 and
the pseudo model density fr is then given by

w(Bo + T~ V2u)LRy(u,8)  w(Bo)LR(u,8)
) _

[=

du

mr mr

<! fEa |w (@ + T~ 2u)LRy (u, 8) — w(60)LR7(u, 8)| du + 1y ' mr — iy |
where mr = [ Esw (0 + T~u)LR7(u, 8)du > 0 a.s. and iy = w(eo)ngfI\ET(u,é)du > 0 a.s. Since
iy —mr| < /Ea |w(@ + T~ 2u)LRr (1, 8) — w(60)LR1 (u, 8)| du (A1)

it suffices to show that [ Es |w(@ + T~"/?u)LRr(u,8) — w(00)LR7(u, 8)| du L> 0 and iy = 0,(1).
Now by Fubini’s theorem and a direct calculation,

/ESZI\?T(u,S)du =exp [%ﬁm} Es /exp [@Qs — YD+ T7V2(0 — u)eD;§ — S(u — iy H(u — ﬁ)] du
= QuF P exp [%a/ 7 u] EsIR7(8). (A2)

Lemma 3 (iii) shows & = O,(1), so that also exp[féﬁ’l:l it] = Oy(1). By Lemma 7 and the continuous mapping
theorem (CMT), also (EsLR7(8))~' = O, (1), and n%T_l = 0, (1) follows.
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Furthermore, with S7(8) and A7(u) as defined in Lemma 4,
/E6 |w( + T~ >u)LRy (u, 8) — w(60)LR (u, 8)| du
< / Es | Ar)Sr(8)w (8o + T~ *u)LRy (u, 8) — w(60)LR1 (u, 8)| du
+ / Es(1 — Aru)Sr(8)w (0o + T~V?u)LRr (u, §)du.
The last term converges in probability to zero by Lemma 4, part (i). Also
/Eg | A7)Sr (8w @0 + T~ 2u)LRy (u, 8) — w(00)LR7(u, 8)| du
< [ w6+ 720 = w6 Es Ar )51 BV LR . 1

+w(6) / Es | Ar()Sr(8)LRy (t, 8) — LR (u, 8)| du.

The last term converges in probability to zero by Lemma 2 (iii). For the first term after the inequality, we compute

/ [w (@ + T~ 2u) — w(00)|Es Ar (u)St (8)LRr (u, §)du

< sup w0+ T72u) — w(Bo)| (/ Es| Ar)Sr(§)LRy(u, ) — LRy (u, 8)|du + W(%)’lﬁw) .

[lul|<ep

But 7-'/2a; — 0 and the continuity of w at 6y imply SUP) 1y <oy W (00 + T-12
shown above, iy = O,(1), and the result follows from Lemma 2 (iii).
The convergence in probability under the unstable model follows from Lemma 1.
(i) For brevity, we again focus on the case of a flat weighting on 6 only.

By definition of the WAR and Fubini’s Theorem

WAR(@) = / w(E0)Es / L (6. 8.2)fr (6o, 8)d r 6o
_ fEBLT(G,S,&)fT(G,S)w(Q)dQ
a [ Esfr(0,8)w(0)do

[ EsLr0 + T~Yu,8,a)LR7(u, 8)w (0 + T~ 2u)du
= [ w(bo) P
T

/ Esfr (6o, 8)w(6o)dbod i1

Similarly, define

_ "EsLy (6o + T~"2u, 8, 0)LRy(u, 8)w(8o)du
WAR() = / W (60) / [ EsLr (6o 8 OLRr @ w0l p o 0 8y i dby.

i
Note that

sup |WAR(a) — WAR(a)|
acAr

SZ/W(QO)//ES

Now since my > 0 and my > 0 a.s., we have

/Ea

LRy (u, 8)w(6y + T~ '%u) B w(00)LR1(u, 8)
mr i

duEsfr (00, 8)d prdb.

LR7(u, §)w (B + T~ u)  w(0)LR7(u,8)
mr ’hT

du

< /Ea (m;'LRT(u, w (o + T~ u) + m;‘w(e())ﬁeT(u,S)) du =2
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almost surely. Let My = Es ]_[,T:1 1[(6p + &) € ©] > 0. Since © contains an open ball around 6 and sup; o 17 [1G (L)
is bounded almost surely, My — 1. Note that for all 7', M, lngT(GO,S) is a probability density with respect to pur,
so that the convergence in probability

/Es

established in part (iii) of the Theorem under the unstable model with density M, 1E(;fT(Go, §) implies via dominated
convergence that

MT/fEs

for almost all 6. Since this is also bounded by 2, by another application of the dominated convergence theorem, we

have
/ W (60) / / Es

so that (A4) converges to zero. -
Since for any a, WAR(a) — WAR(a*) > 0 by the definition of a* and WAR(a),

LRy (u, w0 +T~2u)  w(B)LRy(u,8)
mr rhT

P

du — 0

LR7(u, §)w (B + T~ u)  w(00)LR7(u, )
mr mr

duM ;" Esfr (6, 8)djr — 0

LRy (u, 8)w (B + T~ u)  w(00)LR7(u,8)
mr 7

duEsfr (0o, 8)d urdby — 0

WAR(A) — WAR(G™) = (W(&) - WA\R(a*)) n (WAR(&) - WA\R(a)) + (WA\R(a*) - WAR(&*))
> (WAR(&) — WA\R(&)) + (WATR(&*) - WAR(&*>) - 0.

