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Abstract

The paper studies the robustness of long-run variance estimators employed for con-

ducting Wald-type tests in standard time series models. It is shown that all long-run

variance estimators that are consistent for the variance of Gaussian White Noise lack

robustness in the sense that they yield arbitrary results for some underlying process

that satisfies a Functional Central Limit Theorem. An analytical measure of robustness

of long-run variance estimators is suggested that captures the degree of this fragility.

A family of inconsistent long-run variance estimators is derived that optimally trade

off this measure of robustness against efficiency. A minor modification of these op-

timal estimators lead to asymptotically F-distributed test statistics under the null

hypothesis, so that robust large sample inference can be conducted very similarly to

well-understood small sample Gaussian inference.
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1 Introduction

Sums and averages play a crucial role in most econometric techniques. Most estimators

can be written as a simple average of (possibly transformed) data. The application of a

suitable Central Limit Theorem ensures that, appropriately scaled, the difference between

the sample average and the parameter behaves like a zero mean Gaussian variate, at least

for a large enough sample. An estimation of the parameter by the average hence leads to an

error term that is close to having a mean zero Gaussian distribution, and inference about

the parameter boils down to establishing the variance of this Gaussian distribution. In a

time series context, this variance is called the ’long-run variance’, abbreviated LRV in the

following.

Under broad assumptions on the underlying disturbances, it is possible to consistently

estimate the LRV. Consistency of the LRV estimator justifies an approximation of the small

sample distribution that ignores differences between the LRV estimator and its population

value. This approximation does not only lead to simple Gaussian and χ2 distributions

of standard test statistics; consistent LRV estimators also make inference asymptotically

efficient as no additional uncertainty is incurred by the lack of knowledge of the population

LRV. Out of these reasons, most research has concentrated on deriving consistent LRV

estimators. Important contributions include Berk (1974), White (1984), Gallant (1987),

Newey andWest (1987), Andrews (1991), Hansen (1992) and Newey andWest (1994), among

others.

In the standard asymptotic thought experiment, consistent LRV estimators lead to sim-

ple and efficient tests, so that there appears to be no compelling reason to consider alterna-

tive approaches. Unfortunately, however, the approximation of this thought experiment for

small samples with moderate to strong amounts of dependence is poor–see Haan and Levin

(1997), for instance. While theoretically appealing and simple to apply, inference based on

consistent LRV estimators often leads to tests with bad size control in small samples with

realistic amounts of dependence. As demonstrated in the seminal paper of Kiefer, Vogelsang,

and Bunzel (2000) and further developed in Kiefer and Vogelsang (2002b) and Kiefer and

Vogelsang (2003), the small sample approximation can be improved upon for various data

generating processes when tests are based instead on certain inconsistent LRV estimators.

While strongly encouraging, these results are not fully satisfying. It is quite straightfor-
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ward to analytically describe the loss in power of tests based on inconsistent LRV estimators

in the standard asymptotic thought experiment, see Kiefer, Vogelsang, and Bunzel (2000)

and Kiefer and Vogelsang (2002b). It is much harder, however, to analytically describe the

gain in robustness of such tests, since under standard asymptotics, also consistent LRV esti-

mators lead to correctly sized tests. An interesting but analytically difficult way to approach

this question is to derive second-order properties of the error in rejection probability and

discriminate LRV estimators on these grounds. Jansson (2004) finds that in a Gaussian

location model, a certain class of inconsistent LRV estimators that contains the suggestion

by Kiefer, Vogelsang, and Bunzel (2000) lead to tests with an order of magnitude smaller

error in rejection probabilities than those from certain consistent LRV estimators. It might

be possible to extend these results to other models and classes of LRV estimators; it suffers

from the drawback, though, that it classifies LRV estimators as either nonrobust (when the

error in rejection probability is of the usual order of magnitude) or robust (when the order of

magnitude is smaller). This makes it impossible to compare LRV estimators within each of

the groups, whereas simulations indicate that–unsurprisingly–the size control properties

of tests in the same class can be very different.

