Supplementary Material to
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by Ulrich K. Miiller and Philippe-Emmanuel Petalas

1 Additional Risk Comparisons

1.1 Linear Trend Parameter Path

Consider the model of Section 2.3 with a linear trend specification for the parameter path
0, = 0y + *)
t = bo T

Condition 2 allows for the special case where G(s) = Zs, Z ~ N(0,¢*/H), so that
by Theorem 1, large sample weighted average risk minimizing decisions relative to the
weighting function S ~ N(0,¢?/HT) are obtained by replacing the original likelihood by
the approximations (7) and (8), or (23).

We compare the following modes of inference: (i) MLE estimation of 3 and 3 from the
log-likelihood > (0 + 5t/T') with sandwich covariance matrix (trend MLE); (ii) Linear
trend model estimated using approximation (7) and (8) with ¢ known (kn ¢, trnd.LL) (that
is, inference from the posterior N (96 + X5,%), where X5 in ¥ is generated by G(s) = Zs,
Z ~ N(0,c?/H)); (iii) Linear trend model estimated using approximation (23) as in Table
1 with ¢ known (kn ¢, trnd.Kal); (iv) Equal probability mixture of linear trend model
estimated using approximation (7) and (8) with ¢ € C' = {0,5,...,50} (un ¢, trnd.LL);
(v) Equal probability mixture of linear trend model estimated using approximation (23)
as in Table 1 with ¢ € C' = {0,5,...,50} (un ¢, trnd.Kal); (vi) the two path estimators
considered in Table 1 of the paper ("un ¢, LL" and "un ¢, Kal" abbreviated for "unknown
¢, Local Level" and "unknown ¢, Kalman", respectively). [For the trnd. XX methods, the
monikers "LL" and "Kal" are misnomers; they are merely supposed to indicate application
of the pseudo models (7) and (8), and (23), respectively, as in Table 1.]

To estimate weighted average risk, we draw data from model (10) and (*) with
0y ~ N(0,100) and 3 ~ N(0,c*/HT). All Tables in this supplement are based on 8,000
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replications. Table 2 reports weighted average risk relative to "trend MLE" inference.
Theorem 1 implies that "kn ¢, trnd.LL" and "kn ¢, trnd.Kal" are large sample weighted
average risk minimizing, so these entries should be smallest. As can be seen from Table 2,
this approximation holds up reasonably well as long as ¢ is not too big (and the shrinking
relative to the MLE implied by these methods is especially helpful for moderate amounts
of time variation). As expected, knowledge of the linear trend form of the parameter
path leads to lower risks compared to those obtained from "un ¢, LL" and "un ¢, Kal",
especially for ¢ large.

Table 3 reports relative weighted average risk of the same inference methods un-
der the weighting function considered in Table 1, 6, ~ AN(0,100) and 6, — 6, 1 ~
i.0.d.N(0,c*/HT?).



Table 2: Weighted Average Risk relative to trend MLE, Gaussian Linear Trend Weight

Function
c=0 c=4 c=38 c=12
df 00 12 6 00 12 6 00 12 6 00 12 6
Average Square Loss, T'= 160
kn ¢, trnd.LL.  0.49 0.51 0.54 0.81 0.78 0.74 1.07 1.02 0.95 1.65 1.47 1.25
kn ¢, trnd.Kal 0.49 0.51 0.54 0.80 0.77 0.74 0.95 093 0.89 1.03 1.01 0.98
un ¢, trnd.LL  0.70 0.72 0.74 0.86 0.84 0.81 1.10 1.05 0.97 1.67 1.49 1.27
un ¢, trnd.Kal 0.71 0.72 0.74 0.86 0.84 0.82 0.99 097 0.93 1.07 1.06 1.02
un ¢, LL 0.82 0.83 0.84 1.07 1.03 0.97 1.57 1.44 1.27 2.54 220 1.80
un ¢, Kal 0.83 0.84 0.82 1.05 1.00 0.94 1.32 1.25 1.13 1.55 1.45 1.30
Average Square Loss, T' = 480
kn ¢, trnd.LL  0.50 0.50 0.52 0.81 0.77 0.72 0.98 0.94 0.89 1.19 1.12 1.03
kn ¢, trnd.Kal 0.50 0.50 0.52 0.81 0.77 0.72 0.94 0.92 0.87 0.99 0.98 0.94
un ¢, trnd.LL.  0.71 0.73 0.73 0.87 0.84 0.81 1.01 0.98 0.92 1.22 1.15 1.05
un ¢, trnd.Kal 0.72 0.73 0.73 0.87 0.85 0.81 0.99 097 0.92 1.04 1.04 0.98
un ¢, LL 0.86 0.87 0.86 1.09 1.06 0.98 145 1.36 1.21 194 1.78 1.51
un ¢, Kal 0.86 0.87 0.84 1.09 1.04 0.95 1.36 1.29 1.14 1.56 1.48 1.30
Endpoint Interval Estimation Loss, T" = 160
kn ¢, trnd.LL.  0.49 0.51 0.53 0.83 0.79 0.73 0.96 0.93 0.87 1.14 1.10 0.99
kn ¢, trnd.Kal 0.49 0.51 0.53 0.83 0.80 0.74 0.95 093 0.88 1.01 1.00 0.95
un ¢, trnd.LL  0.72 0.72 0.70 0.87 0.85 0.80 1.01 1.00 0.93 1.18 1.14 1.05
un ¢, trnd.Kal 0.73 0.72 0.70 0.88 0.86 0.81 1.02 1.01 0.95 1.09 1.08 1.03
un ¢, LL 0.92 0.91 0.86 1.05 1.03 0.95 1.28 1.25 1.12 1.60 1.54 1.33
un ¢, Kal 0.94 0.93 0.88 1.06 1.03 0.95 1.26 1.23 1.12 1.44 1.40 1.26
Endpoint Interval Estimation Loss, T" = 480

kn ¢, trnd.LL  0.50 0.50 0.52 0.85 0.80 0.74 0.95 0.92 0.87 1.01 0.98 0.93
kn ¢, trnd.Kal 0.50 0.50 0.52 0.85 0.80 0.74 0.95 0.93 0.88 0.99 0.97 0.93
un ¢, trnd.LL.  0.74 0.74 0.73 0.90 0.85 0.81 1.02 0.98 0.92 1.07 1.04 0.99
un ¢, trnd.Kal 0.75 0.75 0.73 0.91 0.86 0.81 1.03 0.99 0.93 1.06 1.04 1.00
un ¢, LL 0.96 0.94 0.92 1.09 1.03 0.98 1.29 1.21 1.13 146 1.37 1.28
un ¢, Kal 0.97 0.95 0.93 1.09 1.04 0.99 1.28 1.20 1.13 1.42 1.34 1.26



