# Efficient Estimation of the Parameter Path in Unstable Time Series Models

Ulrich K. Müller and Philippe Petalas Princeton University

March 10, 2007

# **Motivation**

Time series models have potentially time varying parameters

 $\Rightarrow$  Parameter path estimator in unstable models?

- descriptive tool that helps determine the source of the instability
- interesting for forecasting
- sometimes structural interpretation

#### **Parameter Path in Parametric Model**

- Stable and stationary parametric model with log-likelihood function  $\sum_{t=1}^{T} l_t(\theta)$ , where  $\theta \in \Theta \subset \mathbb{R}^k$
- Likelihood function of unstable model:  $\sum_{t=1}^{T} l_t(\theta_t)$
- Parametrize parameter path as

$$\{\theta_t\}_{t=1}^T = \{\theta + \delta_t\}_{t=1}^T \quad \text{with} \quad \sum_{t=1}^T \delta_t = 0$$

so that  $\theta$  is benchmark value and  $\delta = (\delta'_1, \cdots, \delta'_T)' \in \mathbb{R}^{Tk}$  are the deviations

#### **Inference in Linear Gaussian Model**

• Consider the Gaussian model

$$egin{aligned} Y_{0} &= heta + T^{-1/2} 
u_{0} \ Y_{t} &= \delta_{t} + 
u_{t} & t = 1, \cdots, T \ \delta &\sim \mathcal{N}(0, \mathbf{\Sigma}_{\delta}) & ext{independent of } \{
u_{t}\} \end{aligned}$$

with  $Y_0$  and  $Y = (Y'_1, \cdots, Y'_T)'$  observed and  $\nu_t \sim i.i.d.\mathcal{N}(0, \Omega)$ 

- Under symmetric loss, efficient estimator of  $\delta$  is  $\hat{\delta}^* = E[\delta|Y] = \Sigma Y$ , where  $\Sigma$  is a function of  $\Sigma_{\delta}$  and  $\Omega$ , and efficient estimator of path  $\{\theta_t\}_{t=1}^T$  is  $\{Y_0 + \hat{\delta}_t^*\}_{t=1}^T$ .
- Efficient test for parameter stability  $H_0$ :  $\delta = 0$  against  $H_1$ :  $\delta \sim \mathcal{N}(0, \Sigma_{\delta})$  is based on  $Y'\Sigma Y = (\Sigma Y)'\Sigma^{-1}\Sigma Y = \hat{\delta}^{*'}\Sigma^{-1}\hat{\delta}^*$
- When  $\{\delta_t\}_{t=1}^T$  is a demeaned Gaussian Random Walk, then estimator  $\hat{\delta}^* = \Sigma Y$  can be computed from variants of Kalman smoothing

# **Optimality Properties**

#### • The model

$$\begin{array}{ll} Y_t = \delta_t + \nu_t & t = 1, \cdots, T \\ \delta = \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{\delta}) & \text{independent of } \{\nu_t\} \end{array}$$

posits  $\delta$  to be random: Assumption  $\delta \sim \mathcal{N}(0, \Sigma_{\delta})$  may be viewed as prior in a Bayesian analysis

• If  $\delta$  is viewed as fixed but unknown, then  $\hat{\delta}^* = \Sigma Y$  minimizes Weighted Average Risk for symmetric loss functions L

$$WAR(\hat{\delta}) = \int E[L(\hat{\delta}, \delta)] dQ(\delta)$$

when Q is proportional to the distribution  $\mathcal{N}(0, \Sigma_{\delta})$ 

 $\bullet$  Similarly, a parameter stability test based on  $Y' {\bf \Sigma} Y$  maximizes Weighted Average Power

$$WAP(arphi) = \int P(arphi ext{ rejects} | \delta = d) dQ(d)$$

# Contribution

- Considers general time series likelihood model (nonlinear, non-Gaussian) with Gaussian parameter evolution/weighting function.
- Focusses on parameter variations whose presence cannot be detected with probability one, even in the limit.
- Shows that sample information is efficiently summarized by linear Gaussian pseudo model, with score vectors as the observations
   ⇒ asymptotically weighted average risk minimizing path estimators and weighted average power maximizing test statistic are straightforward to compute
- Idea: quadratic approximation to log-likelihood.