This paper tries to shed some light on these issues from an alternative perspective. The

central idea is that the problem of LRV estimation can be cast as the problem of estimating

the scale of the partial sum process of the residuals divided by the square root of the sample

size T . Under standard assumptions, this partial sum process converges in distribution to

a Brownian Bridge scaled by the (matrix) square root of the LRV. Limited amounts of

dependence and heterogeneity of the underlying disturbances only lead to differences in the

local properties of the partial sum process, whereas the overall shape continues to resemble

a scaled Brownian Bridge for a large enough sample. A natural measure of robustness

with respect to the dependence and heterogeneity of the underlying disturbances of LRV

estimators then becomes whether small deviations of the partial sum process from a scaled

Brownian Bridge can induce large differences in the estimation of its scale.

Relying on this perspective of the problem, the paper first develops a precise analytical

sense in which any consistent LRV estimator be said to lack robustness.1 It is shown that

for large enough T, any consistent LRV estimator can be induced to estimate an arbitrary

1In this paper, a LRV estimator is labelled ’consistent’ if it is consistent for the covariance matrix of

(demeaned) vector Gaussian White Noise.

2



positive definite matrix for a partial sum process of the residuals that is arbitrarily close to a

standard Brownian Bridge. Although the overall shape of this partial sum process is almost

identical to that of a Brownian Bridge, the consistent LRV estimator estimates its scale ar-

bitrarily badly. As an implication, for any consistent LRV estimator, there exist underlying

disturbances that satisfy a Functional Central Limit Theorem, yet a test statistic constructed

with the consistent LRV estimator has arbitrarily bad size control. Consistent LRV estima-

tors do hence not lead to valid asymptotic inference in the whole class of disturbances that

satisfy a Functional Central Limit Theorem.

Motivated by this insight, the paper then develops a quantitative measure of robust-

ness for LRV estimators by considering the degree to which they can be perturbed when

confronted with a partial sum process that is close to a scaled Brownian Bridge in some

appropriate sense. Specifically, we consider the largest bias that can be induced by a process

that is in some well-defined neighborhood of a Brownian Bridge. For the large class of LRV

estimators that can be written as a quadratic form in the estimated disturbances–which

includes kernel estimators with data-independent bandwidths–explicit formulae of this ro-

bustness measures are derived. Given this measure of robustness, we determine the most

robust LRV estimator as well as the form of LRV estimators that optimally trade off effi-

ciency against robustness in this class. A slight modification of these optimal LRV estimators

yields a family of simple inconsistent LRV estimators that leads to test statistics with an

asymptotic student-t and F-distribution under the null hypothesis.

A numerical investigation of the properties of tests based on a number of LRV estimators

shows the proposed robustness measure to be a highly reliable predictor for of the size control

properties of the tests. The most robust LRV estimator controls size very well, but at the

cost of low power compared to less robust estimators. Conditional on their robustness, none

of the considered inconsistent LRV estimators is markedly superior to the estimators that

leads to test statistics with an asymptotic student-t and F-distribution, such that in practice,

robust inference might as well be based on those.

The rest of the paper is organized as follows. Section 2 introduces the general set-up and

notation and establishes in which sense any consistent LRV can be said to lack robustness.

Section 3 defines a quantitative measure of robustness, determines the robustness of some

kernel estimators and derives the form of optimal LRV estimators for this measure within
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a broad class of estimators. Section 4 contains the numerical investigation into the power

and size properties, and Section 5 summarizes the implications for applied work. Proofs are

collected in an appendix.

2 The Lack of Robustness of Consistent Long-Run Vari-

ance Estimators

The general model this paper is concerned with is

Yt = β + ut, t = 1, · · · , T (1)

where the m×1 vectors {Yt}Tt=1 are observed, the m×1 vector β is the parameter of interest
and {ut}Tt=1 is an unobserved random sequence. The aim is to conduct inference about β via
the estimator β̂ = T−1

PT
t=1 Yt.While straightforward, this problem of estimating the mean

of a multivariate series captures many of the popular models in time series econometrics.