(ii) By the Neyman Pearson Lemma, Fubini’s Theorem, and a direct calculation, the weighted average power max-
imizing test of (13) under a QF weighting rejects for large values of EsLR7(0,8 — ed), and the weighted average
power maximizing test in the pseudo model (18) under a Q; weighting rejects for large values of EsLR7(8) (where
Ej continues to denote integration with respect to Q7 as defined in Condition 1). We have

|EsLR7(0,8 — 8) — EsLR1(8)| < Es|Sr(8)LRr(0,8 — e8) — LR1(8)| + Es(1 — Sr(8)LRr (0,8 — €5) 2> 0

by applying Lemmas 4 (ii) and 2 (iv). Furthermore, the asymptotic distribution of EsLR7(8) under the null hypothesis
is absolutely continuous by Lemma 7, so that the result follows from the second claim in Lemma 1 by the same
arguments as employed in Andrews and Ploberger (1994) in the proof of their Theorem 2.

Proof of Theorem 2. (iii) In matrix form, the pseudo model (17) is § + Dj, eé\(D;l, §,0) ~ /\f(Dﬁ (8 +e0),Dj), so
that conditionally on Dj; and ¢ only,

$+Djed o Djef Dj +D;;%sD;; D;Zs
< 8 )‘(D”’o) N(( 0 )( sD;, s '

Using the identity
(I +D;2)™" = I — (e + Dy )~ ' D 55 (AS)
we find with K = 25D;(Dj, + D; £5D;)~" = X5 — £3D;(D; + D;; X5D;;) ' D; s that
8|3 + Djed, D;,0) ~ MK $ + Dje(d — 0)),K).
Furthermore, with a flat prior, the posterior for 6 is proportional to the likelihood, so that (§ +Dﬁeé)|(Dﬁ,6) ~

MDjed,D; + D;2sD;;) implies 6|§ + D;ed,D;) ~ /\/((e’(D}{1 + 25)‘1e)‘1e’(D)~1_1 + 25)-101{‘5 +40, (e/(D};1 +
=5)"'e)~!). Thus

5 . K —Dje (D' +25) ey /(D! + 25)7'D %)
§+ D;ed,D;) ~ g i [ Y
<9> |8 + Dje0,Dj) N(( (e’(D;l_l n 25)_18)_10/(13}-,_1 " 25)_1Di1_1§+9 50

K + KD;e(€(D-' + 25) 'e)"'eD; K —KD;e(€ (D' + Zg) le)”!
Wherve:( pe@(D; ! + ) le) e, pe@(D; ! +25) ")

@D, + =) ey e DK @D+ %) !
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and employing once more (A5), we conclude § + ef|(S + D;leé,Dﬁ) ~ Mebd + =8, %).
(i) Immediate from Theorem 1 (i) and the proof of part (i).
(i) Note that with v = T~'/2(i — u), by Fubini’s Theorem and (A2),

m)*2|e'D;e|”*EsLR7(8) = /Eg exp[§'8 — 18'D;8 + v'e'D;d — Lv'eDjev]dv

= |D; s +1Tkr1/2/exp[%(§+D,;ev)/K(§+D,;ev) — Wve'Djev]dv

= 2m)"?|D; 25 + Ine| '€’ Dje — € DjKDje| /> exp[£8'8]. (A6)

Now let R(8) = exp[—18'D;8 + 18'Dje(e'Dje)"'¢'D; 8], so that

EsLRr(8) .

= =exp[1§'%5].
EsR(8)
By Lemma 2 (ii), EsR(8) — Es exp[—28'Dr(8 — €3)] L, 0. By the CMT, exp[—38'Dr (8 — e8)] = exp[—3 jo G*(s)
I'(s)G*(s)ds], and since R(8) < 1 a.s., also EsR(8) — Eg exp[fé fol G*(s)T'(s)G*(s)ds]. The result now follows
from Lemma 7.

Proof of Theorem 3.  We Writef\r for f\m to enhance readabi~lity, and let D, = diag([\l, LA
For the first claim, note that if {h,}lT:1 satisfies (16), so does [\;h, and [\;h,[\,. Also, by summation by parts with
Ao = A4

I IOES Wi '”Zs <9>—Z(A — A I/ZZW»
j=1

j=1 =1
so that 71/2 Z[ n 15 = Sr(-) implies 77172 Z[ Tl A/ﬁj = S;(-). The result thus follows from Theorem 2 (ii).
For the second claim, proceed as in the proof of part (i) of Theorem 1, but with WAR(a) in (A3) substituted by

