Measuring Prior Sensitivity and Prior Informativeness in Large Bayesian Models

Ulrich K. Müller Princeton University

January 2012

Introduction

- Bayesian estimation of models with many parameters has become standard tool in empirical macroeconomics
- Prior matters unless data very informative
- Difficult to assess role of prior and likelihood when there are many parameters
- Standard practice: Compare marginals of prior and posterior distribution

Bivariate Example

• Observe two Gaussian RVs

$$Y_1 = \theta_1 + 10\varepsilon_1 + \varepsilon_2/10$$

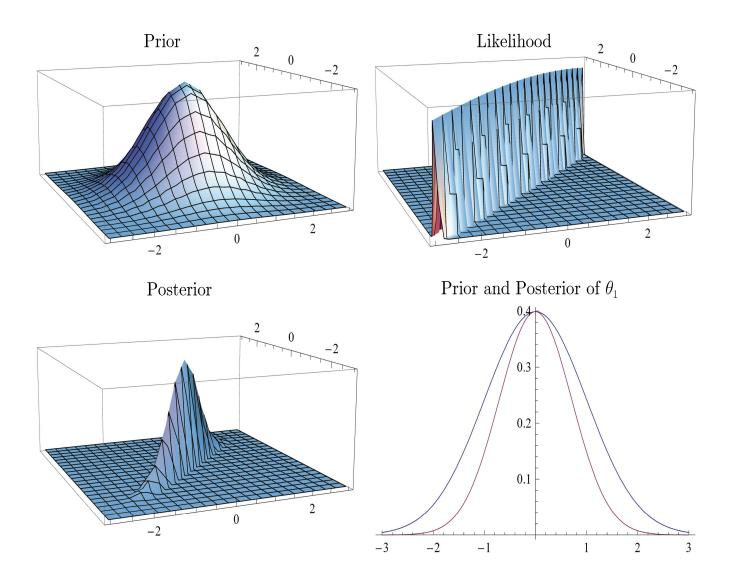
$$Y_2 = \theta_2 + 10\varepsilon_1 - \varepsilon_2/10$$

where $\varepsilon_1, \varepsilon_2 \sim iid\mathcal{N}(0, 1)$.

- Interest is exclusively on θ_1
- Without knowledge of θ_2 , only Y_1 is informative about θ_1
- Since $Y_1 \sim \mathcal{N}(\theta_1, 100.01)$, very little information about θ_1 in likelihood: With prior $\theta_1 \sim \mathcal{N}(0, 1)$, $\theta_1 | Y_1 = 0 \sim \mathcal{N}(0, 0.990)$
- Yet full Bayesian analysis with prior $\theta \sim \mathcal{N}(0, I_2)$:

$$heta_1|Y = \mathbf{0} \sim \mathcal{N}(\mathbf{0}, \mathbf{0.504})$$

Bivariate Example



Overview I

- Develop statistics that help to answer two questions: Given a scalar parameter of interest
 - 1. How sensitive are posterior results to variations in the prior?
 - 2. How informative is prior relative to likelihood?
- Basic idea: Study variation of posterior mean as a function of prior mean for both questions
 - If likelihood is flat, posterior is like prior, and prior mean changes are pushed through to the posterior one-to-one. Indicates both prior sensitivity and strong (relative) prior informativeness.
 - If likelihood is very peaked, posterior largely unaffected by prior changes. Indicates both prior robustness and low prior informativeness.
- Implementation via local prior mean changes, that is study of derivative of posterior mean with respect to prior mean.

Overview II

• Prior mean change via exponential family embedding

 \Rightarrow Derivative matrix becomes simple function of prior and posterior covariance matrices, easily computed from MCMC output

- Prior sensitivity measure PS is Euclidian norm of (normalized) derivative vector: measures maximal change of posterior mean by varying prior mean by the multivariate analogue of one prior standard deviation
- Prior informativeness $\mathsf{PI} \in [0,1]$ measures fraction of prior information for posterior results
 - PI equal to derivative in scalar parameter case
 - PI derived from derivative matrix via axiomatic requirements in vector parameter case

Related Literature

 Bayesian local sensitivity analysis. In particular, local sensitivity of posterior mean with respect to parametric change in prior: Basu, Jammalamadaka, and Liu (1996) and Perez, Martin, and Rufo (2006)

Contribution regarding PS merely exponential family embedding, and normalization

• No close counterpart to PI

Recent literature that studies identification of DSGE models: Canova and Sala (2009), Iskrev (2010a, 2010b) and Komunjer and Ng (2009)

- PI not binary "identification or not", but measures relative importance of prior
- PI not tied to linear Gaussian framework
- PI not based on frequentist identification concept, but likelihood based