Specifically, any standard exactly identified General Method of Moments model of Hansen

(1982) concerning the data {y∗t } withm×1 moment condition E[g(y∗t , β)] = 0 and estimator
β̂ (such that

PT
t=1

∂g
∂β

¯̄̄
(y∗t ,β̂

∗
)
g(y∗t , β̂) = 0) can be cast in this set-up when the distribution of

{ut} is allowed to depend on T in a double array fashion. With ĥt =
∂g
∂β

¯̄̄
(y∗t ,β̂)

the mapping

to model (1) is

Yt = β̂ +

"
T−1

TX
s=1

ĥsĥ
0
s

#−1
ĥtg(y

∗
t , β̂) (2)

ut =

"
T−1

TX
s=1

ĥsĥ
0
s

#−1 "
ĥtg(y

∗
t , β̂) + T−1

TX
s=1

ĥsg(y
∗
s , β)

#
.

Let {ût} = {Yt − β̂} and for s ∈ [0, 1] define WT (s) = T−1/2
P[sT ]

t=1 ut and BT (s) =

T−1/2
P[sT ]

t=1 ût = WT (s)− [sT ]
T
WT (1), where [·] is the largest smaller integer function. With

these definitions, T 1/2(β̂ − β) = T−1/2
PT

t=1 ut =WT (1).

Under sufficient regularity conditions, a Functional Central Limit Theorem and related

arguments imply that

(WT (1), BT (·))⇒ (Ω1/2W (1),Ω1/2B(·)) (3)
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where ’⇒’ denotes weak convergence of the underlying probability measures, W (·) is a
standard m× 1 vector Wiener process, B(s) = W (s)− sW (1) and Ω is invertible. As long

as (3) holds, short-run dynamics of {ut} only drive a wedge between the ’local’ properties of
BT (·) and the scaled Brownian Bridge Ω1/2B(·): Positive autocorrelation, for instance, leads
through the integration to smoother paths of BT (·) compared to Ω1/2B(·), but the overall
shape of BT (·) still closely resembles that of Ω1/2B(·) for T large enough.
If (3) holds, the distribution of T 1/2(β̂−β) is approximately N (0,Ω), such that inference

about β = (β1, · · · , βm)0 can be made with an appropriate estimator Ω̂T of Ω. Specifically,

one might rely on the usual t- and F-statistics

t̃ =
T 1/2(β̂j − β0,j)q

Ω̂T,jj

and F̃ =
T (R0β̂ − r0)

0(R0Ω̂TR)
−1(R0β̂ − r0)

d
(4)

where Ω̂T,jj is the jth diagonal element of Ω̂T , R is a full column rankm×d matrix, r0 is d×1
and 1 ≤ d ≤ m. F̃ rejects the null hypothesis of R0β = r0 for large values and a one-sided

test of βj = β0,j against the alternative βj > β0,j based on t̃ rejects for large values, too.

When (3) holds and Ω̂T is consistent for Ω, then under the null hypothesis t̃ and dF̃

are asymptotically distributed standard normal and χ2 with d degrees of freedom, respec-

tively. As demonstrated in Kiefer, Vogelsang, and Bunzel (2000), one can continue to base

asymptotically valid tests on t̃ and F̃ even when Ω̂T is not consistent. In fact, t̃ and F̃ will

have asymptotic distributions free of nuisance parameters as long as (T 1/2(β̂ − β), Ω̂T ) has

an asymptotic distribution (Ω1/2W (1),Ωa) such that Ωa is independent of W (1) and with

probability one Ω−1/2ΩaΩ
−1/2 is a matrix of rank greater or equal to d whose distribution

does not depend on Ω or β.

A natural requirement on LRV estimators Ω̂T is that they are location and scale invariant.

Location invariant LRV estimators remain numerically unaltered through transformations

of {Yt} of the form {Yt}→ {Yt+ b} for any m×1 vector b. Location invariance ensures that
estimators of the LRV are (at least asymptotically under (3)) independent of the unknown

value of β. Similarly, scale equivariant LRV estimators react to a transformation of the

form {Yt} → {HYt} for some nonsingular m × m matrix H by an appropriate rescaling

Ω̂T → HΩ̂TH
0. All common LRV estimators are location invariant and scale equivariant,

and this paper focusses exclusively on such estimators.