Table 3: Weighted Average Risk relative to trend MLE, Gaussian Random Walk Weight

Function
c=0 c=4 c=38 c=12
df 00 12 6 00 12 6 00 12 6 00 12 6
Average Square Loss, T'= 160
kn ¢, trnd.LL.  0.50 0.49 0.53 0.89 0.85 0.80 1.07 1.05 1.01 1.23 1.22 1.18
kn ¢, trnd.Kal 0.50 0.49 0.53 0.88 0.84 0.80 1.00 0.99 0.96 1.04 1.04 1.03
un ¢, trnd.LL  0.71 0.70 0.73 0.93 0.89 0.86 1.09 1.07 1.02 1.24 1.23 1.19
un ¢, trnd.Kal 0.72 0.71 0.74 0.93 0.89 0.86 1.02 1.01 0.98 1.06 1.06 1.05
un ¢, LL 0.82 0.82 0.83 0.94 094 091 0.93 096 0.97 0.97 1.01 1.03
un ¢, Kal 0.83 0.82 0.82 0.92 091 0.89 0.80 0.84 0.87 0.69 0.74 0.80
Average Square Loss, T' = 480
kn ¢, trnd.LL  0.49 0.50 0.52 0.89 0.85 0.78 1.01 1.00 0.96 1.08 1.08 1.05
kn ¢, trnd.Kal 0.49 0.50 0.52 0.88 0.84 0.78 0.99 097 0.95 1.01 1.00 0.99
un ¢, trnd.LL.  0.71 0.72 0.73 0.93 0.90 0.86 1.03 1.01 0.98 1.09 1.08 1.06
un ¢, trnd.Kal 0.72 0.73 0.73 0.93 0.90 0.86 1.00 1.00 0.97 1.02 1.02 1.01
un ¢, LL 0.87 0.87 0.86 0.97 0.97 0.95 0.86 091 0.96 0.76 0.83 091
un ¢, Kal 0.88 0.86 0.84 0.96 095 0.93 0.80 0.86 0.90 0.63 0.70 0.79
Endpoint Interval Estimation Loss, T" = 160
kn ¢, trnd.LL.  0.50 0.50 0.50 0.80 0.75 0.70 0.88 0.85 0.80 0.92 0.90 0.86
kn ¢, trnd.Kal 0.50 0.50 0.50 0.80 0.75 0.70 0.87 0.84 0.80 0.89 0.86 0.83
un ¢, trnd.LL  0.71 0.71 0.68 0.87 0.79 0.75 0.93 0.89 0.83 0.94 0.92 0.88
un ¢, trnd.Kal 0.72 0.71 0.68 0.88 0.80 0.76 0.93 0.89 0.85 0.92 0.89 0.87
un ¢, LL 0.90 0.90 0.84 0.85 0.83 0.82 0.62 0.64 0.68 0.50 0.53 0.57
un ¢, Kal 0.92 0.92 0.85 0.84 0.83 0.82 0.58 0.61 0.66 0.40 0.44 0.50
Endpoint Interval Estimation Loss, T" = 480

kn ¢, trnd.LL  0.49 0.49 0.52 0.84 0.80 0.74 0.93 090 0.84 0.95 0.93 0.88
kn ¢, trnd.Kal 0.49 0.49 0.52 0.84 0.80 0.74 0.93 0.90 0.85 0.94 0.92 0.88
un ¢, trnd.LL.  0.74 0.74 0.74 0.92 0.86 0.80 0.99 0.96 0.90 0.98 0.96 0.92
un ¢, trnd.Kal 0.74 0.74 0.74 0.92 0.87 0.81 1.00 097 0.91 0.98 0.97 0.93
un ¢, LL 0.96 094 0.94 0.88 0.89 0.90 0.59 0.67 0.74 0.41 0.48 0.55
un ¢, Kal 0.98 0.95 0.94 0.88 0.89 0.89 0.57 0.65 0.72 0.37 0.44 0.52



1.2 Single Break Parameter Path

To compare the suggested path inference with the approach in the "single break" literature,
we conducted further risk calculations in the model of Section 2.3, but with a focus on
parameter paths with a single break at fraction p € [0, 1] of the sample. Specifically, we
simulated data from (10) in the paper with parameter path given by

c

VHT

and 6y = 0. We compared our suggested methods with methods that estimate the pre

0, = 0y + 1]t < pT] (*%)

and post break parameter via MLE (with sandwich covariance matrix) in two subsamples,
where the subsamples are determined by (i) p is known; (ii) p is estimated by least squares
from the model y? = u,1[t < pT] + pylft > pT| + e; with p constrained to [0.15;0.85]
(LS.sqr); (iii) p is estimated by least squares from the model |y;| = puy1[t < pT) + py1[t >
pT| + e; with p constrained to [0.15;0.85] (LS.abs). Methods of this type have been used
to date the great moderation (see Stock and Watson (2002), McConnell and Perez-Quiros
(2000)). In addition, we also include the two versions of path inference considered in
Table 1 ("unkn ¢, LL" and "unkn ¢, Kal" abbreviated for "unknown ¢, Local Level" and
"unknown ¢, Kalman", respectively), as well as inference based on the assumption that
there is no break, i.e. full sample MLE with sandwich covariance matrix (FS MLE).

It becomes apparent from Tables 4-6 that knowledge of the break date is very helpful,
but "unkn ¢, LL" and "unkn ¢, Kal" compare quite favorably to least-squares break date
based inference, at least as long as c¢ is small to moderate.

Table 7 reports relative weighted average risk of the same inference methods un-
der the weighting function considered in Table 1, 6, ~ AN(0,100) and 6, — 6, 1 ~
i.i.dN(0,c2/HT?).



