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1 Additional Risk Comparisons

1.1 Linear Trend Parameter Path

Consider the model of Section 2.3 with a linear trend specification for the parameter path

θt = θ0 + β
t

T
. (*)

Condition 2 allows for the special case where G(s) = Zs, Z ∼ N (0, c2/H), so that
by Theorem 1, large sample weighted average risk minimizing decisions relative to the

weighting function β ∼ N (0, c2/HT ) are obtained by replacing the original likelihood by

the approximations (7) and (8), or (23).

We compare the following modes of inference: (i) MLE estimation of θ0 and β from the

log-likelihood
P

lt(θ0 + βt/T ) with sandwich covariance matrix (trend MLE); (ii) Linear

trend model estimated using approximation (7) and (8) with c known (kn c, trnd.LL) (that

is, inference from the posterior N (θ̂e+Σŝ,Σ), where Σδ in Σ is generated by G(s) = Zs,

Z ∼ N (0, c2/H)); (iii) Linear trend model estimated using approximation (23) as in Table
1 with c known (kn c, trnd.Kal); (iv) Equal probability mixture of linear trend model

estimated using approximation (7) and (8) with c ∈ C = {0, 5, . . . , 50} (un c, trnd.LL);

(v) Equal probability mixture of linear trend model estimated using approximation (23)

as in Table 1 with c ∈ C = {0, 5, . . . , 50} (un c, trnd.Kal); (vi) the two path estimators

considered in Table 1 of the paper ("un c, LL" and "un c, Kal" abbreviated for "unknown

c, Local Level" and "unknown c, Kalman", respectively). [For the trnd.XX methods, the

monikers "LL" and "Kal" are misnomers; they are merely supposed to indicate application

of the pseudo models (7) and (8), and (23), respectively, as in Table 1.]

To estimate weighted average risk, we draw data from model (10) and (*) with

θ0 ∼ N (0, 100) and β ∼ N (0, c2/HT ). All Tables in this supplement are based on 8,000
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replications. Table 2 reports weighted average risk relative to "trend MLE" inference.

Theorem 1 implies that "kn c, trnd.LL" and "kn c, trnd.Kal" are large sample weighted

average risk minimizing, so these entries should be smallest. As can be seen from Table 2,

this approximation holds up reasonably well as long as c is not too big (and the shrinking

relative to the MLE implied by these methods is especially helpful for moderate amounts

of time variation). As expected, knowledge of the linear trend form of the parameter

path leads to lower risks compared to those obtained from "un c, LL" and "un c, Kal",

especially for c large.

Table 3 reports relative weighted average risk of the same inference methods un-

der the weighting function considered in Table 1, θ0 ∼ N (0, 100) and θt − θt−1 ∼
i.i.d.N (0, c2/HT 2).
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Table 2: Weighted Average Risk relative to trend MLE, Gaussian Linear Trend Weight

Function
c = 0 c = 4 c = 8 c = 12

df ∞ 12 6 ∞ 12 6 ∞ 12 6 ∞ 12 6

Average Square Loss, T = 160

kn c, trnd.LL 0.49 0.51 0.54 0.81 0.78 0.74 1.07 1.02 0.95 1.65 1.47 1.25

kn c, trnd.Kal 0.49 0.51 0.54 0.80 0.77 0.74 0.95 0.93 0.89 1.03 1.01 0.98

un c, trnd.LL 0.70 0.72 0.74 0.86 0.84 0.81 1.10 1.05 0.97 1.67 1.49 1.27

un c, trnd.Kal 0.71 0.72 0.74 0.86 0.84 0.82 0.99 0.97 0.93 1.07 1.06 1.02

un c, LL 0.82 0.83 0.84 1.07 1.03 0.97 1.57 1.44 1.27 2.54 2.20 1.80

un c, Kal 0.83 0.84 0.82 1.05 1.00 0.94 1.32 1.25 1.13 1.55 1.45 1.30

Average Square Loss, T = 480

kn c, trnd.LL 0.50 0.50 0.52 0.81 0.77 0.72 0.98 0.94 0.89 1.19 1.12 1.03

kn c, trnd.Kal 0.50 0.50 0.52 0.81 0.77 0.72 0.94 0.92 0.87 0.99 0.98 0.94

un c, trnd.LL 0.71 0.73 0.73 0.87 0.84 0.81 1.01 0.98 0.92 1.22 1.15 1.05

un c, trnd.Kal 0.72 0.73 0.73 0.87 0.85 0.81 0.99 0.97 0.92 1.04 1.04 0.98

un c, LL 0.86 0.87 0.86 1.09 1.06 0.98 1.45 1.36 1.21 1.94 1.78 1.51

un c, Kal 0.86 0.87 0.84 1.09 1.04 0.95 1.36 1.29 1.14 1.56 1.48 1.30

Endpoint Interval Estimation Loss, T = 160

kn c, trnd.LL 0.49 0.51 0.53 0.83 0.79 0.73 0.96 0.93 0.87 1.14 1.10 0.99

kn c, trnd.Kal 0.49 0.51 0.53 0.83 0.80 0.74 0.95 0.93 0.88 1.01 1.00 0.95

un c, trnd.LL 0.72 0.72 0.70 0.87 0.85 0.80 1.01 1.00 0.93 1.18 1.14 1.05

un c, trnd.Kal 0.73 0.72 0.70 0.88 0.86 0.81 1.02 1.01 0.95 1.09 1.08 1.03

un c, LL 0.92 0.91 0.86 1.05 1.03 0.95 1.28 1.25 1.12 1.60 1.54 1.33

un c, Kal 0.94 0.93 0.88 1.06 1.03 0.95 1.26 1.23 1.12 1.44 1.40 1.26

Endpoint Interval Estimation Loss, T = 480

kn c, trnd.LL 0.50 0.50 0.52 0.85 0.80 0.74 0.95 0.92 0.87 1.01 0.98 0.93

kn c, trnd.Kal 0.50 0.50 0.52 0.85 0.80 0.74 0.95 0.93 0.88 0.99 0.97 0.93

un c, trnd.LL 0.74 0.74 0.73 0.90 0.85 0.81 1.02 0.98 0.92 1.07 1.04 0.99

un c, trnd.Kal 0.75 0.75 0.73 0.91 0.86 0.81 1.03 0.99 0.93 1.06 1.04 1.00

un c, LL 0.96 0.94 0.92 1.09 1.03 0.98 1.29 1.21 1.13 1.46 1.37 1.28

un c, Kal 0.97 0.95 0.93 1.09 1.04 0.99 1.28 1.20 1.13 1.42 1.34 1.26
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Table 3: Weighted Average Risk relative to trend MLE, Gaussian Random Walk Weight