It is well-known (Lehmann and Casella (1998), chapter 3) that any location invariant
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estimator can be written as a function of a maximal invariant, and one maximal invariant is

{ût}. Any location invariant LRV estimator Ω̂T hence must be a function of {ût}. The partial
sum processBT (·) is a one-to-one mapping from {ût} to a continuous time process on the unit
interval, since ût = T 1/2[BT (t/T ) − BT ((t − 1)/T )]. Any location invariant LRV estimator
can hence be written as a function of {BT (tT

−1)}Tt=1, or equivalently as Ω̂T (BT (·)). Without
loss of generality we assume in the following that Ω̂T (·) is a function of {BT (tT

−1)}Tt=1 alone,
i.e. Ω̂T (·) does not alter with changes of the argument at points that are not simple fractions
in T .

When BT (·) ⇒ Ω1/2B(·) and T 1/2(β̂ − β) = WT (1) ⇒ Ω1/2W (1), one way to intuitively

describe the task of a location invariant LRV estimator is hence to say that it estimates the

variation of the unobserved endpoint of the partial sum process WT (·) by considering the
magnitude of the partial sum process BT (·). In the scalar case, if Ω is four, then the partial
sum process BT (·) roughly looks like a Brownian Bridge multiplied by two. All information
that a location invariant LRV estimator can exploit about the variation of WT (1) must stem

from the shape of BT (·), and in the standard asymptotic framework, BT (·) looks more and
more (in an appropriate sense) like a Brownian Bridge scaled by Ω1/2.

At the same time, note that the random matrix Ω̂T (B(·)) describes the properties of the
LRV estimator Ω̂T when the underlying disturbances {ut} are distributed i.i.d. N (0, Im),
simply because the implied residuals ût = T 1/2[B(t/T )−B((t−1)/T )] are demeaned Gaussian
White Noise. In this perspective, the Brownian Bridge process B(·) plays a pivotal role in
the LRV estimation problem: it is equivalent to the most regular set-up of estimating the

mean in a model with Gaussian White noise disturbances, and any assumptions that imply

a Functional Central Limit Theorem (3) lead to this process asymptotically. This makes the

Brownian Bridge process naturally suited as the starting point for considering the robustness

of LRV estimators: Whenever the argument of Ω̂T is exactly a Brownian Bridge (such that

the underlying disturbances are Gaussian White Noise), any reasonable estimator should

be well-behaved, and one might call a LRV estimator robust if it remains well-behaved for

processes BT (·) that are very close to a Brownian Bridge. The following Theorem establishes
that any LRV estimator that is consistent for the variance of Gaussian White Noise is not

robust in this sense. Here and below, || · ||∞ denotes the maximum absolute row sum matrix
norm.
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Theorem 1 Let H be any nonsingular m×m matrix. If a scale equivariant LRV estimator

Ω̂T satisfies Ω̂T (B(·))
p→ Im, then there exists a sequence of Gaussian processes B̄T (·) such

that sups
°°B(s)− B̄T (s)

°°
∞

a.s.→ 0 and Ω̂T (B̄T (·))
p→ HH 0.

Inadequate behavior of estimators of the spectral density at a given point under certain

circumstances has been established before, cf. Sims (1971), Sims (1972), Faust (1999) and

Pötscher (2002). These papers show the impossibility of obtaining correct confidence in-

tervals for the spectral density at a given point for any sample size when the underlying

parametric structure of a time series model is too rich in some sense. Loosely speaking, this

literature demonstrates that meaningful inference is impossible in too generously parame-

trized models.

Theorem 1 shows aberrant properties only of a subset of all possible LRV estimators,

namely those that are consistent for the variance of Gaussian White Noise. The LRV esti-

mator of Kiefer, Vogelsang, and Bunzel (2000), for instance, by being a continuous mapping

from BT (·) to the m×m matrices in the sup norm, does not share the fragility with respect

to infinitesimally small deviations of BT (·) from B(·). In contrast to the literature cited,
Theorem 1 does not state that a certain set of assumptions is too weak to enable useful

inference; rather it shows that a certain way of conducting inference leads to potentially

arbitrary results.

