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Introduction

• Bayesian estimation of models with many parameters has become standard
tool in empirical macroeconomics

• Prior matters unless data very informative

• Difficult to assess role of prior and likelihood when there are many para-
meters

• Standard practice: Compare marginals of prior and posterior distribution
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Bivariate Example

• Observe two Gaussian RVs

Y1 = θ1 + 10ε1 + ε2/10

Y2 = θ2 + 10ε1 − ε2/10

where ε1, ε2 ∼ iidN (0, 1).

• Interest is exclusively on θ1

• Without knowledge of θ2, only Y1 is informative about θ1

• Since Y1 ∼ N (θ1, 100.01), very little information about θ1 in likelihood:
With prior θ1 ∼ N (0, 1), θ1|Y1 = 0 ∼ N (0, 0.990)

• Yet full Bayesian analysis with prior θ ∼ N (0, I2):

θ1|Y = 0 ∼ N (0, 0.504)
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Bivariate Example
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Overview I

• Develop statistics that help to answer two questions: Given a scalar para-
meter of interest

1. How sensitive are posterior results to variations in the prior?

2. How informative is prior relative to likelihood?

• Basic idea: Study variation of posterior mean as a function of prior mean
for both questions

— If likelihood is flat, posterior is like prior, and prior mean changes are
pushed through to the posterior one-to-one. Indicates both prior sen-
sitivity and strong (relative) prior informativeness.

— If likelihood is very peaked, posterior largely unaffected by prior
changes. Indicates both prior robustness and low prior informativeness.

• Implementation via local prior mean changes, that is study of derivative of
posterior mean with respect to prior mean.
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Overview II

• Prior mean change via exponential family embedding
⇒ Derivative matrix becomes simple function of prior and posterior co-
variance matrices, easily computed from MCMC output

• Prior sensitivity measure PS is Euclidian norm of (normalized) derivative
vector: measures maximal change of posterior mean by varying prior mean
by the multivariate analogue of one prior standard deviation

• Prior informativeness PI ∈ [0, 1] measures fraction of prior information for
posterior results

— PI equal to derivative in scalar parameter case

— PI derived from derivative matrix via axiomatic requirements in vector
parameter case
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Related Literature

• Bayesian local sensitivity analysis. In particular, local sensitivity of posterior
mean with respect to parametric change in prior: Basu, Jammalamadaka,
and Liu (1996) and Perez, Martin, and Rufo (2006)

Contribution regarding PS merely exponential family embedding, and nor-
malization

• No close counterpart to PI
Recent literature that studies identification of DSGE models: Canova and
Sala (2009), Iskrev (2010a, 2010b) and Komunjer and Ng (2009)

— PI not binary "identification or not", but measures relative importance
of prior

— PI not tied to linear Gaussian framework

— PI not based on frequentist identification concept, but likelihood based
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Model with Scalar Parameter

• θ is scalar, p prior density with μp = Ep[θ] and σ2p = Vp[θ], π is posterior
density under prior p with σ2π = Vπ[θ

• Embed p in family pα indexed by α

pα(θ) = C(α) exp

"
α(θ − μp)

σ2p

#
p(θ)

so that for α small, Epα[θ] ≈ Ep[θ] + α

• Derivative of posterior mean μπ(α) with respect to prior mean
dμπ(α)

dα
|α=0 = J = σ2π/σ

2
p

• PS = σpJ : linear approximation to change in posterior mean when prior
mean is increased by one prior standard deviation

• PI = min(J, 1): "push-through" rate of prior mean change to posterior
mean change
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PI as Fraction of Prior Information

• Suppose prior log-density and log-likelihood are quadratic in θ, i.e.

pα(θ) ∝ exp[−12
(θ−μp−α)2

σ2p
] and l(θ) ∝ exp[−12

(θ−μl)2
σ2l

].

• By standard calculation, σ−2π = σ−2p + σ−2l and

μπ(α) = w(μp + α) + (1−w)μl with w =
σ−2p

σ−2p + σ−2l
so that

PI =
dμπ(α)

dα
|α=0 = w

is ratio of prior information σ−2p to total information σ−2p + σ−2l .

• Interpretation remains reasonable approximation if prior log-density and
log-likelihood are only approximately quadratic
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Example

• Likelihood of a mixture of two normals Y with E[Y ] = θ

• "Global" quadratic log-likelihood approximation with μl and σ2l computed
from scale-normalized likelihood

• w =
σ−2p

σ−2p +σ−2l
yields w = 0.224, and PI = 0.249
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Model with Vector Parameter

• θ is k× 1 vector, with prior variance Vp[θ] and baseline posterior variance
Vπ[θ].