Table 4: Risk in Model (**) relative to MLE with p known, p = 0.5

c=0 c=4 c=38 c=12
df 00 12 6 00 12 6 00 12 6 00 12 6
Average Square Loss, T' = 160
LS.sqr 2.30 220 1.97 2.37 224 2.00 3.04 2.83 240 4.06 3.79 3.14
LS.abs 2.20 2.09 1.89 240 221 1.91 2.89 256 2.10 320 292 237
unkn ¢, L. 0.82 0.83 0.82 1.67 1.50 1.25 320  2.79 2.20 6.15 5.08 3.75
unkn ¢, Kal 0.84 0.84 0.80 1.62 1.45 1.20 2.73 2.43 1.95 4.29 3.68 2.86
FS MLE 0.49 0.51 0.52 2.52 2.01 1.46 8.84 6.70 4.39 20.1 15.1 9.60
Average Square Loss, T' = 480
LS.sqr 2.38 232 212 243 232 213 2.83 2.68 2.37 3.24 3.13 2.77
LS.abs 223 215 1.95 244 224 1.93 2.84 251 2.04 3.03 2.66 2.15
unkn ¢, L. 0.86 0.87 0.85 1.69 1.52 1.26 2.85 254 2.04 4.42 3.78 2.92
unkn ¢, Kal 0.86 0.87 0.83 1.68 1.50 1.23 2.69 241 1.94 3.73 3.25 2.57
FS MLE 0.50 0.50 0.51 250 1.96 1.38 8.60 6.42 4.03 19.1 14.1 8.57
Endpoint Interval Estimation Loss, T" = 160
LS.sqr 2.02 212 1.97 1.45 1.52 1.51 .21 1.25 1.20 1.61 1.73 1.56
LS.abs 2.01 214 2.01 1.65 1.72 1.68 1.24 1.27 1.25 1.22 1.23 1.19
unkn ¢, LL  1.26 1.27 1.16 1.54 148 1.29 1.96 1.87 1.60 226 216 1.88
unkn ¢, Kal 1.30 1.30 1.18 1.64 1.57 1.38 215 2.05 1.77 2.60 2.49 2.16
FS MLE 0.68 0.71 0.71 3.48 251 147 15.81 124 7.70 31.7 26.3 184
Endpoint Interval Estimation Loss, T" = 480

LS.sqr 2.09 2.06 207 1.52 1.59 1.68 1.19  1.20 1.26 1.24 1.26 1.31
LS.abs 1.99 1.96 2.00 1.64 1.64 1.73 1.26 1.25 1.31 1.18 1.14 1.14
unkn ¢, L. 1.35 1.31 1.26 1.64 1.52 1.39 2.06 1.89 1.69 2.39 217 1.95
unkn ¢, Kal 1.37 132 1.28 1.71 1.58 1.45 220  2.02 1.81 2.63 239 2.16
FS MLE 0.70 0.70 0.71 3.35 229 1.37 15.1  11.0 6.58 30.0 232 158



Table 5: Risk in Model (**) relative to MLE with p known, p = 0.25

c=0 c=4 c=28 c=12
df 00 12 6 00 12 6 00 12 6 00 12 6
Average Square Loss, T" = 160
LS.sqr 2.26 2.19 1.99 2.06 2.00 1.86 2.23 213 1.91 294 269 224
LS.abs 2.16 2.08 1.91 2.14 2.02 1.80 2.31 212 1.78 2.67 239 1.94
unkn ¢, L. 0.81 0.83 0.82 1.58 1.43 1.23 2.96 2.61 2.09 5.22 4.39 3.29
unkn ¢, Kal 0.82 0.83 0.81 1.55 1.40 1.19 2.64 235 1.90 3.86 3.36 2.65
FS MLE 0.49 0.50 0.53 1.97 1.63 1.24 6.67 5.17 3.48 15.3 11.7 7.59
Average Square Loss, T' = 480
LS.sqr 2.37 230 2.14 2.22 218 2.05 2.30 220 2.04 2.73 250 2.22
LS.abs 2.23 2.14 1.96 227 2.12 1.87 245 2.18 1.86 270 237 1.93
unkn ¢, LL  0.86 0.87 0.85 1.63 1.46 1.24 2.84 2.52 2.02 4.20 3.64 2.86
unkn ¢, Kal 0.86 0.86 0.84 1.62 1.44 1.20 2.72 242 1.93 3.67 3.24 2.60
FS MLE 0.50 0.50 0.52 2.00 1.59 1.18 6.56 4.92 3.18 14.4 10.6 6.63
Endpoint Interval Estimation Loss, T'= 160
LS.sqr 2.54 2.58 242 1.73 1.84 1.88 1.07 1.15 1.24 1.03 1.02 1.01
LS.abs 2.53 2.61 2.46 1.87 1.99 2.03 1.19 1.28 1.34 1.05 1.04 1.04
unkn ¢, L. 1.59 1.55 1.42 1.88 1.77 1.56 2.55 232 1.96 3.24 293 245
unkn ¢, Kal 1.63 1.58 1.44 1.98 1.87 1.65 2.71 248 2.12 3.52 321 271
FS MLE 0.85 0.86 0.87 1.51 1.22 0.93 6.09 4.29 2.48 16.7 12,5 7.71
Endpoint Interval Estimation Loss, T = 480

LS.sqr 2.57 256 2.54 1.80 1.95 2.06 1.14 1.26 141 1.02 1.04 1.07
LS.abs 2.44 2.44 246 1.87 2.00 2.05 1.25 1.30 1.42 1.05 1.08 1.09
unkn ¢, L. 1.66 1.63 1.55 1.94 1.83 1.68 2.55 232 2.03 3.12 2.84 2.46
unkn ¢, Kal 1.68 1.65 1.57 2.00 1.89 1.73 2.62 240 2.12 3.22 295 2.58
FS MLE 0.86 0.87 0.87 1.44 1.18 0.93 516 3.54 2.04 13.9 9.94 5.66



Table 6: Risk in Model (**) relative to MLE with p known, p = 0.75

c=0 c=4 c=38 c=12
df 00 12 6 00 12 6 00 12 6 00 12 6
Average Square Loss, T'= 160
LS.sqr 2.30 2.16 1.99 2.65 244 2.23 3.29 3.00 2.64 4.32 3.90 3.39
LS.abs 2.20 2.05 1.91 257 232 2.07 3.03 2.67 225 3.44 299 249
unkn ¢, L. 0.82 0.82 0.82 1.60 1.39 1.20 3.50 291 227 6.74 547 4.09
unkn ¢, Kal 0.84 0.82 0.81 1.56 1.35 1.15 3.17 266 2.10 5.63 4.68 3.60
FS MLE 0.49 0.50 0.53 2.00 1.60 1.24 6.62 4.96 3.40 14.6 10.8 7.10
Average Square Loss, T = 480
LS.sqr 2.36 231 2.14 2.56 2.50 2.29 2.92 286 2.54 3.25 3.27 298
LS.abs 222 214 197 250 233 2.04 2.80 259 2.14 3.00 274 2.26
unkn ¢, LL  0.85 0.87 0.86 1.60 1.43 1.20 3.04 2.65 2.06 4.89 4.21 3.21
unkn ¢, Kal 0.86 0.87 0.84 1.58 1.41 1.17 283 249 194 4.07 3.60 2.84
FS MLE 0.50 0.50 0.52 1.99 1.59 1.18 6.50 4.90 3.16 14.1 10.5 6.52
Endpoint Interval Estimation Loss, T' = 160
LS.sqr 1.40 1.40 1.36 1.79 1.67 145 1.99 202 1.83 2.69 283 2.81
LS.abs 1.39 1.41 1.38 1.93 1.80 1.57 1.84 1.79 1.52 1.74 1.71 1.55
unkn ¢, L. 0.88 0.84 0.80 1.12 0.99 0.88 1.56 143 1.24 1.90 1.81 1.66
unkn ¢, Kal 0.90 0.85 0.81 1.15 1.02 0.91 1.57  1.44 1.26 1.71 1.67 1.59
FS MLE 0.47 047 0.49 518 3.62 2.13 18.16 14.25 9.95 32.0 26.2 19.5
Endpoint Interval Estimation Loss, T" = 480