The argument of Theorem 1 concerns the partial sum process BT (·) only, and nothing
is being assumed or said about the (double-array) underlying disturbances {ut} or residuals
{ût}. Closeness of B̄T (·) to B(·) does, of course, not imply that b̄ut = T 1/2[B̄T (t/T ) −
B̄T ((t − 1)/T )] behaves anything like demeaned Gaussian White Noise; in fact, {b̄ut} will
surely not satisfy the typical assumptions, since if it did, these assumptions would ensure

that usual LRV estimators are consistent for the scale of the Brownian Bridge the partial

sum process of {b̄ut} converges to. The question is, however, whether this weakens the

implication of Theorem 1 for the lack of robustness of consistent LRV estimators. Long-

run variance estimators are employed precisely because a researcher is ignorant about the

short-run dynamics of {ut}. These short-run dynamics translate through the integration
BT (s) = T−1/2

P[sT ]
t=1 ût into the local properties of BT (·). As long as the overall behavior

of {ut} is sufficiently regular to lead to a WT (·) that behaves like a scaled Wiener process
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in the limit, the object of interest–the asymptotic variance of WT (1)–is well defined.2

In this perspective, the very aim of heteroskedasticity and autocorrelation robust variance

estimation is to estimate the overall scale of BT (·) while ignoring its local properties. But
B̄T (·) of Theorem 1 has the same global scale as a standard Brownian Bridge and differs only
in its local properties. By potentially yielding arbitrary estimation results, all consistent LRV

estimators hence lack robustness against the underlying process whose dependence structure

induces these local properties.

Note that the sequence of processes B̄T (·) of Theorem 1 converges to a Brownian Bridge
in the sup-norm. While correctly estimating the scale one of an exact Brownian Bridge,

a consistent LRV estimator can hence be made to consistently yield any positive definite

matrix when put subject to a sequence of processes that converges weakly to a Brownian

Bridge. This implies the following Corollary.

Corollary 1 There does not exist a scale equivariant LRV estimator that consistently esti-

mates Ω for all double-array processes {ûT,t}Tt=1 satisfying T−1/2
P[·T ]

t=1 ûT,t ⇒ Ω1/2B(·).

Knowledge of the convergence of the partial sum process of a series to a scaled Brownian

Bridge alone is hence not enough to allow for a consistent estimation of the scale of the limit

process. It is straightforward to generalize this result to the case where the convergence is

to a scaled Wiener process. Even when the disturbances are directly observed, Functional

Central Limit Theorems, that imply weak convergence to a scaled Wiener process, are hence

generically too weak to enable consistent estimation of the scale of the limit process. Recent

advances in the literature have continuously diminished the wedge between the primitive

(on the underlying disturbances) assumptions for Functional Central Limit Theorems and

the primitive assumptions for consistent LRV estimation (see, for instance, de Jong and

Davidson (2000) for a recent contribution). But Corollary 1 reveals that this wedge is of

substance: The set of all processes that satisfy a Functional Central Limit Theorem is strictly

larger than the set of all processes that in addition allow consistent estimation of the scale of

the limit process. When one insists on employing a LRV estimator that is consistent for the

variance of GaussianWhite Noise in the construction of the test statistics (4), the implication

2While the weak convergence (3) does not, of course, imply E[WT (1)WT (1)
0]→ Ω, this has no bearing on

this discussion since the asymptotic validity of inference based on (4) does not depend on the convergence–or

existence–of any moments.
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is that size control is arbitrarily bad for some (double-array) process {ut} that satisfies a
Functional Central Limit Theorem. Consistent LRV estimators do not lead to valid inference

in the whole class of processes that satisfy a Functional Central Limit Theorem, and lack

robustness in this sense.

One could ask at this point whether the additional assumptions typically employed to

obtain the consistency of standard LRV estimators are plausible for most data sets, or ques-

tion the interpretation of double-array asymptotic arguments, and judge the relevance of

Theorem 1 and Corollary 1 on these grounds. While a consideration of the properties of the

underlying disturbances {ut} is important to motivate approximations based on the Func-
tional Central Limit Theorem, such a discussion would not address the central point. The

objective of asymptotic thought experiments is to generate useful small sample approxima-

tions. It is well documented (Haan and Levin (1997), for instance) that the approximation

provided by the standard thought experiment in which Ω can be estimated consistently be-

comes quite poor for amounts of time series dependence that are perfectly plausible for most

macroeconomic data in levels. The approximations are poor although the small sample data

generating processes considered in such studies technically satisfy the assumptions required

for consistency of standard LRV estimators. Rather than to abandon asymptotic arguments,

a more constructive reaction to this finding is to alter the asymptotic thought experiment

in order to render it more relevant to the small sample problem.

