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Motivation

Time series models have potentially time varying parameters

⇒ Parameter path estimator in unstable models?

• descriptive tool that helps determine the source of the instability

• interesting for forecasting

• sometimes structural interpretation
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Parameter Path in Parametric Model

• Stable and stationary parametric model with log-likelihood functionPT
t=1 lt(θ), where θ ∈ Θ ⊂ Rk

• Likelihood function of unstable model: PT
t=1 lt(θt)

• Parametrize parameter path as

{θt}Tt=1 = {θ + δt}Tt=1 with
TX
t=1

δt = 0

so that θ is benchmark value and δ = (δ01, · · · , δ0T )0 ∈ RTk are the
deviations
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Inference in Linear Gaussian Model

• Consider the Gaussian model
Y0 = θ + T−1/2ν0
Yt = δt + νt t = 1, · · · , T
δ ∼ N (0,Σδ) independent of {νt}

with Y0 and Y = (Y 01, · · · , Y 0T )0 observed and νt ∼ i.i.d.N (0,Ω)

• Under symmetric loss, efficient estimator of δ is δ̂∗ = E[δ|Y ] = ΣY ,

where Σ is a function of Σδ and Ω, and efficient estimator of path

{θt}Tt=1 is {Y0 + δ̂
∗
t}Tt=1.

• Efficient test for parameter stability H0 : δ = 0 against H1 : δ ∼
N (0,Σδ) is based on Y

0ΣY = (ΣY )0Σ−1ΣY = δ̂
∗0
Σ−1δ̂∗

• When {δt}Tt=1 is a demeaned Gaussian Random Walk, then estimator

δ̂
∗
= ΣY can be computed from variants of Kalman smoothing
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Optimality Properties

• The model
Yt = δt + νt t = 1, · · · , T
δ = N (0,Σδ) independent of {νt}

posits δ to be random: Assumption δ ∼ N (0,Σδ) may be viewed as
prior in a Bayesian analysis

• If δ is viewed as fixed but unknown, then δ̂∗ = ΣY minimizes Weighted
Average Risk for symmetric loss functions L

WAR(δ̂) =
Z
E[L(δ̂, δ)]dQ(δ)

when Q is proportional to the distribution N (0,Σδ)

• Similarly, a parameter stability test based on Y 0ΣY maximizes
Weighted Average Power

WAP (ϕ) =
Z
P (ϕ rejects|δ = d)dQ(d)
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Contribution

• Considers general time series likelihood model (nonlinear, non-

Gaussian) with Gaussian parameter evolution/weighting function.

• Focusses on parameter variations whose presence cannot be detected
with probability one, even in the limit.

• Shows that sample information is efficiently summarized by linear
Gaussian pseudo model, with score vectors as the observations

⇒ asymptotically weighted average risk minimizing path estimators

and weighted average power maximizing test statistic are straightfor-

ward to compute

• Idea: quadratic approximation to log-likelihood.
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Example: US GDP Growth

Time varying innovation variance of AR(2)

yt = c+ α1yt−1 + α2yt−2 +
q
σ2t et

where {et} is i.i.d.N (0, 1)
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WAR and WAP in General Model

• General unstable model has likelihood PT
t=1 lt(θt), where {θt}Tt=1 =

{θ + δt}Tt=1

• Compare path estimators â = (â01, · · · , â0T )0 ∈ RTk by Weighted Av-
erage Risk

WAR(â) =
Z
w(θ)

Z
E[LT (â, θ, δ)]dQT (δ)dθ

where LT is a bounded loss function

• Compare tests of parameter stability H0 : δ = 0 by Weighted Average
Power

WAP (ϕ) =
Z
P (ϕ rejects|δ = d, θ = θ0)dQT (d)
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Assumption on Weights

• Weighting function QT on δ = (δ
0
1, · · · , δ0T )0 is distribution of

{T−1/2(G(t/T )− ḠT )}Tt=1
where ḠT = T−1PT

t=1G(t/T ) and G(·) is a continuous Gaussian
process on the unit interval.

Example: G(·) = Υ1/2W (·), where W (·) is standard k × 1 Wiener
process: QT is the distribution of a demeaned Gaussian Random Walk

• Weighting function w does not depend on T and is continuous and

integrable

8



Motivation for Weighting Function QT

• Motivation for persistent parameter variation

— plausible for many causes of instability (drifts in preferences, insti-
tutions, etc.)

— popular in economic modelling

• Motivation for small parameter variation

— corresponds to local neighborhood in which tests of parameter sta-
bility have nontrivial power

— focusses on parameter paths which are difficult to determine, even
asymptotically

— ’small’ time variation empirically common (somewhat significant
p-values of stability tests)
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Notation

• Maximum likelihood estimator θ̂ = argmaxθ
PT
t=1 lt(θ)

• Score vectors st(θ) = ∂lt(θ)/∂θ, t = 1, · · · , T

• Hessians ht(θ) = −∂st(θ)/∂θ0, t = 1, · · · , T

• average Hessians Ĥ = T−1PT
t=1 ht(θ̂)
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Main Result

Under weak regularity conditions on the likelihood of the stable model,

asymptotically efficient inference on θ and {δt}Tt=1 can be carried out as if
the sample information was given by the pseudo Gaussian model

θ̂ = θ + T−1/2ν0
Ĥ−1st(θ̂) = δt + νt, t = 1, · · · , T

where νt ∼ i.i.d.N (Ĥ−1).