Model with Scalar Parameter

- θ is scalar, p prior density with $\mu_p = E_p[\theta]$ and $\sigma_p^2 = V_p[\theta]$, π is posterior density under prior p with $\sigma_{\pi}^2 = V_{\pi}[\theta]$
- Embed p in family p_α indexed by α

$$p_{lpha}(heta) = C(lpha) \exp\left[rac{lpha(heta - \mu_p)}{\sigma_p^2}
ight] p(heta)$$

so that for α small, $E_{p_{\alpha}}[\theta] \approx E_p[\theta] + \alpha$

• Derivative of posterior mean $\mu_{\pi}(\alpha)$ with respect to prior mean

$$\frac{d\mu_{\pi}(\alpha)}{d\alpha}|_{\alpha=0} = J = \sigma_{\pi}^2/\sigma_p^2$$

- $PS = \sigma_p J$: linear approximation to change in posterior mean when prior mean is increased by one prior standard deviation
- PI = min(J, 1): "push-through" rate of prior mean change to posterior mean change

Pl as Fraction of Prior Information

- Suppose prior log-density and log-likelihood are quadratic in θ , i.e. $p_{\alpha}(\theta) \propto \exp\left[-\frac{1}{2} \frac{(\theta \mu_p \alpha)^2}{\sigma_p^2}\right]$ and $l(\theta) \propto \exp\left[-\frac{1}{2} \frac{(\theta \mu_l)^2}{\sigma_l^2}\right]$.
- By standard calculation, $\sigma_{\pi}^{-2}=\sigma_{p}^{-2}+\sigma_{l}^{-2}$ and

$$u_{\pi}(lpha) = w(\mu_p + lpha) + (1 - w)\mu_l$$
 with $w = rac{\sigma_p^{-2}}{\sigma_p^{-2} + \sigma_l^{-2}}$

so that

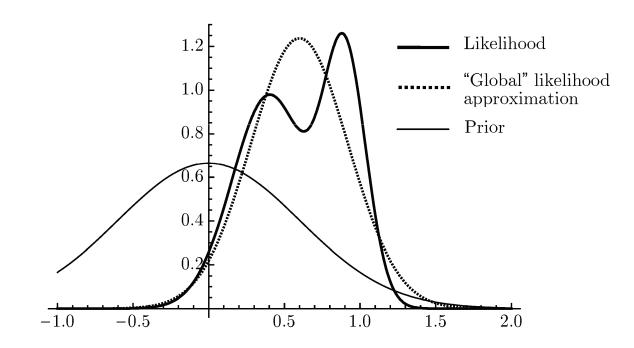
1

$$\mathsf{PI} = \frac{d\mu_{\pi}(\alpha)}{d\alpha}|_{\alpha=0} = w$$

is ratio of prior information σ_p^{-2} to total information $\sigma_p^{-2} + \sigma_l^{-2}$.

• Interpretation remains reasonable approximation if prior log-density and log-likelihood are only approximately quadratic

Example



- Likelihood of a mixture of two normals Y with $E[Y] = \theta$
- "Global" quadratic log-likelihood approximation with μ_l and σ_l^2 computed from scale-normalized likelihood

•
$$w = \frac{\sigma_p^{-2}}{\sigma_p^{-2} + \sigma_l^{-2}}$$
 yields $w = 0.224$, and PI = 0.249

Model with Vector Parameter

- θ is $k \times 1$ vector, with prior variance $V_p[\theta]$ and baseline posterior variance $V_{\pi}[\theta]$.
- Embed prior p in exponential family

$$p_{\alpha}(\theta) = C(\alpha) \exp[\alpha' V_p[\theta]^{-1}(\theta - \mu_p)]p(\theta)$$

so that for small α , $E_{p_{\alpha}}[\theta]\approx E_{p}[\theta]+\alpha$

• $k \times k$ derivative matrix

$$J = \frac{\partial \mu_{\pi}(\alpha)}{\partial \alpha'}|_{\alpha=0} = V_{\pi}[\theta]V_{p}[\theta]^{-1}$$

PS with Vector Parameter

- $v'\theta$ is scalar parameter on interest
- Derivative vector of the posterior mean of $v'\theta$ is v'J
- Define

$$\mathsf{PS} = \max_{\alpha' V_p[\theta]^{-1}\alpha = 1} v' J \alpha = \sqrt{v' V_\pi[\theta] V_p[\theta]^{-1} V_\pi[\theta] v}$$

 \Rightarrow largest change of the posterior mean of θ that can be induced by multivariate analogue of "one standard deviation change" of prior mean

PI with Vector Parameter: Gaussian Case

- Suppose $Y \sim \mathcal{N}(\theta, \Sigma)$ with Σ known, and prior $\theta \sim \mathcal{N}(\mu_p, V_p[\theta])$. Parameter of interest is $v'\theta$.
- Without knowledge of θ , likelihood information about $v'\theta$ is summarized by scalar random variable $v'Y \sim \mathcal{N}(v'\theta, v'\Sigma v)$, and prior on $v'\theta$ is $\mathcal{N}(v'\mu_p, v'V_p[\theta]v)$.
 - \Rightarrow Fraction of information formula yields

$$\mathsf{PI}_G = \frac{(v'V_p[\theta]v)^{-1}}{(v'V_p[\theta]v)^{-1} + (v'\Sigma v)^{-1}}$$

= $1 - \frac{v'V_p[\theta]v}{v'V_p[\theta](V_p[\theta] - V_\pi[\theta])^{-1}V_p[\theta]v}$

• Bivariate example of Introduction: $PI_G = 0.990$.