The standard asymptotic thought experiment entails that for large enough T , an infinite

amount of local variation in BT (·) accurately reflects its overall scale. But in any small
sample, there is necessarily only a limited amount of local variation, and this variation is

determined by the short-run dynamics of {ut}. For well behaved, not too small samples,
the standard thought experiment can still yield useful approximations, since there is enough

exploitable local variation in BT (·) to pin down Ω with little uncertainty. For samples with

a high degree of persistency or heterogeneity, however, there is only a very limited amount

of global variation that is comparable to the variation in WT (1). An asymptotic thought

experiment that captures this property is one where the local properties of BT (·) remain
uninformative about the variation of WT (1). If inference procedures behave badly in such

an asymptotic thought experiment, then this suggests that they also behave badly in small

samples with strong dependence.
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In this perspective, it is highly disconcerting to find that standard inference based on

consistent LRV estimators can be made to completely break down by a seemingly marginal

extension of the usual asymptotic thought experiment to include all processes {ut} that
satisfy a Functional Central Limit Theorem, i.e. for which (3) holds. After all, the conver-

gence BT (·) ⇒ Ω1/2B(·) in the appropriate metric function space does imply that all local
variation of BT (·) that can be described in this space eventually becomes indistinguishable
of the the variation of Ω1/2B(·). As demonstrated by Kiefer, Vogelsang, and Bunzel (2000),
it is perfectly possible to construct methods of inference that remain asymptotically valid

whenever (3) holds. The contribution of this section is to show that one must necessarily

abandon the attempt to consistently estimate the LRV in order to gain such robustness.

3 A Quantitative Measure of Robustness

The aim of LRV estimation in model (1) is to assess the variation of T−1/2
PT

t=1 ut =WT (1).

To this end, any location invariant LRV estimator solely relies on the properties of the partial

sum process BT (·) of the residuals {ût}. When {ut} is autocorrelated, the local variation
of BT (·) does not correspond to the variation in WT (1), so LRV becomes the problem of

assessing the overall variation of BT (·) independent of its local properties. The analysis of
section 2 shows that any LRV estimator that is consistent for the variance of Gaussian White

Noise necessarily depends on the local properties of BT (·) in such a strong way that it can
produce arbitrarily bad estimates of the variation of WT (1) even though BT (·) converges
weakly to a Brownian Bridge of the same scale as the limit of WT (1).

An arguably necessary part of a definition of a ’robust’ LRV estimator Ω̂T is hence that

for all sequences BT (·) that converge weakly to a Brownian Bridge B(·), Ω̂T (BT (·)) must
have the same asymptotic distribution as Ω̂T (B(·)). Clearly, any LRV estimator that can
be written as a continuous mapping from BT (·) to the m × m matrices (in appropriate

metric spaces) will have this property by the Continuous Mapping Theorem. Any of these

estimators will yield asymptotically justified inference whenever the disturbances satisfy a

Functional Central Limit Theorem–which, as argued below Corollary 1, is a larger set than

the set of all processes that in addition allow consistent estimation of the scale of the limit

process.

While necessary, such a requirement is digital and does not allow the comparison of the
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robustness of two alternative continuous mappings. What is more, one can easily construct

a continuous mapping that results in an arbitrarily small mean-squared error of the LRV

estimator.3 While formally ’robust’, such estimators will behave just like their consistent

counterparts in small samples. The reason is that the asymptotic thought experiment of

considering the properties of LRV estimators when (3) holds still restricts any disparities

of the local variations of BT (·) from its overall scale to be minute: Under (3), all local

properties of BT (·) that can be described by continuous mappings are eventually identical to
those of Ω1/2B(·). This results in a poor approximation for samples with strong time series
dependence, for which only the global variation of BT (·) is comparable to the variation in
WT (1).