Function
c = 0 c = 4 c = 8 c = 12

df ∞ 12 6 ∞ 12 6 ∞ 12 6 ∞ 12 6

Average Square Loss, T = 160

kn c, trnd.LL 0.50 0.49 0.53 0.89 0.85 0.80 1.07 1.05 1.01 1.23 1.22 1.18

kn c, trnd.Kal 0.50 0.49 0.53 0.88 0.84 0.80 1.00 0.99 0.96 1.04 1.04 1.03

un c, trnd.LL 0.71 0.70 0.73 0.93 0.89 0.86 1.09 1.07 1.02 1.24 1.23 1.19

un c, trnd.Kal 0.72 0.71 0.74 0.93 0.89 0.86 1.02 1.01 0.98 1.06 1.06 1.05

un c, LL 0.82 0.82 0.83 0.94 0.94 0.91 0.93 0.96 0.97 0.97 1.01 1.03

un c, Kal 0.83 0.82 0.82 0.92 0.91 0.89 0.80 0.84 0.87 0.69 0.74 0.80

Average Square Loss, T = 480

kn c, trnd.LL 0.49 0.50 0.52 0.89 0.85 0.78 1.01 1.00 0.96 1.08 1.08 1.05

kn c, trnd.Kal 0.49 0.50 0.52 0.88 0.84 0.78 0.99 0.97 0.95 1.01 1.00 0.99

un c, trnd.LL 0.71 0.72 0.73 0.93 0.90 0.86 1.03 1.01 0.98 1.09 1.08 1.06

un c, trnd.Kal 0.72 0.73 0.73 0.93 0.90 0.86 1.00 1.00 0.97 1.02 1.02 1.01

un c, LL 0.87 0.87 0.86 0.97 0.97 0.95 0.86 0.91 0.96 0.76 0.83 0.91

un c, Kal 0.88 0.86 0.84 0.96 0.95 0.93 0.80 0.86 0.90 0.63 0.70 0.79

Endpoint Interval Estimation Loss, T = 160

kn c, trnd.LL 0.50 0.50 0.50 0.80 0.75 0.70 0.88 0.85 0.80 0.92 0.90 0.86

kn c, trnd.Kal 0.50 0.50 0.50 0.80 0.75 0.70 0.87 0.84 0.80 0.89 0.86 0.83

un c, trnd.LL 0.71 0.71 0.68 0.87 0.79 0.75 0.93 0.89 0.83 0.94 0.92 0.88

un c, trnd.Kal 0.72 0.71 0.68 0.88 0.80 0.76 0.93 0.89 0.85 0.92 0.89 0.87

un c, LL 0.90 0.90 0.84 0.85 0.83 0.82 0.62 0.64 0.68 0.50 0.53 0.57

un c, Kal 0.92 0.92 0.85 0.84 0.83 0.82 0.58 0.61 0.66 0.40 0.44 0.50

Endpoint Interval Estimation Loss, T = 480

kn c, trnd.LL 0.49 0.49 0.52 0.84 0.80 0.74 0.93 0.90 0.84 0.95 0.93 0.88

kn c, trnd.Kal 0.49 0.49 0.52 0.84 0.80 0.74 0.93 0.90 0.85 0.94 0.92 0.88

un c, trnd.LL 0.74 0.74 0.74 0.92 0.86 0.80 0.99 0.96 0.90 0.98 0.96 0.92

un c, trnd.Kal 0.74 0.74 0.74 0.92 0.87 0.81 1.00 0.97 0.91 0.98 0.97 0.93

un c, LL 0.96 0.94 0.94 0.88 0.89 0.90 0.59 0.67 0.74 0.41 0.48 0.55

un c, Kal 0.98 0.95 0.94 0.88 0.89 0.89 0.57 0.65 0.72 0.37 0.44 0.52
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1.2 Single Break Parameter Path

To compare the suggested path inference with the approach in the "single break" literature,

we conducted further risk calculations in the model of Section 2.3, but with a focus on

parameter paths with a single break at fraction ρ ∈ [0, 1] of the sample. Specifically, we
simulated data from (10) in the paper with parameter path given by

θt = θ0 +
c√
HT

1[t < ρT ] (**)

and θ0 = 0. We compared our suggested methods with methods that estimate the pre

and post break parameter via MLE (with sandwich covariance matrix) in two subsamples,

where the subsamples are determined by (i) ρ is known; (ii) ρ is estimated by least squares

from the model y2t = μ11[t < ρ̂T ] + μ21[t > ρ̂T ] + et with ρ̂ constrained to [0.15; 0.85]

(LS.sqr); (iii) ρ is estimated by least squares from the model |yt| = μ11[t < ρ̂T ] + μ21[t >

ρ̂T ] + et with ρ̂ constrained to [0.15; 0.85] (LS.abs). Methods of this type have been used

to date the great moderation (see Stock and Watson (2002), McConnell and Perez-Quiros

(2000)). In addition, we also include the two versions of path inference considered in

Table 1 ("unkn c, LL" and "unkn c, Kal" abbreviated for "unknown c, Local Level" and

"unknown c, Kalman", respectively), as well as inference based on the assumption that

there is no break, i.e. full sample MLE with sandwich covariance matrix (FS MLE).

It becomes apparent from Tables 4-6 that knowledge of the break date is very helpful,

but "unkn c, LL" and "unkn c, Kal" compare quite favorably to least-squares break date

based inference, at least as long as c is small to moderate.

Table 7 reports relative weighted average risk of the same inference methods un-

der the weighting function considered in Table 1, θ0 ∼ N (0, 100) and θt − θt−1 ∼
i.i.d.N (0, c2/HT 2).
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Table 4: Risk in Model (**) relative to MLE with ρ known, ρ = 0.5

c = 0 c = 4 c = 8 c = 12

df ∞ 12 6 ∞ 12 6 ∞ 12 6 ∞ 12 6

Average Square Loss, T = 160

LS.sqr 2.30 2.20 1.97 2.37 2.24 2.00 3.04 2.83 2.40 4.06 3.79 3.14

LS.abs 2.20 2.09 1.89 2.40 2.21 1.91 2.89 2.56 2.10 3.20 2.92 2.37

unkn c, LL 0.82 0.83 0.82 1.67 1.50 1.25 3.20 2.79 2.20 6.15 5.08 3.75

unkn c, Kal 0.84 0.84 0.80 1.62 1.45 1.20 2.73 2.43 1.95 4.29 3.68 2.86

FS MLE 0.49 0.51 0.52 2.52 2.01 1.46 8.84 6.70 4.39 20.1 15.1 9.60

Average Square Loss, T = 480

LS.sqr 2.38 2.32 2.12 2.43 2.32 2.13 2.83 2.68 2.37 3.24 3.13 2.77

LS.abs 2.23 2.15 1.95 2.44 2.24 1.93 2.84 2.51 2.04 3.03 2.66 2.15

unkn c, LL 0.86 0.87 0.85 1.69 1.52 1.26 2.85 2.54 2.04 4.42 3.78 2.92

unkn c, Kal 0.86 0.87 0.83 1.68 1.50 1.23 2.69 2.41 1.94 3.73 3.25 2.57

FS MLE 0.50 0.50 0.51 2.50 1.96 1.38 8.60 6.42 4.03 19.1 14.1 8.57

Endpoint Interval Estimation Loss, T = 160

LS.sqr 2.02 2.12 1.97 1.45 1.52 1.51 1.21 1.25 1.20 1.61 1.73 1.56

LS.abs 2.01 2.14 2.01 1.65 1.72 1.68 1.24 1.27 1.25 1.22 1.23 1.19

unkn c, LL 1.26 1.27 1.16 1.54 1.48 1.29 1.96 1.87 1.60 2.26 2.16 1.88

unkn c, Kal 1.30 1.30 1.18 1.64 1.57 1.38 2.15 2.05 1.77 2.60 2.49 2.16

FS MLE 0.68 0.71 0.71 3.48 2.51 1.47 15.81 12.4 7.70 31.7 26.3 18.4

Endpoint Interval Estimation Loss, T = 480

LS.sqr 2.09 2.06 2.07 1.52 1.59 1.68 1.19 1.20 1.26 1.24 1.26 1.31

LS.abs 1.99 1.96 2.00 1.64 1.64 1.73 1.26 1.25 1.31 1.18 1.14 1.14

unkn c, LL 1.35 1.31 1.26 1.64 1.52 1.39 2.06 1.89 1.69 2.39 2.17 1.95

unkn c, Kal 1.37 1.32 1.28 1.71 1.58 1.45 2.20 2.02 1.81 2.63 2.39 2.16

FS MLE 0.70 0.70 0.71 3.35 2.29 1.37 15.1 11.0 6.58 30.0 23.2 15.8
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Table 5: Risk in Model (**) relative to MLE with ρ known, ρ = 0.25