LS.sqr 1.46 1.46 1.42 1.80 1.76 1.55 1.69 1.76 1.75 1.62 1.88 2.08
LS.abs 1.39 1.40 1.37 1.92 1.78 1.58 1.70 1.66 1.51 1.47 1.46 1.37
unkn ¢, L. 0.94 0.93 0.86 1.21 1.10 0.95 1.61 153 1.28 1.68 1.67 1.54
unkn ¢, Kal 0.96 0.94 0.87 1.23 1.13 0.98 1.66  1.57 1.32 1.78 1.74 1.59
FS MLE 0.49 0.50 0.49 5.23 3.64 1.96 18.3 14.3 9.19 32.2 26.0 18.0



Table 7: Weighted Average Risk relative to MLE with p = 0.5, Gaussian Random Walk
Weight Function

c=0 c=4 c=28 c=12
df o0 12 6 00 12 6 00 12 6 00 12 6
Average Square Loss, T' = 160
LS.sqr 227 219 1.98 1.56 1.61 1.60 1.09 1.15 1.21 0.95 099 1.03
LS.abs 2.17 2.09 1.90 1.54 1.57 1.54 1.07 111 1.14 0.89 092 094
unkn ¢, L. 0.83 0.82 0.81 0.88 0.87 0.86 0.80 0.83 0.86 0.80 0.84 0.87
unkn ¢, Kal 0.84 0.82 0.80 0.86 0.85 0.84 0.69 0.73 0.77 0.57 0.61 0.68
FS MLE 0.50 0.49 0.52 1.09 0.99 0.87 1.62 1.53 1.37 1.86 1.81 1.69
Average Square Loss, T' = 480
LS.sqr 2.39 2.29 2.16 1.61 1.68 1.75 1.10 1.18 1.29 0.93 097 1.06
LS.abs 224 212 198 1.57 1.60 1.60 1.08 1.13 1.19 0.89 0.93 0.98
unkn ¢, L. 0.88 0.86 0.86 0.90 0.90 0.90 0.74 0.79 0.85 0.63 0.69 0.77
unkn ¢, Kal 0.89 0.86 0.84 0.89 0.89 0.88 0.69 0.74 0.80 0.52 0.58 0.67
FS MLE 0.50 0.50 0.51 1.09 0.98 0.84 1.59 148 1.31 1.80 1.73 1.60
Endpoint Interval Estimation Loss, T' = 160
LS.sqr 2.09 2.03 1.92 1.41 147 1.48 0.96 0.98 1.03 0.89 0.91 091
LS.abs 2.05 2.05 197 1.42 146 1.50 0.93 0.96 1.00 0.83 0.85 0.85
unkn ¢, LL.  1.27 123 1.14 0.80 0.83 0.87 0.43 0.46 0.52 0.34 0.36 0.39
unkn ¢, Kal 1.30 1.25 1.16 0.80 0.83 0.87 0.40 0.44 0.50 0.28 0.30 0.34
FS MLE 0.70 0.68 0.68 1.99 1.78 1.50 212 2.07 2.00 1.94 194 1.93
Endpoint Interval Estimation Loss, T = 480

LS.sqr 2.10 2.08 2.05 1.39 1.52 1.58 0.89 0.96 1.05 0.80 0.83 0.88
LS.abs 2.02 1.99 197 1.38 1.45 1.53 0.88 0.93 0.99 0.78 0.79 0.83
unkn ¢, L. 1.36 1.33 1.27 0.81 0.89 0.97 0.39 0.48 0.55 0.27 0.32 0.37
unkn ¢, Kal 1.39 1.34 1.28 0.81 0.89 0.96 0.38 0.46 0.54 0.24 0.29 0.35
FS MLE 0.70 0.70 0.70 2.02 1.80 1.53 211 214 2.07 1.92 199 2.00



2 Proofs of Additional Lemmas

Lemma 3 Under Condition 1:

(i) T-1/? ZET] s5¢(00) = [, TY2(1)daw (1), where W is a k x 1 standard Wiener pmcess

(i) SUDy< )T eCT (5} ek T, 2[0 Ahs(6o + vs + )\vs)d)\ -1 & 0 and
SUDy<T {0,}T_, €CT {i,}7_ 16CTT Hi ZS 1 fo (00 + Mvs — T5))dA — T)|| 2 0, where Cr is a de-

creasing ball around 0y, and CT =Crx---xCr
(iii) & = TY?(0 — 90) 0,(1)

(iv) T2 31, 6) = f r( 1/ZdW fo‘ DAl [ T(1)d)~ [ T(1)Y2dw (1)

(v) SUPXel0,1] HT ! Zt 1] si( fo le — 0 and T 1 Zst(go)st(%) = 0p(1)
A

(vi) suprepo 1771 S04 fo (i) £ 0

Proof. (i) Fix any k x 1 vector v with v'v = 1, and let 1, = v’s¢(0p). Then {n;, §:} is a mar-
tingale difference array and TS El|n,[2*|§-1] < TS50, Ellls:(00)|>T5|§—1] = O,(1)
by Condition 1 (MDA). Let w7 = fol V'T'(l)vdl and g(\) = fOA v'T'(l)vdl/w?, which is a con-
tinuous and strictly increasing function on the unit interval, so that it has an inverse g~'.
By Corollary 3.8 of McLeish (1974), T—1/2 Z[ ‘0 ]77 = wyWy(-), where W, is a standard
scalar Wiener process and the convergence is on the space of cadlag functions on the unit inter-
val, equipped with the Skorohod norm. By the continuous mapping theorem, we hence obtain
T-1/2 ZLTJ n = wnWy(g()) ~ v [T (DY2dW (1) and the result follows from the Functional
Cramer-Wold device (see, for instance, Theorem 29.16 of Davidson (1994)).