# **Example: US GDP Growth**

Time varying innovation variance of AR(2)

$$y_{t} = c + \alpha_{1}y_{t-1} + \alpha_{2}y_{t-2} + \sqrt{\sigma_{t}^{2}}e_{t}$$

where  $\{e_t\}$  is i.i.d. $\mathcal{N}(0,1)$ 



#### WAR and WAP in General Model

- General unstable model has likelihood  $\sum_{t=1}^{T} l_t(\theta_t)$ , where  $\{\theta_t\}_{t=1}^{T} = \{\theta + \delta_t\}_{t=1}^{T}$
- Compare path estimators  $\hat{a} = (\hat{a}'_1, \cdots, \hat{a}'_T)' \in \mathbb{R}^{Tk}$  by Weighted Average Risk

$$WAR(\hat{a}) = \int w(\theta) \int E[L_T(\hat{a}, \theta, \delta)] dQ_T(\delta) d\theta$$

where  $L_T$  is a bounded loss function

• Compare tests of parameter stability  $H_0: \delta = 0$  by Weighted Average Power

$$WAP(\varphi) = \int P(\varphi | \mathsf{rejects} | \delta = d, \theta = \theta_0) dQ_T(d)$$

### **Assumption on Weights**

• Weighting function  $Q_T$  on  $\delta = (\delta'_1, \cdots, \delta'_T)'$  is distribution of

$$\{T^{-1/2}(G(t/T) - \bar{G}_T)\}_{t=1}^T$$

where  $\overline{G}_T = T^{-1} \sum_{t=1}^T G(t/T)$  and  $G(\cdot)$  is a continuous Gaussian process on the unit interval.

Example:  $G(\cdot) = \Upsilon^{1/2}W(\cdot)$ , where  $W(\cdot)$  is standard  $k \times 1$  Wiener process:  $Q_T$  is the distribution of a demeaned Gaussian Random Walk

• Weighting function w does not depend on T and is continuous and integrable

# Motivation for Weighting Function $Q_T$

- Motivation for persistent parameter variation
  - plausible for many causes of instability (drifts in preferences, institutions, etc.)
  - popular in economic modelling
- Motivation for small parameter variation
  - corresponds to local neighborhood in which tests of parameter stability have nontrivial power
  - focusses on parameter paths which are difficult to determine, even asymptotically
  - 'small' time variation empirically common (somewhat significant p-values of stability tests)

# Notation

- Maximum likelihood estimator  $\hat{\theta} = \arg \max_{\theta} \sum_{t=1}^{T} l_t(\theta)$
- Score vectors  $s_t(\theta) = \partial l_t(\theta) / \partial \theta$ ,  $t = 1, \cdots, T$

• Hessians 
$$h_t(\theta) = -\partial s_t(\theta) / \partial \theta'$$
,  $t = 1, \cdots, T$ 

• average Hessians 
$$\hat{H} = T^{-1} \sum_{t=1}^{T} h_t(\hat{\theta})$$

### **Main Result**

Under weak regularity conditions on the likelihood of the *stable* model, asymptotically efficient inference on  $\theta$  and  $\{\delta_t\}_{t=1}^T$  can be carried out as if the sample information was given by the pseudo Gaussian model

$$\hat{\theta} = \theta + T^{-1/2} \nu_0$$
  
 $\hat{H}^{-1} s_t(\hat{\theta}) = \delta_t + \nu_t, \quad t = 1, \cdots, T$ 

where  $\nu_t \sim i.i.d.\mathcal{N}(\hat{H}^{-1})$ .

- 1. For bounded and symmetric loss functions, asymptotically efficient estimator of  $\delta$  is  $\Sigma \hat{S}$ , and asymptotically efficient test of parameter constancy is  $\hat{S}'\Sigma \hat{S}$ , where  $\hat{S} = (\hat{H}^{-1}s_1(\hat{\theta})', \cdots, \hat{H}^{-1}s_T(\hat{\theta})')'$
- 2. When  $G(\cdot) = \Upsilon^{1/2}W(\cdot)$ , the efficient path estimator  $\Sigma \hat{S}$  amounts to Kalman smoothing the scores.

# **Application to GDP Growth**



# **Heuristic Derivation**

- The sample information about the  $\theta$  and  $\{\delta_t\}_{t=1}^T$  is fully contained in the function  $\sum l_t(\theta + \delta_t)$ .
- Idea: quadratic approximation of  $\sum l_t(\theta + \delta_t)$  by second-order Taylor expansion.
- Relies heavily on 'Local Law of Large Numbers' (LLLN)

$$T^{-1}\sum h_t(\theta_t) \xrightarrow{p} H$$

for all sequences  $\{\theta_t\}_{t=1}^T$  s.t.  $\sup_t ||\theta_t - \theta_0|| \to 0$  (reasonable, as  $T^{-1} \sum h_t(\theta_t) = T^{-1} \sum [h_t(\theta_0) + R_t]$  where  $R_t$  is small when Hessian is differentiable)

$$\Rightarrow$$
 in particular,  $\hat{H} = T^{-1} \sum h_t(\hat{\theta}) \xrightarrow{p} H$ , since  $\hat{\theta}$  is  $\sqrt{T}$  consistent