c = 0 c = 4 c = 8 c = 12

df ∞ 12 6 ∞ 12 6 ∞ 12 6 ∞ 12 6

Average Square Loss, T = 160

LS.sqr 2.26 2.19 1.99 2.06 2.00 1.86 2.23 2.13 1.91 2.94 2.69 2.24

LS.abs 2.16 2.08 1.91 2.14 2.02 1.80 2.31 2.12 1.78 2.67 2.39 1.94

unkn c, LL 0.81 0.83 0.82 1.58 1.43 1.23 2.96 2.61 2.09 5.22 4.39 3.29

unkn c, Kal 0.82 0.83 0.81 1.55 1.40 1.19 2.64 2.35 1.90 3.86 3.36 2.65

FS MLE 0.49 0.50 0.53 1.97 1.63 1.24 6.67 5.17 3.48 15.3 11.7 7.59

Average Square Loss, T = 480

LS.sqr 2.37 2.30 2.14 2.22 2.18 2.05 2.30 2.20 2.04 2.73 2.50 2.22

LS.abs 2.23 2.14 1.96 2.27 2.12 1.87 2.45 2.18 1.86 2.70 2.37 1.93

unkn c, LL 0.86 0.87 0.85 1.63 1.46 1.24 2.84 2.52 2.02 4.20 3.64 2.86

unkn c, Kal 0.86 0.86 0.84 1.62 1.44 1.20 2.72 2.42 1.93 3.67 3.24 2.60

FS MLE 0.50 0.50 0.52 2.00 1.59 1.18 6.56 4.92 3.18 14.4 10.6 6.63

Endpoint Interval Estimation Loss, T = 160

LS.sqr 2.54 2.58 2.42 1.73 1.84 1.88 1.07 1.15 1.24 1.03 1.02 1.01

LS.abs 2.53 2.61 2.46 1.87 1.99 2.03 1.19 1.28 1.34 1.05 1.04 1.04

unkn c, LL 1.59 1.55 1.42 1.88 1.77 1.56 2.55 2.32 1.96 3.24 2.93 2.45

unkn c, Kal 1.63 1.58 1.44 1.98 1.87 1.65 2.71 2.48 2.12 3.52 3.21 2.71

FS MLE 0.85 0.86 0.87 1.51 1.22 0.93 6.09 4.29 2.48 16.7 12.5 7.71

Endpoint Interval Estimation Loss, T = 480

LS.sqr 2.57 2.56 2.54 1.80 1.95 2.06 1.14 1.26 1.41 1.02 1.04 1.07

LS.abs 2.44 2.44 2.46 1.87 2.00 2.05 1.25 1.30 1.42 1.05 1.08 1.09

unkn c, LL 1.66 1.63 1.55 1.94 1.83 1.68 2.55 2.32 2.03 3.12 2.84 2.46

unkn c, Kal 1.68 1.65 1.57 2.00 1.89 1.73 2.62 2.40 2.12 3.22 2.95 2.58

FS MLE 0.86 0.87 0.87 1.44 1.18 0.93 5.16 3.54 2.04 13.9 9.94 5.66
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Table 6: Risk in Model (**) relative to MLE with ρ known, ρ = 0.75

c = 0 c = 4 c = 8 c = 12

df ∞ 12 6 ∞ 12 6 ∞ 12 6 ∞ 12 6

Average Square Loss, T = 160

LS.sqr 2.30 2.16 1.99 2.65 2.44 2.23 3.29 3.00 2.64 4.32 3.90 3.39

LS.abs 2.20 2.05 1.91 2.57 2.32 2.07 3.03 2.67 2.25 3.44 2.99 2.49

unkn c, LL 0.82 0.82 0.82 1.60 1.39 1.20 3.50 2.91 2.27 6.74 5.47 4.09

unkn c, Kal 0.84 0.82 0.81 1.56 1.35 1.15 3.17 2.66 2.10 5.63 4.68 3.60

FS MLE 0.49 0.50 0.53 2.00 1.60 1.24 6.62 4.96 3.40 14.6 10.8 7.10

Average Square Loss, T = 480

LS.sqr 2.36 2.31 2.14 2.56 2.50 2.29 2.92 2.86 2.54 3.25 3.27 2.98

LS.abs 2.22 2.14 1.97 2.50 2.33 2.04 2.80 2.59 2.14 3.00 2.74 2.26

unkn c, LL 0.85 0.87 0.86 1.60 1.43 1.20 3.04 2.65 2.06 4.89 4.21 3.21

unkn c, Kal 0.86 0.87 0.84 1.58 1.41 1.17 2.83 2.49 1.94 4.07 3.60 2.84

FS MLE 0.50 0.50 0.52 1.99 1.59 1.18 6.50 4.90 3.16 14.1 10.5 6.52

Endpoint Interval Estimation Loss, T = 160

LS.sqr 1.40 1.40 1.36 1.79 1.67 1.45 1.99 2.02 1.83 2.69 2.83 2.81

LS.abs 1.39 1.41 1.38 1.93 1.80 1.57 1.84 1.79 1.52 1.74 1.71 1.55

unkn c, LL 0.88 0.84 0.80 1.12 0.99 0.88 1.56 1.43 1.24 1.90 1.81 1.66

unkn c, Kal 0.90 0.85 0.81 1.15 1.02 0.91 1.57 1.44 1.26 1.71 1.67 1.59

FS MLE 0.47 0.47 0.49 5.18 3.62 2.13 18.16 14.25 9.95 32.0 26.2 19.5

Endpoint Interval Estimation Loss, T = 480

LS.sqr 1.46 1.46 1.42 1.80 1.76 1.55 1.69 1.76 1.75 1.62 1.88 2.08

LS.abs 1.39 1.40 1.37 1.92 1.78 1.58 1.70 1.66 1.51 1.47 1.46 1.37

unkn c, LL 0.94 0.93 0.86 1.21 1.10 0.95 1.61 1.53 1.28 1.68 1.67 1.54

unkn c, Kal 0.96 0.94 0.87 1.23 1.13 0.98 1.66 1.57 1.32 1.78 1.74 1.59

FS MLE 0.49 0.50 0.49 5.23 3.64 1.96 18.3 14.3 9.19 32.2 26.0 18.0
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Table 7: Weighted Average Risk relative to MLE with ρ = 0.5, Gaussian Random Walk

Weight Function
c = 0 c = 4 c = 8 c = 12

df ∞ 12 6 ∞ 12 6 ∞ 12 6 ∞ 12 6

Average Square Loss, T = 160

LS.sqr 2.27 2.19 1.98 1.56 1.61 1.60 1.09 1.15 1.21 0.95 0.99 1.03

LS.abs 2.17 2.09 1.90 1.54 1.57 1.54 1.07 1.11 1.14 0.89 0.92 0.94

unkn c, LL 0.83 0.82 0.81 0.88 0.87 0.86 0.80 0.83 0.86 0.80 0.84 0.87

unkn c, Kal 0.84 0.82 0.80 0.86 0.85 0.84 0.69 0.73 0.77 0.57 0.61 0.68

FS MLE 0.50 0.49 0.52 1.09 0.99 0.87 1.62 1.53 1.37 1.86 1.81 1.69

Average Square Loss, T = 480

LS.sqr 2.39 2.29 2.16 1.61 1.68 1.75 1.10 1.18 1.29 0.93 0.97 1.06

LS.abs 2.24 2.12 1.98 1.57 1.60 1.60 1.08 1.13 1.19 0.89 0.93 0.98

unkn c, LL 0.88 0.86 0.86 0.90 0.90 0.90 0.74 0.79 0.85 0.63 0.69 0.77

unkn c, Kal 0.89 0.86 0.84 0.89 0.89 0.88 0.69 0.74 0.80 0.52 0.58 0.67

FS MLE 0.50 0.50 0.51 1.09 0.98 0.84 1.59 1.48 1.31 1.80 1.73 1.60

Endpoint Interval Estimation Loss, T = 160

LS.sqr 2.09 2.03 1.92 1.41 1.47 1.48 0.96 0.98 1.03 0.89 0.91 0.91

LS.abs 2.05 2.05 1.97 1.42 1.46 1.50 0.93 0.96 1.00 0.83 0.85 0.85

unkn c, LL 1.27 1.23 1.14 0.80 0.83 0.87 0.43 0.46 0.52 0.34 0.36 0.39

unkn c, Kal 1.30 1.25 1.16 0.80 0.83 0.87 0.40 0.44 0.50 0.28 0.30 0.34

FS MLE 0.70 0.68 0.68 1.99 1.78 1.50 2.12 2.07 2.00 1.94 1.94 1.93

Endpoint Interval Estimation Loss, T = 480

LS.sqr 2.10 2.08 2.05 1.39 1.52 1.58 0.89 0.96 1.05 0.80 0.83 0.88

LS.abs 2.02 1.99 1.97 1.38 1.45 1.53 0.88 0.93 0.99 0.78 0.79 0.83

unkn c, LL 1.36 1.33 1.27 0.81 0.89 0.97 0.39 0.48 0.55 0.27 0.32 0.37

unkn c, Kal 1.39 1.34 1.28 0.81 0.89 0.96 0.38 0.46 0.54 0.24 0.29 0.35

FS MLE 0.70 0.70 0.70 2.02 1.80 1.53 2.11 2.14 2.07 1.92 1.99 2.00
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2 Proofs of Additional Lemmas
Lemma 3 Under Condition 1:

(i) T−1/2
P[·T ]

t=1 st(θ0)⇒
R ·
0 Γ

1/2(l)dW (l), where W is a k × 1 standard Wiener process
(ii) supt≤T ,{vt}Tt=1∈CTT ,{ṽt}Tt=1∈CTT T−1||

Pt
s=1(2

R 1
0 λhs(θ0 + vs + λṽs)dλ − Γs)||

p→ 0 and

supt≤T ,{vt}Tt=1∈CTT ,{ṽt}Tt=1∈CTT
T−1||

Pt
s=1(

R 1
0 hs(θ0 + λ(vs − ṽs))dλ − Γs)||

p→ 0, where CT is a de-
creasing ball around θ0, and CTT = CT × · · · × CT

(iii) û = T 1/2(θ̂ − θ0) = Op(1)

(iv) T−1/2
P[·T ]

t=1 st(θ̂)⇒
R ·
0 Γ(l)

1/2dW (l)−
R ·
0 Γ(l)dl(

R 1
0 Γ(l)dl)

−1 R 1
0 Γ(l)

1/2dW (l)

(v) supλ∈[0,1] ||T−1
P[λT ]

t=1 st(θ̂)st(θ̂)
0 −
R λ
0 Γ(l)dl||

p→ 0 and T−1
P

st(θ0)st(θ0)
0 = Op(1)

(vi) supλ∈[0,1] ||T−1
P[λT ]

t=1 ht(θ̂)−
R λ
0 Γ(l)dl||

p→ 0

Proof. (i) Fix any k× 1 vector v with v0v = 1, and let ηt = v0st(θ0). Then {ηt,Ft} is a mar-
tingale difference array and T−1

PT
t=1E[|ηt|2+ε|Ft−1] ≤ T−1

PT
t=1E[||st(θ0)||2+ε|Ft−1] = Op(1)

by Condition 1 (MDA). Let ω2η =
R 1
0 v

0Γ(l)vdl and g(λ) =
R λ
0 v0Γ(l)vdl/ω2η, which is a con-

tinuous and strictly increasing function on the unit interval, so that it has an inverse g−1.

By Corollary 3.8 of McLeish (1974), T−1/2
P[g−1(·)T ]

t=1 ηt ⇒ ωηWη(·), where Wη is a standard

scalar Wiener process and the convergence is on the space of cadlag functions on the unit inter-

val, equipped with the Skorohod norm. By the continuous mapping theorem, we hence obtain

T−1/2
P[·T ]

t=1 ηt ⇒ ωηWη(g(·)) ∼ v0
R ·
0 Γ(l)

1/2dW (l) and the result follows from the Functional

Cramer-Wold device (see, for instance, Theorem 29.16 of Davidson (1994)).

(ii) We have

T−1||
tX

s=1

(2

Z 1

0
λhs(θ0 + vs + λṽs)dλ− Γs)||

≤ T−1||
tX

s=1

(2

Z 1

0
λhs(θ0 + vs + λṽs)dλ− hs(θ0))||+ T−1||

tX
s=1

(Γs − hs(θ0))||.

Now supt≤T T
−1||

Pt
s=1(Γs−hs(θ0))||

p→ 0 by Condition 1 (LLLN) and supλ∈[0,1] ||T−1
P[λT ]

s=1 Γs−R λ
0 Γ(s)ds||→ 0, and

sup
t≤T ,{vt}Tt=1∈CTT ,{ṽt}Tt=1∈CTT

T−1||
tX

s=1

2

Z 1

0
λ(hs(θ0 + vs + λṽs)− hs(θ0))dλ||

≤ 2T−1
TX
t=1

sup
v∈CT

||ht(θ0 + 2v)− ht(θ0))||
p→ 0

by Condition 1 (LLLN). The second claim follows similarly.
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(iii) For any ε > 0,

P (||θ̂ − θ0|| ≥ ε) ≤ P ( sup
||θ−θ0||≥ε

T−1
P
[lt(θ)− lt(θ0)] ≥ −K(ε))

≤ 1− P ( sup
||θ−θ0||≥ε

T−1
P

sup
||v||<T−1/2+η

[lt(θ + v)− lt(θ0)] < −K(ε))→ 0

by Condition 1 (ID) and so θ̂
p→ θ0.

Further, as θ̂
p→ θ0, there exists a sequence of decreasing balls TT around θ0 such that

P (θ̂ ∈ TT ) → 1. For v ∈ Θ0, we have by the fundamental theorem of calculus applied row by

row that st(θ0 + v)− st(θ0) =
³
−
R 1
0 ht(θ0 + λv)dλ

´
v almost surely for t = 1, · · · , T . Let T be

large enough so that TT ⊂ Θ0, and define hSt =
R 1
0 ht(θ0 + λ(θ̂ − θ0))dλ if θ̂ ∈ TT , and hSt = h̃t

otherwise, so that from the first order condition 1[θ̂ ∈ TT ]
P

st(θ̂) = 0, we obtain

1[θ̂ ∈ TT ]
³
T−1/2

X
st(θ0)−

³
T−1

X
hSt

´
T 1/2(θ̂ − θ0)

´
= 0 (1)

almost surely for t = 1, · · · , T . From part (i), T−1/2
P

st(θ0) = Op(1). Applying the result of

part (ii), we obtain T−1
P

hSt − T−1
P
Γt

p→ 0. But T−1
P
Γt →

R 1
0 Γ(l)dl, which is positive

definite, so the result follows from (1) and P (θ̂ ∈ TT )→ 1.

(iv) Proceed as in the proof of part (iii) to obtain

1[θ̂ ∈ TT ]
Ã
T−1/2

tX
s=1

ss(θ̂)− T−1/2
tX

s=1

ss(θ0) +

Ã
T−1

tX
s=1

hSs

!
T 1/2(θ̂ − θ0)

!
= 0

almost surely, so that

sup
t≤T

||T−1/2
TX
s=t

ss(θ̂)|| ≤ sup
t≤T

||T−1/2
TX
s=t

ss(θ0)||+ T 1/2 sup
t≤T

||T−1
TX
s=t

hSs || · ||θ̂ − θ0||+ op(1)

and the result follows from parts (i), (ii) and (iii) of this Lemma and the CMT.