— R 12, s A
WAR (@) = /w(@o)/ fan(Qo)LRT(u,DAS)AL(Go + T Y2u,D38,a)du
ma,r

Esfr (6o, 8)d urdby

where 7y 7 = [ Esw(00)LRy(u, D 8)du. We have
[ Esw(00)LRy(u, D3 8)L(Bo + T~2u, 8, &)du

mA,T

|WAR 5 (&) — f w(60) Esfr (6, 8)d prdbo|

< /W(Ho) sup |L7(0,D38,a) — Lr(0,8,a)| | Esfr(6o,8)dpurddy — O

Qe(-),SERTk,aeAT
|L7(0.D;8,a) — Lr(6,8,a)] 2> 0 in the stable model,
aeay ILT(0,D38.a) = Lr(6,8,a)| < 2L. It thus

suffices to proceed as in the proof of Theorem 1 with LRr(u §) replaced by LRT(u D} 8), and the result follows from
Theorem 2 (i), as in the proof of the first claim.

where the convergence follows from sup,_q s pTk ,c Ar

Lemma | and the dominated convergence theorem as supg coserTk

Proof of Theorem 4.  For the claim regarding the analogous statement of Theorem 1 (iii), proceed up to equation
(A1) as in the proof of Theorem 1 (iii) with Es now denoting integration with respect to the mixture. With Ej;)
denoting integration with respect to the meaiure of {T~12G;(t/T)}, it then suffices to show that f Esiylw (o +

T~ 2u)LRy (u, 8)) — w(O0) LR (ut, 8 )ldu £> 0fori =1,...,ng and i~ = (X, pirhir) ™' = 0,,(1) where i) 7
= w(@o) f Eg(,)LRT(M 8¢iy)du. From the same reasoning as in the proof of Theorem 1 (iii), mmT = 0,(1), so that
also /iy~ = Op(1). The result now follows by proceeding as in the remainder of the proof of Theorem 1 (iii) and by
invoking Lemmas 4 (i) and 2 (iii) for each of the ng components in the measure of §.

The conditionally normal distribution Med + £;8,%;) follows as in the proof of Theorem 2. For the mixing
probabilities, note that the Bayes factor between pseudo models i and j is given by 7 7 /i) r. Using (A2) and
(A6), we find

I’lA’l(i)‘T _ |D5 25(,'> + ITkl’l/Zle’D,;e — e’DﬁKl-D,;el"/z exp[%ﬁ’E,‘@]
)T |Dj Zsy + Iri|~V/?|e'Dje — ¢ D; K; Dje|~1/2 exp[%§/2]_,-§]

so that the posterior odds of model i and model j in the pseudo model are as stated.
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Proof of Theorem 5. Let LRjTro be the likelihood ratio statistic between the correctly specified model with
parameter evolution 6, = 0y + T~'/2mo(t/T), and iy = T1/2(6 — 6y). Proceed as in Lemma 1 of Li and Miiller (2009)
and Lemma 3 to show that in the stable model,

LR7’ explfy oY T(D)2dW (1) — L [} o1y T(ymo()dl]
=20 | = | o T 2aw @) = [Tl fy DO [y TOYV2dw (1)
fir (fy T [ T 2aw (1)

Thus, by a general version of LeCam’s Third Lemma (see, for instance, Pollard, 2001), we have that in the unstable
model with parameter evolution 6, = 6y + 7~"/2mo(t/T), (S7(-) = T~ Y115, = Sy (). iy = Ux)). where Sz (-)
and Ux, are the weak limits of 7~!/2 ZLTI] §/ and 0y = T1/2(6" — 6y) in Condition 3, respectively.

(i) By Theorems 11.7.1 and 11.7.2 of Dudley (2002), there exist a probability space (F, @,i’) with associated ran-
dom elements Us. (7. i7), Sxo (). St(), S7(-), Tr(-) and ?f()such that (i) for all T > 1, (ir. iy, S7(-), S, Y1 (),
7)) has the same distribution as (ar, a, S7(), T 1/22[” §r T Z[ "y, T Z['T]ﬁ ) and (Urg, Sxy () has the
same distribution as (Ury . Sxo (+)); and (ii) (ir, uT,ST( ), ST( ), Tr(), T () = (Uﬂo, Uﬂo’sﬂo( ) S (), Jo Tl fo rdl)
P-almost surely. Since Sﬂo( -) and fo ['dl are continuous almost surely, note that this also implies sup; ¢g 1 HST (D
ST 7))l — 0 and sup; o 13 HTT(M T’(A)H -0 P- almost surely. Define I and 1" ]ust as IT in Theorem 2 with
(018, {h:)) replaced by (O + TY207 ATV2Sr(t/T) = Sr((t = D/TWAT(Tr(t/T) = Yr((t — 1)/T)}) and (6 +
T3, AT 2S5 /T) = Sp((t — 1D/ T AT(Cp(e/T) — Y5t — 1)/T)}), respectively. Now proceeding as in the proof
of Theorem 1 (iii) shows via Lemma 2 (i) that the total variation distance between IT and I1" converges to zero P-
almost surely. By assumption about Ly, this implies the corresponding convergence L1 (60, o, a*(11)) — Ly (6o, o,
a*(I1")) — 0 P-almost surely, which implies the result by another application of Theorem 11.7.1 of Dudley (2002).

(ii) and (iii) Immediate from the proof of part (i), the proof of part (ii) of Theorem 2, and Lemma 2 (ii).