1. For bounded and symmetric loss functions, asymptotically efficient

estimator of δ is ΣŜ, and asymptotically efficient test of parameter

constancy is Ŝ0ΣŜ, where Ŝ = (Ĥ−1s1(θ̂)0, · · · , Ĥ−1sT (θ̂)0)0

2. When G(·) = Υ1/2W (·), the efficient path estimator ΣŜ amounts to
Kalman smoothing the scores.

11



Application to GDP Growth

{e2t} {σ̂2t}
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Heuristic Derivation

• The sample information about the θ and {δt}Tt=1 is fully contained in
the function

P
lt(θ + δt).

• Idea: quadratic approximation of P lt(θ + δt) by second-order Taylor

expansion.

• Relies heavily on ’Local Law of Large Numbers’ (LLLN)
T−1

X
ht(θt)

p→ H

for all sequences {θt}Tt=1 s.t. supt ||θt − θ0|| → 0 (reasonable, as

T−1Pht(θt) = T−1P[ht(θ0) + Rt] where Rt is small when Hessian

is differentiable)

⇒ in particular, Ĥ = T−1Pht(θ̂)
p→ H, since θ̂ is

√
T consistent
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Properties of Smooth Averages

• Let {γt} be a step function of order T−1/2 with a single step, i.e.
γt = T−1/2g01[t ≤ πT ] + T−1/2g11[t > πT ]. Then with supt ||θt −
θ0||→ 0,

TX
t=1

γ0tht(θt)γt = T−1
[πT ]X
t=1

g00ht(θt)g0 + T−1
TX

t=[πT ]+1

g01ht(θt)g1

≈ πg00Hg0 + (1− π)g01Hg1

≈
TX
t=1

γ0tHγt ≈
TX
t=1

γ0tĤγt

• Any smooth process {γt} of order T−1/2 can be approximated by a
step function (with many steps), so be the same argument,

TX
t=1

γ0tht(θt)γt ≈
TX
t=1

γ0tĤγt
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Taylor Expansion

• By T exact Taylor expansionsX
lt(θ + δt)−

X
lt(θ̂) =

X
st(θ̂)

0(θ + δt − θ̂)

− 1
2(θ + δt − θ̂)0ht(θ̃t)(θ + δt − θ̂)

where θ̃t is between θ0 + δt and θ̂.

• But {θ + δt − θ̂}Tt=1 is smooth and of order T−1/2, so thatX
(θ + δt − θ̂)0ht(θ̃t)(θ + δt − θ̂) ≈X

(θ + δt − θ̂)0Ĥ(θ + δt − θ̂)

• Also, P st(θ̂) = 0 by FOC of MLE, and
P
δt = 0 by construction.
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Completing the Square

• We findX
(lt(θ + δt)− lt(θ̂))− 1

2

X
st(θ̂)

0Ĥ−1st(θ̂)
≈ −12

X
(Ĥ−1st(θ̂)− δt)

0Ĥ(Ĥ−1st(θ̂)− δt)− 1
2T (θ − θ̂)0Ĥ(θ − θ̂)

⇒ Ignoring constants, this is the log-likelihood of the (demeaned) Gaussian

random variables {Ĥ−1st(θ̂)}Tt=1 with mean {δt} and covariance matrix
Ĥ−1, and the Gaussian random variable θ with mean θ̂ and covariance

matrix T−1Ĥ−1

⇒ Sample information can be approximated by the observations

θ̂ = θ + T−1/2ν0
Ĥ−1st(θ̂) = δt + νt t = 1, · · · , T

where νt ∼ i.i.d.N (Ĥ−1).
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Extensions

1. Approximation for nonstationary stable models

⇒ sample information summarized by linear Gaussian model

st(θ̂) + h̃tθ̂ = h̃t(δt + θ) + νt, νt ∼ independent N (0, h̃t)
where h̃t is any sequence of positive definite matrices satisfying

supλ∈[0,1]
°°°°T−1P[λT ]t=1 (h̃t − ht(θ0))

°°°° p→ 0

2. Weighting functions QT that are mixtures of distribution of Gaussian

stochatic processes Gi(·)
⇒ useful for, say, making scale of parameter variability data induced
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Conclusion

1. Sample information is efficiently summarized by Gaussian pseudo

model, in the limit.

2. Computationally straightforward formulae for efficient estimator of the

parameter path.

3. Unifying framework for efficient estimators of parameter path and ef-

ficient tests of parameter stability.
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