(v) From the proof of part (iii), 1[θ̂ ∈ TT ](st(θ̂)− st(θ0) + hSs (θ̂ − θ0)) = 0, almost surely for

t = 1, · · · , T , so that

sup
λ∈[0,1]

||T−1
[λT ]X
t=1

st(θ̂)st(θ̂)
0 − T−1

[λT ]X
t=1

st(θ0)st(θ0)
0||

≤ 2||û||T−1
X

||hSt ||T−1/2 sup
t≤T

||st(θ0)||+ T−1||û||2 sup
t≤T

||hSt ||T−1
X

||hSt ||

with probability P (θ̂ ∈ TT ) → 1. Now ||û|| = Op(1) by part (iii), and T−1
P
||hSt || =

Op(1) by a calculation similar to the proof of part (ii) and Condition 1 (LLLN),

and T−1/2
P[·T ]

t=1 st(θ0) ⇒
R ·
0 Γ

1/2(l)dW (l) implies T−1/2 supt≤T ||st(θ0)||
p→ 0, and also
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T−1 supt≤T ||hSt || ≤ T−1 supt≤T ||ht(θ0)||+ T−1 supt≤T,θ∈TT ||ht(θ0)− ht(θ)||
p→ 0 by Condition 1

(LLLN) (i) and (iii), so that supλ∈[0,1] ||T−1
P[λT ]

t=1 st(θ̂)st(θ̂)
0 − T−1

P[λT ]
t=1 st(θ0)st(θ0)

0|| p→ 0.

Let v ∈ Rk, and define ηt = v0st(θ0). Then from Condition 1 (MDA), {ηt,Ft} is a
martingale difference array with conditional variance process V 2η,t = v0E[st(θ0)st(θ0)0|Ft−1]v,
and supλ∈[0,1] |T−1

P[λT ]
t=1 V

2
η,t − v0(

R λ
0 Γ(l)dl)v|

p→ 0. Note that T−1
PT

t=1 V
2
η,t ≤

||v||2(T−1
PT

t=1E[||st(θ0)||2+�|Ft−1])2/(2+�) = Op(1) implies T−1
P

E[η2t1[|ηt| > T 1/2c]|Ft−1]
p→

0 for all 0 < c <∞, so that from Theorem 2.23 of Hall and Heyde (1980), supt≤T |T−1
Pt

s=1(η
2
s−

V 2η,s)| = supλ∈[0,1] |T−1v0
P[λT ]

t=1 (st(θ0)st(θ0)
0 − E[st(θ0)st(θ0)

0|Ft−1])v|
p→ 0, so that also

supλ∈[0,1] |T−1v0
P[λT ]

t=1 (st(θ0)st(θ0)
0 −

R λ
0 Γ(l)dl)v|

p→ 0. This holds for arbitrary v ∈ Rk, so

in particular jointly for all vectors vj , j = 1, · · · , 2k with elements that are either zero or one. It
is easy to see that if v0jA0vj = v0jA1vj for all such vj , j = 1, · · · , 2k for two symmetric matrices
A0 and A1, then A0 = A1, and both results follow.

(vi) Follows from parts (ii) and (iii).

Lemma 4 Under Conditions 1 and 2, there exists a sequence of real numbers aT with aT →∞
and T−1/2aT → 0 such that

(i)
R
w(θ0 + T−1/2u)Eδ(1−AT (u)ST (δ))LRT (u, δ)du

p→ 0

(ii) Eδ(1− ST (δ))LRT (0, δ − eδ̄)
p→ 0

Proof. (i) For any choice of aT , we have

|
Z

w(θ0 + T−1/2u)Eδ(1−AT (u)ST (δ))LRT (u, δ)du|

≤ |
Z

w(θ0 + T−1/2u)Eδ(1− ST (δ))LRT (u, δ)du|

+|
Z

w(θ0 + T−1/2u)EδST (δ)(1−AT (u))LRT (u, δ)du|
= ρ1 + ρ2.

For ρ1 =
R
w(θ0 + T−1/2u)Eδ(1− ST (δ))LRT (u, δ)du, note that by Markov’s inequality, for any

� > 0

P (ρ1 > �) ≤ �−1Eρ1

= �−1
Z Z

w(θ0 + T−1/2u)Eδ(1− ST (δ))LRT (u, δ)dufT (θ0, 0)dμT

= �−1
Z

w(θ0 + T−1/2u)Eδ(1− ST (δ))
Z

fT (θ0 + T−1/2u, δ)dμTdu

where the interchange of the order of integration in the second equality follows from Fubini’s

Theorem. For any fixed u and δ, if for all t ≤ T , θ0 + T−1/2u+ δt ∈ Θ, then fT (θ0 + T−1/2u, δ)

is a probability density with respect to μT , and
R
fT (θ0 + T−1/2u, δ)dμT = 1. If for some t,
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θ0 + T−1/2u + δt /∈ Θ, then fT (θ0 + T−1/2u, δ) = 0, and also
R
fT (θ0 + T−1/2u, δ)dμT = 0.

Therefore, supu∈Rk,δ∈RTk
R
fT (θ0 + T−1/2u, δ)dμT ≤ 1, and we obtain

P (ρ1 > �) ≤ �−1
Z

w(θ0 + T−1/2u)Eδ(1− ST (δ))du

= �−1
Z

w(θ0 + T−1/2u)du Eδ1[T
1/2 sup

t≤T
||δt|| > T η].

Now by a change of variable
R
w(θ0+T−1/2u)du = T k/2

R
w(θ)dθ = T k/2. Furthermore, let Ḡ =

supt≤T,T,i≤k |G(i)(t/T )|, where G(i)(s) is the ith element of G(s). Then Ḡ ≤ supi,s∈[0,1] |G(i)(s)|,
which is bounded with probability one. By Borell’s inequality (see, for instance, Pollard (2002),

p. 279), this implies that the tail probability of Ḡ decays exponentially. Therefore, with η > 0,

T k/2Eδ1[T
1/2 supt≤T ||δt|| > T η]→ 0. Since � is arbitrary, this implies ρ1

p→ 0.

For ρ2, note that for any fixed n, by Condition 1 (ID), there exists T ∗(n) such that for all

T > T ∗(n),

P ( sup
||θ−θ0||≥n−1

T−1
X

sup
||v||<T−1/2+η,θ+v∈Θ

(lt(θ + v)− lt(θ0)) < −K(n−1)) ≥ 1− n−1.

For any T , let nT be the largest n such that simultaneously, T > supn0≤n T
∗(n0), T 1/2K(n−1) > 1

and T−1/4n < 1. Note that nT → ∞, since for any fixed n, T ∗(n + 1) and n + 1 are finite and

K((n+ 1)−1) > 0. By construction,

P ( sup
||θ−θ0||≥n−1T

T−1
X

sup
||v||<T−1/2+η,θ+v∈Θ

(lt(θ + v)− lt(θ0)) < −K(n−1T )) ≥ 1− n−1T . (2)

Now set aT = T 1/2n−1T = o(T 1/2). Note that

ST (δ)(1−AT (u))LRT (u, δ) = ST (δ)(1−AT (u)) exp[
X
(lt(θ0 + T−1/2u+ δt)− lt(θ0))]

≤ (1−AT (u)) exp[
X

sup
||v||<T−1/2+η

(lt(θ0 + T−1/2u+ v)− lt(θ0))]

≤ exp[ sup
||θ−θ0||≥n−1T

X
sup

||v||<T−1/2+η
(lt(θ + v)− lt(θ0))].

Hence, with probability of at least 1− n−1T → 1,

ρ2 ≤
Z

w(θ0 + T−1/2u)du · exp
"

sup
||θ−θ0||≥n−1T

X
sup

||v||<T−1/2+η
(lt(θ + v)− lt(θ0))

#
≤ T k/2 exp

£
−TK(n−1T )

¤
≤ T k/2 exp

h
−T 1/2

i
→ 0

where the last inequality holds since T 1/2K(n−1T ) > 1 by construction of nT .
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(ii) Similarly to the reasoning concerning ρ1 in the proof of part (i), for any � > 0, by Markov’s

inequality

P (Eδ(1− ST (δ))LRT (0, δ − eδ̄) > �) ≤ �−1EEδ(1− ST (δ))LRT (0, δ − eδ̄)

= Eδ(1− ST (δ))
Z

fT (θ0, δ − eδ̄)dμT

≤ Eδ(1− ST (δ))→ 0.