Lemma 2.  Define LRy (u,8) = exp[z §0080 — 23 8 ha1edy + TVl — u)' Y- haed; — Su'Hau + i, Hyu]
and LR7(8) = exp[Y_ 5,8 — 5 3 8ha1e8: + 4 (T—l/zza haz,)H“T‘l/thaz,a,] for i=1, 2 Suppose T~'/?
Y8 = S, sup g IT2 Y00 Gy = Sa)ll 2> 0, (@) = (U Up), Ha 2> [} TGdA and sup, ¢ ||T"
Zx:l(half — hs,h,,gs — hS)H LN (0,0). Then under Condition 2,

(i) J Es |ERr(u,8) = [R7(0,8)| du > 0

(ii) EsLR1(8) — EsLR7(8) 2> 0

Furthermore, if in addition Condition 1 holds, then also

(iii) [ Es |LR7(u,8) — Arw)Sr(§)LRr(u, 8)| du > 0

(iv) EsLR7(8) — EsSr(8)LRr(0,8 — e5) > 0

Proof. (i) By the Cauchy—Schwarz inequality, we find

f E; \LART(u,s) - LAR“T(u,&\du < f (EsLR7(u,8))'? - (Es(1 — expler(u, ))))'*du (A7)
where
sr(u,8) = Z(fm 8+ T Paghy — T 20 hY 8, — L 5 68/ (hats — )3,
20N sy — b}y — Su'(Hy — Hou + 2/ (Hy — B .
We have

LRy (u,8)* = expl28'8 — (8 — T~"%e(d — u))'D; (8 — T~ e(d — u)) + 22'H i)
and by another application of the Cauchy—Schwarz inequality
EsLRy(u,8)® < exp[2a’H i)(Es exp[48'8])' /2 (Es expl—2(8 — T~"?e(@t — u))'D; (8 — T~ 2e(a — u)])'/2.
By Lemma 6 (iii), Es exp[4§'3] = O,(1), and exp[2f¢’ﬁﬁ] = 0,(1) by assumption. By Lemma 6 (i),

Es expl—2(8 — T~"2e(a — u))'D; (5 — T~e(it — u))] < exp [—%éﬂm - u||2]
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where Cr = O,(1) and C; 1= O, (1) and does not depend on u. Therefore,
2 k/2 k)2

EsLR7(u, 8 < 0,(1)2) 2T exp [——CTHu —ul] ] (A8)
so that with ®(u) the c.d.f. of u ~ Ma, éf llk), from (A7) and Jensen’s inequality

. . 2

( / Ey | IRy, 8) — LR, )| du) <Kir / Es(1 — explor(u, 8))2d d(u)

where K7 = O,(1), so that is suffices to show that f Esexplsr(u, §)]d ®(u) is bounded below by a random variable
that converges to one in probability, and f Esexpl2¢r(u,8)]d®(u) is bounded above by a random variable that

converges to one in probability. By Lemma 6 (ii), there exist random variables « 2o, KT 2, Ar L, 0 and
Ar 2 0 such that

/ Es explor(u, $)ld®(u) > K / exp [Arl\ul\z — ' (H, — Hyu + ' (H, ,,:,)u] dO@u))d d(u)
/Ea expl2¢r(u, 8)ld d(u) < Effexp [KruulV — Ju'(Hy, — Hyu + i (H, — H)u] dOu)ld d(u)

and the result follows.
(ii) By a direct calculation,

@my P P exp | i | |EIR1(8) - EsIR7 8)]

= ES/LART(u,s)du — Es

Ho 2|72 exp [—%LT(H“ —H)ﬁ]/ﬁe‘}(u,s)du\
S/Ea | TR0, 8) — LRG )| due + 11 = 1Ha |17 exp [ 4 (H, — i |EafLAR“T<u,a>du

and the result follows from part (i) and |H, |1/2|H| 172 exp[—iu (H, — I:I)ﬁ] 2.

(iii) Let Uy be the indicator of the event that ||| < ar. By Lemma 3 (iii), & = O,(1), so that EUr — 1.
Note that if Uryr L, 0 for some sequence of random variables v, then also ¥r L, 0. Let T be large enough
such that ©r = {6 : |0 — 6pl| < 2T ey + 712 + T2 (sup, 0.1 IIT I D/((nfrejo11 TN} C O, so that
0o + A7 )Sr(&Up (T~ — 1) + 8; — 8) € O almost surely for all r < T

Let g, : [0, 1] = R with g, (A) = [;(6p + Av) — [;(6y). Note that for 6y + v € Or, g, is twice continuously differ-
entiable with g/ (1) = v's,(6p + Av) and g/'(A) = —v'h,(6y + Av)v, so that by a first order Taylor expanswn in the inte-
gral remainder form, ,(6y +v) — ;(6p) = g, (1) — gV(O) =g, (0)+ fo Ag)(1 —X)dh = v's(6p) — EV "2 jo Mh (B +
(1 —X)v)dXr)v, and similarly, s;(6yp + v) = s,(6p) — (fo he(@o + Av)dA)v. Thus, for ||u|| < ar, T2 sup, .7 |16, < T
and ||i|| < ar

1O+ T 2u +8) — 100 + T72u) = 5,00 + T~ uy 8, — 18711, (u, 8)8,
1,00 + T72u) — 1,60) = T~"2u’s5,(60) — Su'ho (w)u
5;00 + T712u) = 5,80 + T720) — ha, (u, )T~V (u — 02)