(ii) We have
1|yz /)\h (B0 + vs + A, )dA — T4

<T1HZ /Ah (B0 + v+ A)AA— ha(O0))]| + T ST — (B

s=1

Now sup;<7 77| S (Ds—hy (60))|| 2 0 by Condition 1 (LLLN) and supxefo,1) |17 ! ZS i F —
fo)\ ['(s)ds|| — 0, and

sup 1;\2 / (00 + vs + AUs) — hs(60))dN|

t<T {ve}{_, €C {1 €CF

<or~! Z sup |[he(0o + 20) — he(6p))]| 2 0
I— 1v€CT

by Condition 1 (LLLN). The second claim follows similarly.
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(iii) For any € > 0,

P([|0—6oll > )< P(\\gf;% T~ 3[1(8) = 1e(60)] = —K (e))
< 1—=P( sup T7'S  sup  [l(0+v) —1:(6p)] < —K(g)) = 0
[[0—00l|>e [|Jv||<T—1/2+n

by Condition 1 (ID) and so 6 2 6.

Further, as 8 2 6, there exists a sequence of decreasing balls 7p around 6y such that
P(@ € Tr) — 1. For v € ©p, we have by the fundamental theorem of calculus applied row by
row that s;(6p + v) — s¢(6p) = < fo hi(6o + Av)dA) v almost surely for t = 1,--- ,T. Let T be
large enough so that 7y C Oy, and define hy = fo ht (0o + >\(9 — 0p))d\ if 0 c Tr, and hf = hy

otherwise, so that from the first order condition 1[0 € T7] 3" s¢(f) = 0, we obtain

110 € 77 ( 23" 4(60) - (T—l th) Y20 — 90)) ~0 (1)

almost surely for t = 1,--- ,T. From part (i), 7~'/2 > s:(00) = Op(1). Applying the result of
part (i), we obtain T='S2h¥ — T-13°Ty £ 0. But 77 3.1y — fOII’(l)dl, which is positive
definite, so the result follows from (1) and P(f € T7) — 1.

(iv) Proceed as in the proof of part (iii) to obtain

t t t
1[0 € T7) (T‘1/2 3 ss(0) — T2 si(60) + (T‘1 Zh;S) TV2(0 - 90)) =0
s=1

s=1 s=1

almost surely, so that

supl [T 1/223 ) < sup - 123 6 60)] TV sup - LS A1 = Goll 4 (1)
s=t s=t
and the result follows from parts (i), (ii) and (iii) of this Lemma and the CMT.
(v) From the proof of part (iii), 1[0 € T7](s:(0) — s:(00) + h3(6 — 6p)) = 0, almost surely for
t=1,---,T, so that

[AT) [AT]

sup ||T~ 128,5 9 IZSt (60)s:(60)|

A€l0,1]

< 2[jal|T~t Z thHT’”2 sup ||s¢ (60)ll +T’1Hﬁllzfgg [EA 1y S |

with probability P(@ € Tr) — 1. Now |[a]| = Op(1) by part (iii), and T-' S ||h|| =
Op(1) by a calculation similar to the proof of part (ii) and Condition 1 (LLLN),

and T-1/2 Lﬂst(eo) = fO'Fl/Q(l)dW(l) implies T_l/zsuptSTHst(Ho)H 2,0, and also
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s 1) < T e [0l + 1 e, [ (00 (0] 20 by Condiion
(LLLN) (i) and (iii), so that supyejo.q) |77 S5y s¢(8)s0(8) — T S22 ,(60)s1(60)|| 2 0.
Let v € R* and define n, = v's;(fp). Then from Condition 1 (MDA), {n,,3:} is a
martingale difference array with conditional variance process V.2, = v'E[s¢(60)s¢(60)'|§:—1]v,
and  supyeoq) |1~ Zt’\T] - v’(fo)‘P(l)dl)m 2. Note that T-'S7 Vi<
ol BT S Bl uB0) [F1801])/+) = 0,(1) implies T-1 3" Bflin > 72|31 1] &
0 for all 0 < ¢ < o0, so that from Theorem 2.23 of Hall and Heyde (1980), supy< [T St (-

V2 = SUpxeo 1] |T_lv’ Zt)‘:q (st(ﬂg)st(ﬁo)’ — E[st(Hg)st(eo)’|3t 1])v] L0, so that also
supxepo1] 17~ ! ’Zt 1(3t(90 st(60o) fo = 0. This holds for arbitrary v € R*, s

in particular jointly for all vectors v;, j = 1, ,2 with elements that are either zero or one. It
is easy to see that if v}-onj = v;Alvj for all such v;, j =1,--- ,2F for two symmetric matrices

Ap and Ay, then Ay = Ay, and both results follow.
(vi) Follows from parts (ii) and (iii). =

Lemma 4 Under Conditions 1 and 2, there exists a sequence of real numbers ar with ap — 0o
and T*1/2aT — 0 such that

(Z) fw<90 + T71/2U)E5<1 — AT(U)ST( ))LRT<U, 5)du 2o

(ii) Es(1 — Sr(8))LR7(0,6 — ed) 2 0

Proof. (i) For any choice of ar, we have

| / w00 + T~ Y2u)Es(1 — Ag(w)Sp(8)) LRy (u, 8)dul

VAN

| / w(Bo + T~ 2u) By(1 — Sp(8)) LRr(u, 8)dul
4l / w(0 + T~20) EsSr(8)(1 — Ar(w)) LRy (u, 8)du]
= p1+ pa.

For p; = [w(fo + T~Y?u)Es(1 — Sp(8)) LR7(u, §)du, note that by Markov’s inequality, for any
€e>0

P(py > € <e'Ep
. / / w(Bo + T~Y/2u) Es(1 — S1(8)) LRy (u, 8)du fr (B0, 0)dpir

_ e_l/w(90+T_1/2U)E6(1—ST(é))/fT(HO+T_1/2u’5)d'quu

where the interchange of the order of integration in the second equality follows from Fubini’s
Theorem. For any fixed u and 4, if for all t < T, g + T~ Y?u+ 6; € ©, then fr(0y + T~ %u,?)
is a probability density with respect to pup, and [ fr(fo + T—1/2y, 0)dup = 1. If for some t,
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0o + T Y2u + 6, ¢ O, then fr(6o + T2, §) = 0, and also [ fr(fo + T71/2u,(5)d,uT = 0.
Therefore, sup,cgr seprr [ fr(fo + T-Y24,6)dur < 1, and we obtain

Plo, > < /w(90 + T2 Bs(1 — Sp(5))du

= ¢! /w(90 + T 2u)du Es1[T"?sup ||5,]] > T7].
t<T

Now by a change of variable [w(0y+T~Y/?u)du = T*? [w(0)d6 = T*/2. Furthermore, let G =
sup;<r 1i<k |G (t/T)|, where G;)(s) is the ith element of G(s). Then G < sup; sefo,1] |G o) ()],
which is bounded with probability one. By Borell’s inequality (see, for instance, Pollard (2002),
p. 279), this implies that the tail probability of G decays exponentially. Therefore, with 7 > 0,
TE2Es1[TV/? sup;< |[0¢|| > T"] — 0. Since € is arbitrary, this implies p; 0.