Lemma 5 Let ΣΞ(u) be a Tk × Tk matrix consisting of k × k blocks Ξi,j(u), i, j = 1, · · · , T ,
possibly dependent on u and define cUT = supi,j≤T,u∈Rk ||Ξi,j(u)||. Under Condition 2, there exists
a constant cG independent of u and T such that

(i) | tr((F−1ΣδF 0−1)ΣΞ(u))| ≤ cUT cG
(ii) | tr((F−1ΣδF 0−1)ΣΞ(u)(F−1ΣδF 0−1)ΣΞ(u))| ≤ (cUT )2c2G.

Proof. Note that for 1 < i ≤ j, the i,jth k × k block of F−1ΣδF 0−1 is given by

κG(i/T, j/T )− κG((i− 1)/T, j/T ) + κG((i− 1)/T, (j − 1)/T )− κG(i/T, (j − 1)/T )

by κG(1/T, j/T )− κG(1/T, (j − 1)/T ) for i = 1 < j, and by κG(1/T, 1/T ) for i = j = 1.

If i = j and ((i − 1)/T, i/T ] ∩ τ = ∅, due to the symmetry of κG and by the Fundamental
Theorem of Calculus

||κG(i/T, i/T )− κG((i− 1)/T, i/T )|| ≤ T−1 sup
r,s∈[0,1]\τ

||∇−1 κG(r, s)||

||κG(i/T, (i− 1)/T )− κG((i− 1)/T, (i− 1)/T )|| ≤ T−1 sup
r,s∈[0,1]\τ

||∇+1 κG(r, s)||

where ∇−1 κG(r, s) and ∇+1 κG(r, s) are the left and right partial derivatives of κG with respect
to the first argument, so that in this case, the i, ith block has a norm that is bounded by

T−1cD = T−1(supr,s∈[0,1]\τ ||∇−1 κG(r, s)||+ supr,s∈[0,1]\τ ||∇+1 κG(r, s)||).
If ((j − 1)/T, j/T ] ∩ τ 6= ∅ and ((i− 1)/T, i/T ] ∩ τ 6= ∅, then

||κG(i/T, j/T )− κG((i− 1)/T, j/T ) + κG((i− 1)/T, (j − 1)/T )− κG(i/T, (j − 1)/T )||
≤ 4 sup

r,s∈[0,1]
||κG(r, s)|| = cJ

which is also a valid bound for ||κG(1/T, 1/T )||.
If 1 < i < j and ((j − 1)/T, j/T ] ∩ τ = ((i − 1)/T, i/T ] ∩ τ = ∅, then by the Fundamental

Theorem of Calculus

||κG(i/T, j/T )− κG((i− 1)/T, j/T ) + κG((i− 1)/T, (j − 1)/T )− κG(i/T, (j − 1)/T )||

≤ T−2 sup
r 6=s,r,s∈[0,1]\τ

||∂
2κG(r, s)

∂r∂s
|| = T−2cO.
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Also, if 1 < i < j and ((j − 1)/T, j/T ] ∩ τ 6= ∅, and ((i − 1)/T, i/T ] ∩ τ = ∅, then by the
Fundamental Theorem of Calculus

||κG(i/T, j/T )− κG((i− 1)/T, j/T )|| ≤ T−1 sup
r∈[0,1]\τ

||∂κG(r, s)
∂r

||

||κG(i/T, (j − 1)/T )− κG((i− 1)/T, (j − 1)/T )|| ≤ T−1 sup
r∈[0,1]\τ

||∂κG(r, s)
∂r

||

so that the norm of the i,jth block is bounded by T−1cC = 2T−1 supr∈[0,1]\τ ||
∂κG(r,s)

∂r ||, which is
also a valid bound for ||κG(1/T, j/T )− κG(1/T, (j − 1)/T )||.

We can hence decompose

TF−1ΣδF
0−1 = ΣD +ΣO +ΣC +ΣJ

where ΣD is a block diagonal matrix whose i, ith k× k block has a norm that is bounded by cD
("the variance of the increments of the continuous part of δ"), ΣO is a Tk × Tk matrix whose

i, jth block has a norm that is bounded by T−1cO ("the covariance of the increments of the

continuous part of δ"), ΣC =
Pq

l=1ΣC,l with ΣC,i Tk × Tk matrices whose only nonzero k × k

blocks are in one (block) row and column and correspond to the jump at time τ i, and these

nonzero blocks have a norm that is bounded by cC ("the covariance between the jumps and the

increments of δ") and ΣJ with q2 nonzero k × k blocks whose norm is bounded by cJT ("the

variance of the jumps"), and all these bounds are uniform in i,j and T .

Let A and B be Tk×Tk matrices with i, jth k× k block [A]i,j and [B]i,j , respectively. Note

that the i, jth k × k block of AB, [AB]i,j satisfies

||[AB]i,j || = ||
TX
l=1

Ai,lBl,j || ≤
TX
l=1

||Ai,l|| · ||Bl,j || ≤ [ĀB̄]i,j

where for any Tk× Tk matrix C with i, jth k× k block [C]i,j , C̄ denotes a T × T matrix whose

i, jth element [C̄]i,j is at least as large as 1[||[C]i,j || > 0] sups≤T,t≤T ||[C]s,t||. Also

||[ABCB]i,j || = ||
TX
l=1

[AB]i,l[CB]l,j || ≤
TX
l=1

||[AB]i,l|| · ||[CB]l,j ||

≤
TX
l=1

[ĀB̄]i,l[C̄B̄]l,j = [(ĀB̄)(C̄B̄)]i,j .

Hence, using | tr[AB]i,i| ≤ k||[AB]i,i||, we obtain

| trAB| ≤ k tr ĀB̄ and | trABCB| ≤ k tr ĀB̄C̄B̄.
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Note that we can choose Σ̄O = T−1cOe0e00, Σ̄D = cDIT , Σ̄J = TcJιτ ι
0
τ , Σ̄C = cC(ιτe

0
0+e0ι

0
τ ) and

Σ̄Ξ(u) = cUe0e
0
0 where ιτ is a T × 1 vector with elements [ιτ ]j = 1[((j − 1)/T, j/T ]∩ τ 6= ∅] and

e0 is a T × 1 vector of ones.
(i) We compute

| tr(F−1ΣδF 0−1)ΣΞ(u)| = T−1| tr(ΣD +ΣO +ΣC +ΣJ)ΣΞ(u)|
≤ kT−1 tr(Σ̄D + Σ̄O + Σ̄C + Σ̄J)Σ̄Ξ(u)

= kcUT T
−1 tr(cDIT + T−1cOe0e

0
0 + TcJιτ ι

0
τ + cC(ιτe

0
0 + e00ιτ ))e0e

0
0

= kcUT (cD + cO + cJq
2 + 2cCq).

(ii) We compute

| tr(F−1ΣδF 0−1)ΣΞ(u)(F−1ΣδF 0−1)ΣΞ(u)|
= T−2 tr(ΣD +ΣO +ΣC +ΣJ)ΣΞ(u)(ΣD +ΣO +ΣC +ΣJ)ΣΞ(u)

≤ T−2k tr(Σ̄D + Σ̄O + Σ̄C + Σ̄J)Σ̄Ξ(u)(Σ̄D + Σ̄O + Σ̄C + Σ̄J)Σ̄Ξ(u)

= T−2k(cUT e
0
0[cDIT + T−1cOe0e

0
0 + TcJ ιτ ι

0
τ + cC(ιτe

0
0 + e00ιτ )]e0)

2.

Lemma 6 Under Condition 1:
(i) There exists a sequence of random variables C̃T = Op(1) satisfying C̃−1T = Op(1) such

that
sup

v∈Rk,T
(Eδ exp[−2(δ − T−1/2ev)0Dh̃(δ − T−1/2ev)]− exp[−12 C̃T ||v||2]) ≤ 0.