51(60) = (60 + T~ ") + ha, ()T 02 (A9)
almost surely, where hy,(u,8) =2 [ Ay (B + T~2u + (1 = 2)8,)dA, hay(u) =2 fo‘ My (8o + (1 — A)T’l/zu)dk,
s, (u, it) = fo‘ hi(Bo + 2T ~Y2(@ — u))d ) and hy, () = fol hy(@o + 2T~ Y20)dx, t = 1,...,T. Define {hy,(u,8)}"_, =
{h(B0)}]—; when |lu|| = ar or T'Zsup,_p |18 > T", define {hy (w)}_ = {h,}, , when |lu]| = ar, define
{h3+(u, u)}t 1 = {hr}, | When ||u|| > ar or |li|| > ar, and define {h4,(u)}, = {h,} _, when |li|| > ar. Further,

let Ay(d) =T! > ha, (@) and Hw)=T" thy,(u) For notational convenience, we drop the dependence of 4,
hoy, Aj and 1314 on u, it and §. With these definitions, we have

Ar)Sr &)Uy |LRr (1, 8) — exp [Z 818+ T 20—y Y hsudi — Y8018 + 0 Hau — Su qu” 0

almost surely, uniformly in « € R¥ and § e R,
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Let
or(u,8) = —u)T™2Y (hyy = h)si = § 32 8(h — s — Su/(Hy — Hyu + i (Hy — Hou.

Now sup, ok scp7k Ar@)Sr(8)Ur|LRT(u,8) — ﬁ?(u, 8)exp sr(u, )| = 0 a.s., and by the Cauchy—Schwarz inequality
and Ur <1 a.s.

Ur [ E5|Rr.8) = ArSrG)LRr 8) di
< / [(EsLR7(u, 8)*)(Es(1 — Ar(u)Sr(8) exp cr(u, §)*)]"du.

Proceeding as in the proof of part (i), it suffices to show that f Es(1 — A7 (u)Sr(8) exp cr)*d ®(u) L0, We first
compute the expectation with respect to 8. This is complicated by the fact that /;, depends on 8. To circumvent
this problem, we bound ¢7(u, §) by gT(u,S) < ¢r(u,8) < <yr(u,d), where ST(u,é) and ¢ (u,d) are defined just as
¢r(u,8), but with A, replaced by a term that does not depend on & (or u).

Specifically, for each r < T, define d; = ZSupH‘,||<aT+Tn ||h,(90 +T712p) —h, (90)}
with [[v]| =1,

, so that for any v € R¥

[V'(hy (60) — h1)vl < |Ihy (B0) — husll < dy

since for [lu]| < ar and T2 sup, ¢ [18,]] < T, ||k (60) — 1| = HZ/;)' M B + T~2u + (1 = 1)) — hy(60))d 1|
and hy,(u,d) = h(0p) otherwise. Thus, for all § € R7*,

D8 (i (00) — dili) 8 <Y 88 < Y8 (h(B0) + dili) b
Now let
Sru,8) = gr(u,8) + 5 Y 8/(hrs — hi(60) + diTi)S,
S 8) = 6r(u,8) + 5 3 8/(h1; — hy(6o) — di 115,
so that ST(”"S) < ¢r(u,8) < ¢y (u,d). We obtain

0 < Es(1 — Ar(u)Sr(8) exp sr(u, §))

IA

1 = 2E5 A7 (u)Sr(8) exp ¢ .(u, 8) + Es Ar (u)Sr(8) exp 257 (u, 8)

IA

1 —2Esexpg, (u,8) + Es exp2¢y(u, 8) + 2Es(1 — Ar(u)Sr(8)) exp g, (u, 8)

so it suffices to show that f Esexp ST(”’S)‘Z ®(u) is bounded below by random variable that converges to one in
probability, that | Es exp 25 (u, 8)d ®(u) is bounded above by a random variable that converges to one in probability,

and [ Es(1 — Sr(8)Ar(u)) exp ., (u, 8)d D(u) > 0.
With Dh3 = diag(h3,| ey h3,’r), Dh = diag(h1 (9()), PR hr(@o)) and Dd = diag(dllk, ey dTIk) we have

Esexpg, (u, 8) = exp [féu/(lflg — H)yu + /(A — I:I)u]

“Esexp[(@ — u)T™"*€(Dy3 — D;)8 — $8'(Dy — Dj, + Dy)é]

and
Es exp 22y (u, 8) = exp[—u'(Hy — H)u + 20" (H; — H)u)
-Es exp[2(@ — u) T~ '/2€/(Dy3 — D;;)8 — §'(Dy, — Dj; — Dy)8).
Since
t B t B
sup 771D (has(u, i) — hy)| < sup T s, ) = | 2> 0
ueRk t<1 =1 (=T ||ul|<ap.||a]|<ap =1
t I3 T
sup T~ |3 "(h(00) + di i — hy)|| < sup |77 (he(80) —ho) | +T7' Y dy 5 0
=T s=1 =T s=1 =1
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by (16), Lemma 3 (ii) and Condition 1 (LLLN), and similarly, sup, . [|7-1 Z;zl(hs (o) — di I — Ty)|| LN 0, Lemma 6
(ii) is applicable, and we obtain