#### **Properties of Smooth Averages**

• Let  $\{\gamma_t\}$  be a step function of order  $T^{-1/2}$  with a single step, i.e.  $\gamma_t = T^{-1/2}g_0\mathbf{1}[t \le \pi T] + T^{-1/2}g_1\mathbf{1}[t > \pi T]$ . Then with  $\sup_t ||\theta_t - \theta_0|| \to 0$ ,

$$\sum_{t=1}^{T} \gamma'_t h_t(\theta_t) \gamma_t = T^{-1} \sum_{t=1}^{[\pi T]} g'_0 h_t(\theta_t) g_0 + T^{-1} \sum_{t=[\pi T]+1}^{T} g'_1 h_t(\theta_t) g_1$$
$$\approx \pi g'_0 H g_0 + (1-\pi) g'_1 H g_1$$
$$\approx \sum_{t=1}^{T} \gamma'_t H \gamma_t \approx \sum_{t=1}^{T} \gamma'_t \hat{H} \gamma_t$$

• Any smooth process  $\{\gamma_t\}$  of order  $T^{-1/2}$  can be approximated by a step function (with many steps), so be the same argument,

$$\sum_{t=1}^{T} \gamma_t' h_t(\theta_t) \gamma_t \approx \sum_{t=1}^{T} \gamma_t' \hat{H} \gamma_t$$

### **Taylor Expansion**

• By T exact Taylor expansions

$$\begin{split} \sum l_t(\theta + \delta_t) - \sum l_t(\hat{\theta}) &= \sum s_t(\hat{\theta})'(\theta + \delta_t - \hat{\theta}) \\ &- \frac{1}{2}(\theta + \delta_t - \hat{\theta})'h_t(\tilde{\theta}_t)(\theta + \delta_t - \hat{\theta}) \\ \end{split}$$
 where  $\tilde{\theta}_t$  is between  $\theta_0 + \delta_t$  and  $\hat{\theta}$ .

- But  $\{\theta + \delta_t \hat{\theta}\}_{t=1}^T$  is smooth and of order  $T^{-1/2}$ , so that  $\sum (\theta + \delta_t - \hat{\theta})' h_t(\tilde{\theta}_t)(\theta + \delta_t - \hat{\theta}) \approx \sum (\theta + \delta_t - \hat{\theta})' \hat{H}(\theta + \delta_t - \hat{\theta})$
- Also,  $\sum s_t(\hat{\theta}) = 0$  by FOC of MLE, and  $\sum \delta_t = 0$  by construction.

# **Completing the Square**

#### • We find

$$\sum (l_t(\theta + \delta_t) - l_t(\hat{\theta})) - \frac{1}{2} \sum s_t(\hat{\theta})' \hat{H}^{-1} s_t(\hat{\theta})$$
  

$$\approx -\frac{1}{2} \sum (\hat{H}^{-1} s_t(\hat{\theta}) - \delta_t)' \hat{H} (\hat{H}^{-1} s_t(\hat{\theta}) - \delta_t) - \frac{1}{2} T (\theta - \hat{\theta})' \hat{H} (\theta - \hat{\theta})$$

 $\Rightarrow$  Ignoring constants, this is the log-likelihood of the (demeaned) Gaussian random variables  $\{\hat{H}^{-1}s_t(\hat{\theta})\}_{t=1}^T$  with mean  $\{\delta_t\}$  and covariance matrix  $\hat{H}^{-1}$ , and the Gaussian random variable  $\theta$  with mean  $\hat{\theta}$  and covariance matrix  $T^{-1}\hat{H}^{-1}$ 

 $\Rightarrow$  Sample information can be approximated by the observations

$$\hat{\theta} = \theta + T^{-1/2}\nu_0$$
  
$$\hat{H}^{-1}s_t(\hat{\theta}) = \delta_t + \nu_t \qquad t = 1, \cdots, T$$

where  $\nu_t \sim i.i.d.\mathcal{N}(\hat{H}^{-1})$ .

## **Extensions**

- 1. Approximation for nonstationary stable models
  - $\Rightarrow$  sample information summarized by linear Gaussian model

$$s_t(\hat{\theta}) + \tilde{h}_t \hat{\theta} = \tilde{h}_t(\delta_t + \theta) + \nu_t, \quad \nu_t \sim \text{independent } \mathcal{N}(0, \tilde{h}_t)$$
  
where  $\tilde{h}_t$  is any sequence of positive definite matrices satisfying  
$$\sup_{\lambda \in [0,1]} \left\| T^{-1} \sum_{t=1}^{[\lambda T]} (\tilde{h}_t - h_t(\theta_0)) \right\| \xrightarrow{p} 0$$

2. Weighting functions  $Q_T$  that are mixtures of distribution of Gaussian stochatic processes  $G_i(\cdot)$ 

 $\Rightarrow$  useful for, say, making scale of parameter variability data induced

# Conclusion

- 1. Sample information is efficiently summarized by Gaussian pseudo model, in the limit.
- 2. Computationally straightforward formulae for efficient estimator of the parameter path.
- 3. Unifying framework for efficient estimators of parameter path and efficient tests of parameter stability.