(ii) Suppose the k × 1 vectors ξt satisfy supt≤T ||T−1/2
Pt

s=1 ξs||
p→ 0, the k × k ma-

trix functions ζt : Rk 7→ Rk×k satisfy supt≤T,u∈Rk ||T−1
Pt

s=1 ζs(u)||
p→ 0, the k × k ma-

trices Ξit satisfy supt≤T ||T−1
Pt

s=1 Ξis||
p→ 0, i = 1, 2, 3. Then, with ξ = (ξ01, · · · , ξ0T )0,

Dζ(u) = diag(ζ1(u), · · · , ζT (u)), Ξi = (Ξ0i1, · · · ,Ξ0iT )0, i = 1, 2 and DΞ = diag(Ξ31, · · · ,Ξ3T )

κT exp[∆T ||v||2] ≤ Eδ exp[ξ
0δ + T−1/2v0e0Dζ(u)δ − 1

2δ
0(T−1Ξ1Ξ

0
2 +DΞ)δ] ≤ κT exp[∆̄T ||v||2]

uniformly in v and T , where the scalar random variables κT , ∆T , κT and ∆̄T do not depend on
u or v and κT

p→ 1, κT
p→ 1, ∆T

p→ 0 and ∆̄T
p→ 0.

(iii) If T−1/2
P[·T ]

t=1 ŝt ⇒ SL(·), then Eδ exp[4ŝ
0δ] = Op(1).

(iv) If JT ∈ D is a nonstochastic sequence converging to J ∈ D, where D is the set of cadlag
functions on the unit interval, then

sup
T

Eδ exp[T
1/2JT (1)

0(δT − δ̄)− T 1/2
X

JT ((t− 1)/T )0(δt − δt−1)] <∞

with δ0 = 0.
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Proof. (i) A direct calculation yields

Eδ exp[−2(δ − T−1/2ev)0Dh̃(δ − T−1/2ev)]

Eδ exp[−2δ0Dh̃δ]
= exp[−8T−1v0e0(D−1

h̃
+ 4Σδ)

−1ev].

We have e0(D−1
h̃
+ 4Σδ)

−1e = e0D1/2

h̃
(ITk + 4D

1/2

h̃
ΣδD

1/2

h̃
)−1D1/2

h̃
e, so that

T−1||e0(D−1
h̃
+ 4Σδ)

−1e|| ≤ T−1||e0Dh̃e||

T−1||e0(D−1
h̃
+ 4Σδ)

−1e|| ≥ ||(T−1e0Dh̃e)
−1||−1(1 + 4||D1/2

h̃
ΣδD

1/2

h̃
||)−1

where T−1e0Dh̃e
p→
R 1
0 Γ(l)dl and

||D1/2

h̃
ΣδD

1/2

h̃
|| ≤ trDh̃Σδ

≤ k sup
s∈[0,1]

||κG(s, s)||T−1 trDh̃

p→ k sup
s∈[0,1]

||κG(s, s)|| tr
R 1
0 Γ(l)dl

and finally Eδ exp[−2δ0Dh̃δ] ≤ 1 a.s.
(ii) Let U = T−1/2F 0Dζ(u)

0ev and Σε = T−1Ξ1Ξ02 + DΞ. We first show the result for the

upper bound. By the Cauchy-Schwarz inequality

Eδ exp[ξ
0δ + δ0F 0−1U − 1

2δ
0Σεδ] ≤ (Eδ exp[4δ

0ξ])1/4(Eδ exp[4δ
0F 0−1U ])1/4(Eδ exp[−δ0Σεδ])1/2

= exp[2ξ0Σδξ + 2U
0F−1ΣδF

0−1U ](Eδ exp[−δ0Σεδ])1/2.

Now

U 0F−1ΣδF
0−1U = T−1v0e0Dζ(u)FF

−1ΣδF
0−1F 0Dζ(u)

0ev

≤ ||v||2 trT−1F 0Dζ(u)
0ee0Dζ(u)FF

−1ΣδF
0−1.

But the norm of the i,jth k × k block of T−1F 0Dζ(u)
0ee0Dζ(u)F is bounded

by (supt≤T,u∈Rk ||T−1
PT

s=t ζs(u)||)2
p→ 0. Hence, by Lemma 5 (i), ∆̄T =

supu∈Rk tr(T
−1F 0Dζ(u)

0ee0Dζ(u)F )F
−1ΣδF 0−1

p→ 0, and U 0F−1ΣδF 0−1U ≤ ∆̄T ||v||2. Similarly,
also ξ0Σδξ = trF 0ξξ0FF−1ΣδF 0−1

p→ 0.

For each T , let AG be a Tk× c full column rank matrix that spans the column null space of

F−1ΣδF 0−1, and BA the Tk × (Tk − c) matrix such that B0ABA = ITk−c and BAB
0
A = MA =

IkT −AG(A
0
GAG)

−1A0G (if F
−1ΣδF 0−1 is full rank, define BA = ITk). Then

Eδ exp[−δ0Σεδ] = Eδ exp[−δ0F 0−1BAB
0
AF

0ΣεFBAB
0
AF

−1δ].

Note that the covariance matrix of B0AF
−1δ, B0AF

−1ΣδF−10BA is positive definite, and

MAF
−1ΣδF−10MA = F−1ΣδF−10. Let λi, i = 1, · · · , kT − c be the eigenvalues of the sym-

metric matrix

ΣS = (B
0
AF

−1ΣδF
−10BA)

1/2B0AF
0ΣεFBA(B

0
AF

−1ΣδF
−10BA)

1/2.
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Now the i,jth block of F 0ΣεF , i ≤ j equals (T−1
PT

s=i Ξ1s)(T
−1PT

s=j Ξ1s)
0 + T−1

PT
s=j Ξ2s,

whose norm is op(1) uniformly in i,j by assumption, so that by Lemma 5,

Tk−cX
i=1

λi = trB
0
AF

−1ΣδF
−10BAB

0
AF

0ΣεFBA = trF
−1ΣδF

−10F 0ΣεF
p→ 0 (3)

and also
Tk−cX
i=1

λ2i = trB0AF
−1ΣδF

0−1BAB
0
AF

0ΣεFBAB
0
AF

−1ΣδF
0−1BAB

0
AF

0ΣεFBA (4)

= trF−1ΣδF
0−1F 0ΣεFF

−1ΣδF
0−1F 0ΣεF

p→ 0.

Let LT = 1[supi≤kT−c |λi| ≤ 1/4], and define Σ̃ε = LTΣε, Σ̃S = LTΣS and λ̃i = LTλi, i =
1, · · · , Tk− c. Note that E(1−LT ) ≤ P ((

PTk−c
i=1 λ2i )

1/2 > 1/4)→ 0 by (4), so that it suffices to

show LTEδ exp[−δ0Σεδ]
p→ 1. We compute

LTEδ exp[−δ0Σεδ] = LTEδ exp[−δ0F 0−1BAB
0
AF

0Σ̃εFBAB
0
AF

−1δ]

= LT |B0AF−1ΣδF 0−1BA|−1/2|2B0AF 0Σ̃εFBA + (B
0
AF

−1ΣδF
0−1BA)

−1|−1/2

= LT |ITk−c + 2Σ̃S |−1/2.

Since for x ∈ [−1/2, 1/2], x− x2 ≤ ln(1 + x) ≤ x, we find

LT2
Tk−cX
i=1

(λ̃i − 2λ̃
2
i ) ≤ LT

Tk−cX
i=1

ln(1 + 2λ̃i) = LT ln |ITk−c + 2Σ̃S | ≤ LT2
Tk−cX
i=1

λ̃i

and the result follows from (3) and (4).

For the lower bound, note that by Jensen’s inequality,

Eδ exp[ξ
0δ + T−1/2v0e0Dζ(u)δ − 1

2δ
0Σεδ] ≥ (Eδ exp[−ξ0δ − T−1/2v0e0Dζ(u)δ +

1
2δ
0Σεδ])

−1

and proceeding as for the upper bound yields the result.