Esexp s, (u.8) = exp [~ bu'(Fly — Fu + ' (Fly — Fu | ey expl gl — ]

Esexp2cy(u,8) < expl—u'(Hy — H)u + 20’ (Hy — H)ulicr exp[Ar||u — 0t]|?]

uniformly in u, where k;, k7, Ay and A7 do not depend on u and k N 1, k1 LN 1, Ay N 0 and Ay N 0.
Also

sup [|Aa() —HI| < sup T hoy(w) = Tyl 2> 0
ueRrk [lul|<ar

by (16) and Lemma 3 (ii), and similarly, A, —-a 2o Thus, fEa expgr(u,ﬁ)dd)(u) > fg*} exp[AF||u — il
ddu) 2> 1and [ Es exp28,(u, 8)dDd(u) < [ 15 explAp|lu — a|[*1d D) > 1 for suitably defined k3 2> 1,705 >
1, A 2 0and Ay L. 0. We are left to show that [ Es(1 — Sr(8)Ar(u)) exp 5, d®) L, 0. By the Cauchy—Schwarz
inequality

2
[/ Es(1 — Sr(8)Ar(u)) expgr(u,ﬁ)d¢(u):| < |:/ Es(1 — ST(S)AT(M))ZdCI)(u)] [/ Es exp 2£T(u,6)d<1>(u):| .
From the same reasoning as above, j Esexp 2£T(u, 8)d ®(u) = Op(1), and
/E,;(l = Sr(8)Ar(u))d (u) < /E,;(l = Sr(8)dd(u) +fEa(1 — Ar(u))d ®(u).

But [ Es(1 — Sp(8))d®(u) = Es(1 — Sr(8)) = Es1[T"/sup,_7 [18,]| = T"] — 0, and [ Es(1 — A7 u))d d(u) <
S]] = arld®w) 2> 0 since ||a]| = 0,(1), C; "% = 0,(1) and ay — oco.

(iv) Similar to the proof of part (iii) and omitted for brevity.
A.2.3. Additional lemmas.

Lemma 3. Under Condition 1:
(i) T~'/? ['TI] s:(6p) = fo CY2(1dW (1), where W is a k x 1 standard Wiener process

1=

(it) SUP <1 v BT (i L. T 202y Mhg(Bo +vs + A A — Tyl 2> 0and SUP <7 (v)T_, BT ()T ek
T zgzl(fol hs @0 + A(vs — A — T 2> 0, where Br = {0 : |10 — 0ol| < by} with by — 0, and BL = B
X -+ X Br

(iit) i = TV*(0 — 6p) = 0,(1)

(iv) T2 3 50@) = [y TOV2aw (1) — [y TOI(f) TWd)™ [} T 2aw (1)

(v) supeioy 1T X s @), (OY — fy Tyl || 2> 0 and T~ Y 5,(60)s,(B0) = Op(1)

(vi) sup, oy 1T X201 (@) — [y Tyl ]| 2> 0.

Lemma 4.  Under Conditions 1 and 2, there exists a sequence of real numbers ar with ar — 00 and T~/?

0 such that
(i) ['w(B + T~"2u)Es(1 — Aru)Sr(8)LRy (u, 8)du > 0
(ii) Es(1 — Sp(8))LR7(0,8 — €3) - 0.

oOr —

Lemma 5. Let Xz(u) be a Tk x Tk matrix consisting of k x k blocks 8; j(u), i,j = 1,...,T, possibly dependent
on u and define c}/ = SUD; 1 cRk [|8;(w)||. Under Condition 2, there exists a constant cg independent of u and T
such that

() [o((F 5 FHZe)] < of cg

(i) [tr((F ' Z5F ") Ze)(F ' Z5F " Ze )] < (e e
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Lemma 6. Under Condition 1: ~ 5
(i) There exists a sequence of random variables Cr = O, (1) satisfying C; - O, (1) such that

sup (Esexp[—2(8 — T~ "/%ev)D;(6 — T~'ev)] — exp[— 1 Crllv|*]) < 0.
veRk T

(ii) Suppose the k x 1 vectors & satisfy sup, .y [|T—1/2 22:1 &l N 0, the k x k matrix functions ¢; : R¥ > RK*K
satisfy sup, _; ok 1T 71202y &) 50, the k x k matrices By, satisfy sup, . 1T~ 32, Bl Lo0i=1,23.

Then, with§ = (&]..... &), De(u) = diag(@1 (), . ... @), E; = (E..... )i = 1,2and Dg = diag(Es1, ..., Ex)

7 exp[Ar||vI[*] < Esexp[£'8 + T2/ D, ()8 — 18/ (T €18, + Dz)8] < Fr exp[Ar|[v|[’]

uniformly in v and T, where the scalar random variables k, Ay, K1 and ‘A7 do not depend on u or v and KT RN 1,
ir 51, Ar 5 0and Ay 5> 0.

(iii) f T2 YN8, = S1(), then Es expl48'8] = 0, (1).