PI with Vector Parameter: Axiomatic Approach

- Gaussian case special.
- In general, potential prior informativeness measures PI based on (normalized) derivative matrix $J \in \mathbb{R}^{k \times k}$ can be thought of as mappings $\mathsf{PI} : \mathbb{R}^{k \times k} \mapsto [0, 1].$
- Impose axiomatic requirements on such mappings that make sense for a prior informativeness measure.
- Paper identifies a set of "reasonable" requirements that imply

$$\mathsf{PI} = \begin{cases} 1 & \text{if } \lambda_{\max}(J) \ge 1 \\ \mathsf{PI}_G & \text{otherwise} \end{cases}$$

 \Rightarrow PI interesting statistic also outside Gaussian case

Relationship to Frequentist Identification

- Rothenberg (1971) defines θ₀ ∈ Θ to be *identifiable* if f(y; θ) = f(y; θ₀) for all y ∈ 𝔅 implies θ = θ₀.
- Entirely flat l(θ) = f(y; θ) for observed Y = y not incompatible with identifiability, as other draws of Y might have been informative. But with l(θ) flat, observed data not at all informative, and PI = 1 correctly communicates that.
- If density is constant only over "small" set Θ', then lack of identifiability, but also lack of useful information about θ? PI continues to summarize global shape of likelihood.
- PI not binary, and measures data informativeness about *parameter* $v'\theta$, not identification at a particular parameter *value* θ_0 .

Conditional PI Analysis

- Interest is in θ_j . Suppose known that data not informative about θ_i , so prior on θ_i is important. Is prior on parameters other than θ_i important for posterior of θ_j ?
- Perform analysis conditional on prior about θ_i by dropping *i*th row and column of $V_p[\theta]$ and $V_\pi[\theta]$ in computation of PI for θ_j
- Justification in two stage information acquisition about θ_i
 - 1. Previous study A updates very vague prior $p_{A,i}$ on θ_i with variance $\sigma^2_{A,p,i}$ to tighter posterior with variance $\sigma^2_{A,\pi,i}$

2. Current study B uses posterior on θ_i as prior, $\sigma_{p,i}^2 = \sigma_{B,p,i}^2 = \sigma_{A,\pi,i}^2$ With no further links between studies, current posterior is also posterior for combined data set with prior $p_{A,i}$ on θ_i

As $\sigma^2_{A,p,i} \to \infty$, PI above is prior informativeness relative to combined data set

Application to Smets and Wouters (2007)

- DSGE model with sticky prices and wages, habit formation in consumption, variable capital utilization and investment adjustment costs
- 14 endogenous variables, driven by 7 exogenous shocks described by 17 parameters (="shock parameters")
- 24 additional parameters describing the model, of which SW fix 5, so that 19 parameters are estimated ("=structural parameters")
- (Essentially) same prior as in SW

Results

- $\lambda_{\max} = 1.25$, with eigenvector loading of 0.95 on $ar{\pi}$
 - \Rightarrow PI conditional on prior information about $\overline{\pi}$.
 - Prior Posterior $\sigma_{\pi}^2/\sigma_p^2$ ΡI PS σ_p σ_{π} μ_p μ_{π} 4.00 0.48 0.75 \mathcal{N} 1.50 5.74 1.03 0.53 φ 0.09 0.35 0.37 $rac{\iota_p}{\xi_w} \ \xi_p$ \mathcal{B} 0.50 0.15 0.25 0.06 \mathcal{B} 0.06 0.50 0.100.70 0.07 0.43 0.75 \mathcal{B} 0.50 0.10 0.06 0.31 0.50 0.04 0.65 \mathcal{IG} 0.30 0.02 0.01 0.20 0.15 0.01 0.01 ω_p B 0.50 0.20 0.89 0.05 0.06 0.10 0.03 ho_p
- Selected parameters:

• Shock parameters have low PI (well pinned-down by likelihood), and so do Impulse Responses and Variance Decompositions

 \Rightarrow structural parameter have limited role for determination IRs and VDCs

Conclusion

- Suggestion of two statistics that shed light on role of prior in models with high dimensional parameters
 - PS measures sensitivity of posterior mean of parameter of interest to variation in prior means
 - PI quantifies to which degree the posterior results for parameter of interest are driven by prior information
- Entirely straightforward to implement with MCMC output
- Potentially other useful statistics. But some reasonable requirements lead to suggested measures