(iii) Using the formula for the moment generating function of a multivariate normal, we find

Eδ exp[4
P

st(θ̂)
0δt] = exp[8 trF

0ŝŝ0F (F−1ΣδF
−10)].

The i, jth k × k block of F 0ŝŝ0F is given by (T−1/2
PT

t=i st(θ̂))(T
−1/2PT

t=j st(θ̂))
0, whose norm

is Op(1) uniformly in i,j by assumption. Hence applying Lemma 5 yields Eδ exp[4
P

st(θ̂)
0δt] =

Op(1).

(iv) Let J̄T = (JT (0)
0, JT (1/T )0, · · · , JT ((T − 1)/T )0)0 and Ĵ = eJT (1) − J̄T −

T−1/2F 0DΓeΓ̂
−1JT (1). We compute

Eδ exp[T
1/2JT (1)

0(δT − δ̄)− T 1/2
X

JT ((t− 1)/T )0(δt − δt−1)]

= Eδ exp[(eJT (1)− J̄T − T−1/2F 0DΓeΓ̂
−1JT (1))

0F−1δ]

= exp[12 tr Ĵ Ĵ
0(F−1ΣδF

−10)].
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But the i, jth k × k block of Ĵ Ĵ 0 is given by [JT (1)(Ik − (T−1
PT

s=i Γs)Γ̂
−1) − JT ((i −

1)/T )][JT (1)(Ik − (T−1
PT

s=j Γs)Γ̂
−1)− JT ((j − 1)/T )]0, whose norm is O(1) uniformly in i,j, T

by assumption, so that the result follows from Lemma 5.

In the following lemma, we write
R
G∗0Γ1/2dW for

R 1
0 G

∗(s)Γ(s)1/2dW (s),
R
G∗0ΓG∗ forR 1

0 G
∗(s)0Γ(s)G∗(s)ds and so forth.

Lemma 7 Under Conditions 1 and 2,

EδLRT (δ)⇒ EG exp[

Z
G∗0Γ1/2dW − 1

2

Z
G∗0ΓG∗]

where G∗(s) = G(s)− (
R
Γ(λ)dλ)−1

R
Γ(λ)G(λ)dλ.

Proof. By Lemma 2 (ii),

EδLRT (δ)−Eδ exp[δ
0ŝ− 1

2δ
0DΓ(δ − eδ̄)]

p→ 0.

Note that, by the summation by parts formula, with δ0 = 0,

TX
t=1

ŝ0tδt = δ0T

TX
t=1

ŝt −
TX
t=1

(
t−1X
s=1

ŝs)
0(δt − δt−1).

Now by Lemma 3 (iii), ST (·) = T−1/2
P[·T ]

t=1 ŝt(θ0) ⇒ S(·), where the convergence is on the
space D[0,1] of cadlag functions on the unit interval in the Skorohod metric, and S(1) = 0. By

11.7.2 of Dudley (2002) there exists a sequence of stochastic processes S̃T ∈ D[0,1] defined on
some probability space (F̃ , F̃, P̃ ) and event Ã ∈ F̃ with P̃ (Ã) = 1, such that S̃T has the same

distribution as ST , S̃ has the same distribution as S (and is continuous with S̃(0) = S̃(1) = 0)

and S̃T (·, ω̃) → S̃(·, ω̃) for all ω̃ ∈ Ã. Denote by (F̃p, F̃p, P̃p) the probability space obtained as

the product space of (F̃ , F̃, P̃ ) and (FG,FG, PG), where G of Condition 2 is a stochastic process

defined on (FG,FG, PG) (so that Eδ denotes integration with respect to a measure induced by

PG). By this construction,

gLRT (δ, ST ) = exp[T 1/2S̃T (1)
0δT − T 1/2

X
S̃T ((t− 1)/T )0(δt − δt−1)− T 1/2S̃T (1)

0δ̄

−12
X

δ0tΓtδt +
1
2(T

−1/2
X
Γtδt)

0Γ̂−1(T−1/2
X
Γtδt)]

is a random variable defined on (F̃p, F̃p, P̃p), and Eδ
gLRT (δ) defined on (F̃ , F̃, P̃ ) and Eδ exp[(δ−

eδ̄)0s0 − 1
2δDΓ(δ − eδ̄)] defined on (F ,F, P ) have the same distribution for all T (since they are

functions of S̃T and ST , respectively). It therefore suffices to find the limiting distribution of

Eδ
gLRT (δ).
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With S̄T (ω̃) = (S̃T (0, ω̃)
0, S̃T (1/T, ω̃)0, · · · , S̃T ((T − 1)/T, ω̃)0)0 and S̄ defined analogously,

T 1/2
P

S̃T ((t− 1)/T, ω̃)0(δt − δt−1) = S̄T (ω̃)
0F−1δ, so that for any ω̃ ∈ Ã,

Eδ[(S̄T (ω̃)− S̄(ω̃))0F−1δδ0F−10(S̄T (ω̃)− S̄(ω̃))] = trF−1ΣδF
−10(S̄T (ω̃)− S̄(ω̃))(S̄T (ω̃)− S̄(ω̃))0.

But the i, jth k × k block of (S̄T (ω̃)− S̄(ω̃))(S̄T (ω̃)− S̄(ω̃))0 is equal to

(S̄T ((i− 1)/T, ω̃)− S̄((i− 1)/T, ω̃))(S̄T ((j − 1)/T, ω̃)− S̄((j − 1)/T, ω̃))0

whose norm converges to zero uniformly in i and j. Therefore, by Lemma 5, (S̄T (ω̃) −
S̄(ω̃))0F−1δ

p→ 0 in PG, and hence

exp[T 1/2S̃T (1, ω̃)
0(δT − δ̄)− S̄T (ω̃)0F−1δ− 1

2δ
0DΓ(δ−eδ̄)]−exp[−S̄(ω̃)0F−1δ− 1

2δ
0DΓ(δ−eδ̄)]

p→ 0

in PG (where we used S̃(1) = 0).

By Theorem 21, p. 64, of Protter (2005), and the CMT,

exp[T 1/2S̃(1, ω̃)0(δT − δ̄)− S̄(ω̃)0F−1δ − 1
2δ
0DΓ(δ − eδ̄)] (5)

⇒ exp[−
R
S̃(l, ω̃)0dG(l)− 1

2

R
G0ΓG+ 1

2(
R
ΓG)0(

R
Γ)−1(

R
ΓG)]

in PG. Furthermore,

Eδ(gLRT (δ, S̃T (·, ω̃)))2 ≤ Eδ exp[2T
1/2S̃T (1, ω̃)

0(δT − δ̄)− 2S̄T (ω̃)0F−1δ]

which is uniformly bounded in T by Lemma 6 (iv), so that for all ω̃ ∈ Ã, gLRT (δ, S̃T (·, ω̃)) is
uniformly integrable on (FG,FG, PG). Hence (5) implies that also

Eδ
gLRT (δ, S̃T (·, ω̃)) → EG exp[−

R
S̃(l, ω̃)0dG(l)− 1

2

R
G0ΓG+ 1

2(
R
ΓG)0(

R
Γ)−1(

R
ΓG)]

= EG exp[−
R
S̃(l, ω̃)0dG∗(l)− 1

2

R
G∗0ΓG∗]

and the equality follows from S̃(1, ω) = 0 and the definition of G∗. But almost sure convergence

implies convergence in distribution, so that in (F̃ , F̃, P̃ )

Eδ
gLRT (δ, S̃T ) ⇒ EG exp[−

R
S̃(l)0dG∗(l)− 1

2

R
G∗0ΓG∗]

= EG exp[
R
G∗(l)0dS̃(l)− 1

2

R
G∗0ΓG∗]

∼ EG exp[
R
G∗0Γ1/2dW − 1

2

R
G∗0ΓG∗]

where the equality follows from the integration by parts formula on p. 83 of Protter (2005), and

the last line uses
R
ΓG∗ = 0 almost surely.
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