For py, note that for any fixed n, by Condition 1 (ID), there exists 7%*(n) such that for all
T > T*(n),

P( sup T7! sup (1:(0 +v) —14(0p)) < —K(n™ 1)) >1—n"1
110—00]|>n—1 l[o]|<T—1/2+7 4+ve®

For any T', let n7 be the largest n such that simultaneously, T' > sup,,/<,, T*(n’), TV2K(n~') > 1
and T~'/4n < 1. Note that ny — oo, since for any fixed n, T*(n + 1) and n + 1 are finite and
K((n+1)71) > 0. By construction,

P( sup T7! Z sup (1:(0 +v) = 1t(00)) < —K(n;')) > 1—nz'.  (2)
110—00l|>n 7" Jo]|<T=1/247,04ve®

Now set ar = T'/?n;t = o(T"/?). Note that

Sr(8)(1 = Ar(w)) LRy (u,6) = Sp(8)(1— Ar(u))exp[>_(l(6o + T~ u+ 1) — 1(60))]
< (1—Ap()expd sup  (L(00+ T u+v) —1i(60))]

[loll<T=1/2+n
< exp[ sup Z sup  (I4(6 +v) — 1:(60))]-
10=00||>nyt  [lvl|<T—1/2Hn

Hence, with probability of at least 1 — n}l — 1,

py < /w(@o + T Y2u)du - exp [ sup Z sup  (L(6 +v) —1(60))
16—60l|>nz" " [lol|<T /240

< TF?exp [—TK(n;l)] < T*2 exp [—Tlﬂ] — 0

where the last inequality holds since TV/2K (n}l) > 1 by construction of nr.
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(ii) Similarly to the reasoning concerning p; in the proof of part (i), for any € > 0, by Markov’s

inequality
P(E5(1 — S7(8))LR7(0,6 —ed) > ¢) < e_lEE5(1 — S7(8))LR7(0,6 — ed)

= Es5(1—57(0)) /fT (60,6 — ed)dpur
Sr(6)) — 0.

IN

Lemma 5 Let ¥z(u) be a Tk x Tk matriz consisting of k x k blocks =; j(u), 4,5 = 1,---,T,
possibly dependent on u and define ¢ = Sup; j<ruerk ||Zij(w)]|. Under Condition 2, there exists
a constant cq independent of w and T such that

(i) [tr((F~1SsF" 1) Sz(u))| < cfea
(it) | tr((F 18 F' 1) S (u) (F 18511 e (u)| < (cf)?c

Proof. Note that for 1 < i < j, the 4,jth k x k block of F~'XsF'~! is given by
kG (i/T,§/T) — ka((i = 1)/T,j/T) + ka((i = 1)/T, (7 = 1)/T) = 6(i/T,(j = 1)/T)
by kac(1/T,7/T) — ka(1/T,(j —1)/T) for i =1 < j, and by kg(1/T,1/T) for i = j = 1.
Ifi=jand ((i —1)/T,i/T] N1 = &, due to the symmetry of kg and by the Fundamental
Theorem of Calculus
kG (i/T,i/T) = ka((i = 1)/T,i/T)|| < T} sP IV ka(r, )]
r,s€|0,1]\7

66 (i/T, (i = 1)/T) = k(i = 1)/T, (i = 1)/T)|| < T P IV ka(r, s)l|

where V| kg(r,s) and V{kg(r, s) are the left and right partial derivatives of rg with respect
to the first argument, so that in this case, the 4,ith block has a norm that is bounded by

T~ 'ep = T~ (sup, sepa- [IVT Ka(r, $)|l 4 sup, sepapn- VT Ka(r, $)l])-
It ((j = 1)/T,j/T] N # @ and ((i — 1)/T,i/T| N 7 £ @, then

lka(i/T,/T) = ka((i = 1)/T,§/T) + ke ((i = /T, (j = 1)/T) = ka(i/T, (7 —1)/T)|

<4 sup |lra(r,s)|[=cy
r,s€[0,1]

which is also a valid bound for ||kg(1/T,1/T)||.
Ifl<i<gjand ((j—1)/T,5/T)Nn1=((i—-1)/T,i/T] N1 = &, then by the Fundamental

Theorem of Calculus

lka(i/T,j/T) = ka((i = )/T,j/T) + ka((i = 1)/T, (G = 1)/T) = a(i/T, (G — 1)/T)]|
_9 0?kg(r, s)
=7 7.753,71,8;2[)071]\7 H ords || B
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Also, if 1 < i < jand ((j —1)/T,5/T|N7 # &, and ((¢ — 1)/T,i/T) N7 = @, then by the

Fundamental Theorem of Calculus

ke (i/T,5/T) — ke((i —1)/T,5/T)|| < T~ sup 8%%7%”
rel0,1\7 T

kg (i/T,(j —1)/T) — kg((i —1)/T,(j —1)/T)|| < T7' sup H@:%Ga(r, s) I
rel0,1\7 T

Okg(r,s)

so that the norm of the i,jth block is bounded by T lcc = 271 sup,eo\r || =%, which is
also a valid bound for ||kq(1/T,5/T) — ka(1/T, (5 —1)/T)||.

We can hence decompose

TF S ' =Sp+S0+ 30+

where Y p is a block diagonal matrix whose %, ith k£ x k block has a norm that is bounded by cp
("the variance of the increments of the continuous part of "), ¥ is a Tk x Tk matrix whose
i,jth block has a norm that is bounded by T 'co ("the covariance of the increments of the
continuous part of §"), Yo = Z?:l Yo, with X¢; Tk x Tk matrices whose only nonzero k x k
blocks are in one (block) row and column and correspond to the jump at time 7;, and these
nonzero blocks have a norm that is bounded by cc ("the covariance between the jumps and the
increments of ") and X; with ¢ nonzero k x k blocks whose norm is bounded by c;T" ("the
variance of the jumps"), and all these bounds are uniform in 4,5 and 7.

Let A and B be Tk x Tk matrices with 4, jth k x k block [A]; ; and [B]; j, respectively. Note
that the 4, jth k x k block of AB, [AB]; ; satisfies

T T
IEABLigll = |1 AsiBugll < > 11 Aull - [|Bugll < [ABli
=1 =1

where for any Tk x Tk matrix C with i, jth k x k block [C]; j, C denotes a T x T matrix whose

i,jth element [C]; ; is at least as large as 1[[|[C]; ;]| > 0] sups<r <7 ||[Cls |- Also

T

T
IIABCBlijll = |1 _[ABl[CBlll < Y [IABill - I[CBl i
=1 =1

T
< Y [ABJ[CBl; = [(AB)(CB));;.
=1

Hence, using | tr[AB]; ;| < k||[AB]; ||, we obtain

|tr AB| < ktrAB and |tr ABCB| < ktr ABCB.
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Note that we can choose X0 = T Lcpepeh, Sp = cplr, S5 = Teyirtl, So = co(irey+eptl) and
Y=(u) = cyepey where ¢ is a T x 1 vector with elements [¢]; = 1[((j — 1)/T,7/T] N7 # 2] and
eg i1s a T x 1 vector of ones.