(iv) If J7 € D is a nonstochastic sequence converging to J € D, where D is the set of cadlag functions on the unit
interval, then

sup Es exp[T" 27 (1) (67 = 8) = T2 Y " Jr((t = 1)/TY (8 = 8] < 00
T

with 8 = 0.
Lemma 7.  Under Conditions 1 and 2,
EsLR7(8) = Eg exp ul G* () 2aw (s) — L [ G*(s)’r(s)c*(s)ds]
where G*(s) = G(s) — (Jyy T()dw)™" [ TG (M)d .

Acknowledgements. We benefitted from thoughtful and constructive comments and suggestions by the editor,
Enrique Sentana, and two anonymous referees. We would also like to thank Mark Watson, as well as participants
at the NBER Summer Institute, the Workshop for Nonlinear and Nonstationary Models at the California Institute of
Technology, the Unit Root and Cointegration Testing Conference in Faro, the Econometric Society World Congress
in London, and workshops at the University of Lausanne, New York University, Rutgers University, University of
Texas at Austin, FRB of Atlanta, and Iowa State University for useful discussions, and Edouard Schaal for excellent
research assistance. Miiller gratefully acknowledges financial support from the NSF through grant SES-0518036.

REFERENCES

ANDERSON, T. W. (1955), “The Integral of a Symmetric Convex Set and some Probability Integrals”, Proceedings
of the American Mathematical Society, 6, 170—176.

ANDREWS, D. W. K. and PLOBERGER, W. (1994), “Optimal Tests When a Nuisance Parameter Is Present Only
under the Alternative”, Econometrica, 62, 1383—1414.

BAL J. (1997), “Estimation of a Change Point in Multiple Regressions”, Review of Economics and Statistics, 79,
551-563.

BAL J. and PERRON, P. (1998), “Estimating and Testing Linear Models with Multiple Structural Changes”, Econo-
metrica, 66, 47-78.

BERNANKE, B. S. and MIHOV, 1. (1998), “Measuring Monetary Policy”, The Quarterly Journal of Economics, 113,
869-902.

BILLINGSLEY, P. (1968), “Convergence of Probability Measure” (New York: Wiley).

BOIVIN, J. (2003), “Has U.S. Monetary Policy Changed? Evidence from Drifting Coefficients and Real Time Data”
(Working Paper, Columbia University).

BROWN, L. D. and LOW, M. G. (1996), “Asymptotic Equivalence of Nonparametric Regression and White Noise”,
Annals of Statistics, 24, 2384—2398.

CAI Z. (2007), “Trending Time-Varying Coefficient Time Series Models with Serially Correlated Errors”, Journal of
Econometrics, 136, 163—188.

© 2010 The Review of Economic Studies Limited



1538 REVIEW OF ECONOMIC STUDIES

CHIB, S. (1998), “Estimation and Comparison of Multiple Change-Point Models”, Journal of Econometrics, 785,
221-241.

COGLEY, T. and SARGENT, T. J. (2005), “Drifts and Volatilities: Monetary Policies and Outcomes in the Post
WWII US”, Review of Economic Dynamics, 8, 262—302.

DUDLEY, R. M. (2002), Real Analysis and Probability (Cambridge, UK: Cambridge University Press).

DUFOUR, J.-M. and GHYSELS, E. (1996), “Recent Developments in the Econometrics of Structural Change:
Overview”, Journal of Econometrics, 70, 1-8.

DURBIN, J. and KOOPMAN, S. J. (1997), “Monte Carlo Maximum Likelihood Estimation for Non-Gaussian State
Space Models”, Biometrika, 84, 669—684.

DURBIN, J. and KOOPMAN, S. J. (2001), “Time Series Analysis by State Space Methods” (Oxford: Oxford Uni-
versity Press).

ELLIOTT, G. and MULLER, U. K. (2006), “Efficient Tests for General Persistent Time Variation in Regression
Coefficients”, Review of Economic Studies, 73, 907—940.

ELLIOTT, G. and MULLER, U. K. (2007), “Confidence Sets for the Date of a Single Break in Linear Time Series
Regressions”, Journal of Econometrics, 141, 1196—1218.

FERNANDEZ-VILLAVERDE, J. and RUBIO-RAMIREZ, J. (2007), “How Structural Are Structural Parameters?”,
Macroeconomics Annual, 22, 83—137.

GHYSELS, E. (1998), “On Stable Factor Structures in the Pricing of Risk: Do Time-Varying Betas Help or Hurt?”,
Journal of Finance, 53, 549-573.

GOURIEROUX, C., MONFORT, A. and TROGNON, A. (1984), “Pseudo Maximum Likelihood Methods: Theory”,
Econometrica, 52, 681-700.

HALL, P. and HEYDE, C. C. (1980), Martingale Limit Theory and its Applications (New York: Academic Press).

HAMILTON, J. D. (1989), “A New Approach to the Economic Analysis of Nonstationary Time Series and the Business
Cycle”, Econometrica, 57, 357-384.

HANSEN, B. E. (1996), “Inference When a Nuisance Parameter Is Not Identified Under the Null Hypothesis”, Econo-
metrica, 64, 413-430.

HARVEY, A. C. (1989), “Forecasting, Structural Time Series Models and the Kalman Filter” (Cambridge University
Press).