• Embed prior p in exponential family

pα(θ) = C(α) exp[α0Vp[θ]−1(θ − μp)]p(θ)

so that for small α, Epα[θ] ≈ Ep[θ] + α

• k × k derivative matrix

J =
∂μπ(α)

∂α0
|α=0 = Vπ[θ]Vp[θ]

−1
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PS with Vector Parameter

• v0θ is scalar parameter on interest

• Derivative vector of the posterior mean of v0θ is v0J

• Define

PS = max
α0Vp[θ]−1α=1

v0Jα =
q
v0Vπ[θ]Vp[θ]−1Vπ[θ]v

⇒ largest change of the posterior mean of θ that can be induced by
multivariate analogue of "one standard deviation change" of prior mean

11



PI with Vector Parameter: Gaussian Case

• Suppose Y ∼ N (θ,Σ) with Σ known, and prior θ ∼ N (μp, Vp[θ]).
Parameter of interest is v0θ.

• Without knowledge of θ, likelihood information about v0θ is summarized
by scalar random variable v0Y ∼ N (v0θ, v0Σv), and prior on v0θ is
N (v0μp, v0Vp[θ]v).
⇒ Fraction of information formula yields

PIG =
(v0Vp[θ]v)−1

(v0Vp[θ]v)−1 + (v0Σv)−1

= 1− v0Vp[θ]v
v0Vp[θ](Vp[θ]− Vπ[θ])−1Vp[θ]v

• Bivariate example of Introduction: PIG = 0.990.

12



PI with Vector Parameter: Axiomatic Approach

• Gaussian case special.

• In general, potential prior informativeness measures PI based on (nor-
malized) derivative matrix J ∈ Rk×k can be thought of as mappings
PI : Rk×k 7→ [0, 1].

• Impose axiomatic requirements on such mappings that make sense for a
prior informativeness measure.

• Paper identifies a set of "reasonable" requirements that imply

PI =

(
1 if λmax(J) ≥ 1
PIG otherwise

⇒ PI interesting statistic also outside Gaussian case
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Relationship to Frequentist Identification

• Rothenberg (1971) defines θ0 ∈ Θ to be identifiable if f(y; θ) = f(y; θ0)

for all y ∈ Y implies θ = θ0.

• Entirely flat l(θ) = f(y; θ) for observed Y = y not incompatible with
identifiability, as other draws of Y might have been informative. But
with l(θ) flat, observed data not at all informative, and PI = 1 correctly
communicates that.

• If density is constant only over "small" set Θ0, then lack of identifiability,
but also lack of useful information about θ? PI continues to summarize
global shape of likelihood.

• PI not binary, and measures data informativeness about parameter v0θ,
not identification at a particular parameter value θ0.
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Conditional PI Analysis

• Interest is in θj. Suppose known that data not informative about θi, so
prior on θi is important. Is prior on parameters other than θi important
for posterior of θj?

• Perform analysis conditional on prior about θi by dropping ith row and
column of Vp[θ] and Vπ[θ] in computation of PI for θj

• Justification in two stage information acquisition about θi
1. Previous study A updates very vague prior pA,i on θi with variance

σ2A,p,i to tighter posterior with variance σ
2
A,π,i

2. Current study B uses posterior on θi as prior, σ2p,i = σ2B,p,i = σ2A,π,i

With no further links between studies, current posterior is also posterior
for combined data set with prior pA,i on θi

As σ2A,p,i → ∞, PI above is prior informativeness relative to combined
data set
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Application to Smets and Wouters (2007)

• DSGE model with sticky prices and wages, habit formation in consumption,
variable capital utilization and investment adjustment costs

• 14 endogenous variables, driven by 7 exogenous shocks described by 17
parameters (="shock parameters")

• 24 additional parameters describing the model, of which SW fix 5, so that
19 parameters are estimated ("=structural parameters")

• (Essentially) same prior as in SW
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Results

• λmax = 1.25, with eigenvector loading of 0.95 on π̄

⇒ PI conditional on prior information about π̄.

• Selected parameters:
Prior Posterior
μp σp μπ σπ σ2π/σ

2
p PI PS

ϕ N 4.00 1.50 5.74 1.03 0.48 0.53 0.75
ιp B 0.50 0.15 0.25 0.09 0.35 0.37 0.06
ξw B 0.50 0.10 0.70 0.07 0.43 0.75 0.06
ξp B 0.50 0.10 0.65 0.06 0.31 0.50 0.04
ωp IG 0.30 0.20 0.15 0.02 0.01 0.01 0.01
ρp B 0.50 0.20 0.89 0.05 0.06 0.10 0.03

• Shock parameters have low PI (well pinned-down by likelihood), and so do
Impulse Responses and Variance Decompositions

⇒ structural parameter have limited role for determination IRs and VDCs
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Conclusion

• Suggestion of two statistics that shed light on role of prior in models with
high dimensional parameters

— PS measures sensitivity of posterior mean of parameter of interest to
variation in prior means

— PI quantifies to which degree the posterior results for parameter of
interest are driven by prior information

• Entirely straightforward to implement with MCMC output

• Potentially other useful statistics. But some reasonable requirements lead
to suggested measures
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