(i) We compute

|tr(F~18s F' 1) 2s(u)] T Htr(Sp 4+ o + Bc + 27)8=(u)|

KT tr(Ep + S0 + Sc + £7)E=(u)

IN

= k&T  tr(eply + T eoeel + Tegirtl + co(irey + epir))eoel

ke (ep + co + cjq® + 2c0q).
(ii) We compute

|tr(F 8s F' )Yz (u) (F1Es F ) Sz (u))|
= T2tr(Ep+ 20+ Zc+27)2=(u)(Ep + Lo + Zc + 2)2=(u)
< T2ktr(ESp+ 3o + Z¢ + 27)8=(u)(Ep + Zo + B¢ + L) 8=(u)

= T 2k(HehlepIr + T reoeoeh + Tegirts + colirey + ehir)]en)?.
|

Lemma 6 Under Condition 1:

(i) There exists a sequence of random variables Cr = Op(1) satisfying Cr' = Oy(1) such
that

sup (Esexp[—2(6 — T~ %ev)' D; (6 — T7Y?ev)] — exp[—1Cr|v|?]) <
veRF,T

(ii) Suppose the k x 1 wvectors &, satisfy sup,<p ||T~ 125 &l £> 0, the k x k ma-
triz functions ¢, : RF — R¥* satisfy supscpepe [T IS G B0, the k x k ma-
trices Ei satisfy supt<THT*1 SE Bl B0, 0 = 1,2,3. Then, with € = (¢),--,&;),
D¢(u) = diag(¢y(u), -+, Cr(u)), E = (Efy, -+ Eip)’, 1 = 1,2 and Dz = diag(Zs1,- -, Esr)

s exp[Agp|v]|?] < Esexpl¢'s + T/’ D c(u)s — 36'(T7'21Z + Dz)d] < Ry exp[Ar||v|[?]

uniformly in v and T, where the scalar random variables kr, Ag, Br and At do not depend on
u orv andﬁTgl ,%T—>1 ATAO cmdATAO.

(iii) If T=Y2S°E1 5, = Sp (), then Esexp[dd's] = O,(1).

(i) If Jr € D is a nonstochastic sequence converging to J € D, where D is the set of cadlag
functions on the unit interval, then

sup Es exp[T"/2 Jp(1) (67 — 8) = T2 " Jp((t = 1)/T) (8¢ — 6¢-1)] < o0
T
with 6o = 0.
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Proof. (i) A direct calculation yields

Ejsexp[—2(6 — T~Y/2ev)'D; (6 — T12e0)]
Es exp[—20'D;; 6]

= exp[—ST_lv'e'(Dgl +4%5) tev].

1/2

We have ¢/(D>! +43;)le = e'D%/ 2(Irp, + 4D;L/ 2251)}1/ %)71D:/%e, so that

T YDy +4%5)el| < T7H|e' Dyel]
TY|e(D; ! +4%5) el > H(T‘le’D,;e)‘lH‘l(l+4HD,%/225D}/2H)‘1

where T~'¢/Dye 2 [ T(1)dl and
IID,%/QEaD,{ﬂII < trD;%s

<k sup k(s s)[|T "t Dy Bk sup [Ir(s, )l tr [yT(0)dl
s€[0,1] s€[0,1]

and finally Ejexp[—26'D;0] <1 a.s.
(ii) Let U = T7Y2F'D¢(u)'ev and . = T'E1E, + D=. We first show the result for the
upper bound. By the Cauchy-Schwarz inequality

Esexpl¢/s + 0 F'7'U — 13'S.0) < (Bsexp[46'€))/*(Bs exp[4d' F'LU) Y4 (Es exp[—8'5.4]) 1/
= exp[2'Ssé 4 2U'FI S5 F' U (Es exp|—8'%.6]) Y2,
Now
UF'SsF U = T %eDe(w)FFSsF' ™ F'De(u) ev
< ||Ptr T F' D¢ (u) ee’ De(u) FF 1S5 F/ 7L
But the norm of the ijth k x k block of T 'F'D¢(u)ee’D:(u)F is bounded
by  (supjeryerr [|1T71 S & o Hence, by Lemma 5 (i), Ap =
supyepk tr(T " F' De(u) ee' De(u) F)F 155 F'=1 20, and U'F~1S5F'~'U < Ag|[v||?. Similarly,
also £'s¢ = tr F'e¢'FF1nsF'—1 2 0.
For each T', let Ag be a Tk x £ full column rank matrix that spans the column null space of
F=13sF'~1 and By the Tk x (Tk — £) matrix such that B’yBa = Iry_¢ and BaBy = My =
Iy — Ag(ALAg) YAy (if F1SsF'~1 is full rank, define B4 = Irg). Then

Esexp[—0'2.0] = Esexp[—6'F'"*ByB F'S. FBAB F~14].

Note that the covariance matrix of B,F~1§, B,F1S;F VB, is positive definite, and
MAF'SsF~ VM4 = F7ISsF~Y. Let A\;, i = 1,--- ,kT — £ be the eigenvalues of the sym-

metric matrix

Sg = (BYF 'S FVB)Y2B F'S.FBA(B F 'S5 F~ Y By)Y2.
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Now the i,jth block of F'S.F, i < j equals (T71 31 S0 )(T Y1 B0) + TS, Eas,

whose norm is op(1) uniformly in ¢,j by assumption, so that by Lemma 5,

Tk—¢
> Ai=tr ByF 'SsF VBABYF'S.FBy = tr F7'S,FVF'S.F 5 0 (3)
=1
and also
Tk—¢
SN = wBF 'S F T BAB F'S.FBAB,F ' SsF' " BAB, F'S.F B4 (4)
=1

= tr PSS FFYSs P RS F B o

Let L7 = 1[sup;<xr_¢|Ai| < 1/4], and define Y. = LY., g = LpYs and N = L), i =
1,---, Tk —{. Note that E(1 — L7) < P((Z;TF:kl_g AH1/2 > 1/4) — 0 by (4), so that it suffices to
show L1 Esexp[—§%.6] 2 1. We compute
LrEsexp[—6'S.0] = LpEsexp|—6'F' "'BsBYF'S.FBAB,\F~ 4]
= Lr|B \F 'SsF' " By Y2 2B F'S.FBy + (B4 F 'S5 F' 1 By) 7 ~1/2
= Lr|lrk_¢+25g) 712