HARVEY, A. C., RUIZ, E. and SHEPHARD, N. (1994), “Multivariate Stochastic Variance Models”, Review of Eco-
nomic Studies, 61, 247-264.

HUBER, P. (1967), “The Behavior of the Maximum Likelihood Estimates under Nonstandard Conditions”, Proceed-
ings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Berkeley: University of California
Press) 221-233.

JACQUIER, E., POLSON, N. G. and ROSSI, P. E. (1994), “Bayesian Analysis of Stochastic Volatility Models”,
Journal of Business and Economic Statistics, 12, 371-417.

JONG, P. D. (1991), “The Diffuse Kalman Filter”, The Annals of Statistics, 19, 1073—1083.

KIM, S., SHEPHARD, N. and CHIB, S. (1998), “Stochastic Volatility: Likelihood Inference and Comparison with
ARCH Models”, Review of Economic Studies, 65, 361-393.

LECAM, L. (1986), “Asymptotic Methods in Statistical Decision Theory” (New York: Springer Verlag).

LI H. and MULLER, U. K. (2009), “Valid Inference in Partially Unstable General Method of Moment Models”,
Review of Economic Studies, 76, 343-365.

LINDE, J. (2001), “Testing for the Lucas-Critique: A Quantitative Investigation”, American Economic Review, 91,
986-1005.

MULLER, U. K. (2009), “Risk of Bayesian Inference in Misspecified Models, and the Sandwich Covariance Matrix”
(Working Paper, Princeton University).

NEWEY, W. K. and WEST, K. (1987), “A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation
Consistent Covariance Matrix”, Econometrica, 55, 703-708.

NUSSBAUM, M. (1996), “Asymptotic Equivalence of Density Estimation and Gaussian White Noise”, Annals of
Statistics, 24, 2399-2430.

NYBLOM, J. (1989), “Testing for the Constancy of Parameters Over Time”, Journal of the American Statistical
Association, 84, 223-230.

PHILLIPS, P. C. B. and PLOBERGER, W. (1996), “An Asymptotic Theory of Bayesian Inference for Time Series”,
Econometrica, 64, 381-412.

PLOBERGER, W. (2004), “A Complete Class of Tests When the Likelihood is Locally Asymptotically Quadratic”,
Journal of Econometrics, 118, 67—94.

POLLARD, D. (2001), “Contiguity” (Working Paper, Yale University).

PRIESTLEY, M. B. and CHAO, M. T. (1972), “Non-Parametric Function Fitting”, Journal of the Royal Statistical
Society, Series B, 34, 385-392.

© 2010 The Review of Economic Studies Limited



MULLER & PETALAS PARAMETER PATH IN UNSTABLE TIME SERIES MODELS 1539

PRIMICERI, G. E. (2005), “Time Varying Structural Vector Autoregressions and Monetary Policy”, The Review of
Economic Studies, 72, 821-852.

ROBINSON, P. M. (1989), “Nonparametric Estimation of Time-Varying Parameters”, in P. Hackl (ed.) Statistical
Analysis and Forecasting of Economic Structural Change (Berlin: Springer) 253-264.

ROBINSON, P. M. (1991), “Time-Varying Nonlinear Regression”, in P. Hackl and A. H. Westlund (eds) Economic
Structural Change. Analysis and Forecasting (Berlin: Springer) 179—-190.

SCHERVISH, M. J. (1995), “Theory of Statistics” (New York: Springer).

SHEPHARD, N. and PITT, M. K. (1997), “Likelihood Analysis of Non-Gaussian Measurement Time Series”,
Biometrika, 84, 653—667.

SHIVELY, T. S. (1988), “An Analysis of Tests for Regression Coefficient Stability”, Journal of Econometrics, 39,
367-386.

SIMS, C. A. and ZHA, T. (2006), “Where There Regime Switches in Us Monetary Policy?”, American Economic
Review, 96, 54-81.

STOCK, J. H. (1994), “Unit Roots, Structural Breaks and Trends”, in R. F. Engle and D. McFadden (eds) Handbook
of Econometrics, Vol. 4 (New York: North Holland) 2740-2841.

STOCK, J. H. and WATSON, M. W. (1996), “Evidence on Structural Instability in Macroeconomic Time Series
Relations”, Journal of Business and Economic Statistics, 14, 11-30.

STOCK, J. H. and WATSON, M. W. (1998), “Median Unbiased Estimation of Coefficient Variance in a Time-Varying
Parameter Model”, Journal of the American Statistical Association, 93, 349—-358.

STOCK, J. H. and WATSON, M. W. (2002), “Has the Business Cycle Changed and Why?” in M. Gertler and
K. S. Rogoff (eds) NBER Macroeconomics Annual 2002 (Cambridge, MA: MIT Press) 159-218.

WALD, A. (1943), “Tests of Statistical Hypotheses Concerning Several Parameters When the Number of Observations
is Large”, Transactions of the American Mathematical Society, 54, 426—482.

WHITE, H. (1982), “Maximum Likelihood Estimation of Misspecified Models”, Econometrica, 50, 1-25.

WU, W. B. and ZHAO, Z. (2007), “Inference of Trends in Time Series”, Journal of the Royal Statistical Society,
Series B, 69, 391-410.

© 2010 The Review of Economic Studies Limited