Since for z € [~1/2,1/2], x — 2? < In(1 + z) < x, we find

Tk—¢ ~ . Tk—¢ ~ ~ Tk—¢ ~
Lr2)  (Ni—2X) < Lr Y In(1+2X) =Lrln|Ip_¢+25g] < Lr2 > A
=1 =1 =1

and the result follows from (3) and (4).
For the lower bound, note that by Jensen’s inequality,
Esexpl¢'d + Tfl/Qv'e'DC(u) — 16'S.6] > (Bs exp[—€'6 — T*1/2v/e’D<(u)5 + 28'5.6]) 7!
and proceeding as for the upper bound yields the result.
(iii) Using the formula for the moment generating function of a multivariate normal, we find
Esexp[43 5:(0)'6;] = exp[8tr F'38' F(F 'S5 F~Y)].
The 4, jth k x k block of F'38'F is given by (T2 Y"1 . 5,(8))(T~1/2 Zf:j 5¢(6))’, whose norm

A~

is Op(1) uniformly in 4,j by assumption. Hence applying Lemma 5 yields Esexp[4 )" s:(0)'d:] =
0y(1). A *
(iv) Let Jr = (Jr(0),Jr(1/T), -, Jr((T — 1)/T)) and J = eJp(l) — Jp —
T-Y2F' Dpel'~1Jp(1). We compute
Esexp[T"/2Jp(1) (57 — 8) = T2 " Jr((t = 1)/T) (5 = 6¢-1)]
= Esexp|(edp(1) — Jp — T7Y2F Dprel ' Jp(1)) F~14]
= exp[itr JJ(FISsFY)).
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But the 4,jth k x k block of JJ' is given by [Jp(1)(Iy — (T-*S 1, TO0Y) — Jp((@ —
1)/T)|[Jr(1) (I — (TS, T = Jr((j — 1)/T))', whose norm is O(1) uniformly in 4,5, T
by assumption, so that the result follows from Lemma 5. m

In the following lemma, we write [G*T/2dW for fol G*(s)T(s)/2dW (s), [G*TG* for
fol G*(s)'T'(s)G*(s)ds and so forth.

Lemma 7 Under Conditions 1 and 2,
EsLR7(0) = Egexp| / GHTY2qw — 4 / G'TG*|
where G*(s) = G(s) — (J T(N)d\)~t [T(AN)G(N)dA.
Proof. By Lemma 2 (ii),
EsLRy(6) — Esexp[0's — 36'Dr(5 — ed)] 2 0.

Note that, by the summation by parts formula, with g = 0,

T T T t—1
D 86 =067> 58— Y (O 8.) (6 —61).
t=1 t=1 t=1 s=1

Now by Lemma 3 (iii), Sy(-) = T—1/2 ZTE:T}I 5t(60) = S(-), where the convergence is on the
space Dy 1) of cadlag functions on the unit interval in the Skorohod metric, and S(1) = 0. By
11.7.2 of Dudley (2002) there exists a sequence of stochastic processes St € Djy ) defined on
some probability space (.7}, 3, ]5) and event A € § with 15([1) = 1, such that Sp has the same
distribution as S7, S has the same distribution as S (and is continuous with S(0) = S(1) = 0)
and Sp(-,&) — S(-,@) for all @ € A. Denote by (]}p,ﬁp, ]Sp) the probability space obtained as
the product space of (]3 .3, ]5) and (Fg,8a, Pa), where G of Condition 2 is a stochastic process
defined on (Fg,8¢q, Pa) (so that Es denotes integration with respect to a measure induced by
Pg). By this construction,

LRr(6,Sr) = exp[T2Sp(1)'6r — T2 Sp((t — 1)/T) (8¢ — 61-1) — T/2S7p(1)'d
=13 TS+ F(TTEY Ty THT 2D 16y
is a random variable defined on (%, &, P,), and E5LR7(8) defined on (F,3, P) and Ejexp[(6 —
ed)'so — 26Dp(8 — ed)] defined on (F,F, P) have the same distribution for all T (since they are

functions of Sp and Sy, respectively). It therefore suffices to find the limiting distribution of
EsLR7(5).

19



With Sp(@) = (S7(0,&), Sr(1/T,&),---,Sp((T — 1)/T,&)) and S defined analogously,
TYV2 Sp((t —1)/T, &) (8; — 64-1) = Sp(@)' F~18, so that for any & € A,

Es[(Sr(@) — S(@)) F~168' F~V(S(@) - 8(@))] = tr F'SsF~V(Sr(@) — S(@))(S(@) - 5(@))"

But the 4, jth k& x k block of (S7(@) — S(©))(St(@) — S(@))" is equal to

(Sr((i —1)/T,@) = S((i = 1)/T,@))(Sr((j = )/T,@) = S(( = 1)/T,@))’

whose norm converges to zero uniformly in i and j. Therefore, by Lemma 5, (Sp(@) —
S(@))F~16 2 0 in Pg, and hence

exp[T287(1,&) (67 —08) — Sp(@)' F 16 — 15’ Dr(5 — ed)] — exp[~S(@) F 16— 36’ Dr(5 —ed)] 2 0
in Py (where we used S(1) = 0).
By Theorem 21, p. 64, of Protter (2005), and the CMT,

( T —0) = 8(@)'F~'§ - 56'Dr(s — €d)] (5)

exp[T"/25(1, &)
1,0)dG(l) — 3 [G'TG + 1(JTG)(JT) (JTG)

= exp[—[S(I,®)

w
in Pg. Furthermore,
E5(LR7(8, Sr(-,@)))? < Es exp[2T2Sp(1, &) (87 — 8) — 280 (@) F 4]

which is uniformly bounded in T by Lemma 6 (iv), so that for all & € A, E\ET(& Sr(-,@)) is
uniformly integrable on (F¢g,§¢, Pg). Hence (5) implies that also
EsLR7(8,57(-,&)) — BEgexp|—[8(1,0)dG(l 2[GTG + (TG (1) TaA)]
= Egexp[—[S(, dG*(l) — 1 [G¥TG¥
and the equality follows from S (1,w) = 0 and the definition of G*. But almost sure convergence
implies convergence in distribution, so that in (,7} .3, ]5)
EsLR7(8,87) = Egexp|—[S(1)dG*(l) - 1 [G*TG¥]
= Egexp[[G*(l) dS’(l) - 5 G*'TG*]
~ Egexp|[G*TY2dW — i [G¥TGY|

where the equality follows from the integration by parts formula on p. 83 of Protter (2005), and
the last line uses [ 'G* = 0 almost surely. m
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