In order to make further progress, the usual asymptotic thought experiment must hence

be enlarged even further to include sequences BT (·) which are close to a Brownian Bridge in
some sense, but whose local properties are quite arbitrary. Specifically, this is achieved by

contaminating a standard Brownian Bridge B(·) by independent continuous time processes
that predominantly perturb the local properties of the resulting process B̃T (·). Since the
local properties of BT (·) reflect the unknown and essentially arbitrary short-run dynamics
of {ut}, a robust LRV estimator should yield similar results for any such B̃T (·).

Definition 2 Define Gaussian Noise of size δ as any m×1 vector continuous time Gaussian
process ST (s) = (ST1(s), · · · , STm(s))0 on s ∈ [0, 1] with ST (0) = ST (1) = 0 such that the

spectrum of the covariance matrix of T−1/2(STi(T−1), STi(2T−1), · · · , STi(1))0 is bounded by
δ for all i = 1, · · · ,m. For any δ > 0, define the contamination neighborhood CT (δ) of size
δ of the process B(·) as the set of all processes B̃T (·) satisfying

B̃T (·) + S̃T (·) = B(·) + ST (·),

where ST (·) is independent of B(·), S̃T (·) is independent of B̃T (·) and ST (·) and S̃T (·) are
Gaussian Noise of size δ. When E[Ω̂T (B̃T (·))] exists for all B̃T (·) ∈ CT (δ), the robustness
function RT (δ) of the scale equivariant LRV estimator Ω̂T is defined as

RT (δ) = sup
B̃T (·)∈CT (δ)

tr
¯̄̄
E[Ω̂T (B̃T (·))]− Im

¯̄̄
δm

,

3The variance of the asymptotically unbiased Ω̂UA(p) as defined in (7) below, for instance, can be made

aribtrarily small by choosing p large.
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where the absolute value |·| of a matrix is the matrix of the absolute values of its elements.

The idea of examining the properties of inference procedures in contaminated benchmark

models has, of course, a long history in statistics. It is particularly attractive for the problem

of LRV estimation, since the very aim of LRV estimation is to be robust against deviations

from the benchmark of independent and identically distributed disturbances. Contamina-

tions of this benchmark are hence a generic part of the LRV estimation exercise. Viewing

LRV estimation as the problem of estimating the scale of the partial sum process BT (·)
as promoted here allows the formalization of this idea in Definition 2. In the standard

terminology of the statistical robustness literature, RT (δ) describes something akin to the

Gross-Error Sensitivity: It is the largest bias in Ω̂T that can be induced by contaminating

the benchmark model of Gaussian White Noise disturbances.

The processes B̃T (·) in the contamination neighborhood of the Brownian Bridge B(·) can
be thought of as noisy versions of a Brownian Bridge, where both ’positive’ noise ST (·) and
’negative’ noise S̃T (·) are allowed: With S̃T (s) = 0 ∀s, a nonzero ST (·) increases the local
variability of B̃T (·) compared to B(·), giving it a more ragged shaped. With ST (s) = 0 ∀s
and a nonzero S̃T (·), it is only after having added noise to B̃T (·) that one obtains a Brownian
Bridge B(·), so B̃T (·) is in general smoother than B(·). The neighborhood encompasses arbi-
trary combinations of this two forms of contaminations, where their magnitude is controlled

through the largest eigenvalue of the covariance matrices of STi(·) and S̃Ti(·) evaluated at
T−1, 2T−1, · · · , 1 for all i = 1, · · · ,m. This construction allows a multitude of perturba-
tions of the local properties of the Brownian Bridge, which correspond to many alternative

short-run dynamics and forms of heterogeneity of the underlying disturbances.

Interesting examples of B̃T (·) for m = 1 include continuous record sampling from a con-

tinuous time process whose covariance kernel is close to the covariance kernel of a Brownian

Bridge. Consider, for instance, the processes

M(s) = (1− τω2)1/2W1(s) + ωτ 1/2W2(s ∧ τ) + ω(1− τ)1/2W3(s ∧ τ)

S̃T (s) = ωτ 1/21[s > τ ]W4(s− τ)− ωτ 1/2sW4(1− τ)

ST (s) = ω(1− τ)1/2W3(s ∧ τ)− ω(1− τ)1/2sW3(τ)

for some 0 < τ < 1, 0 ≤ ω < τ 1/2, and independent Wiener processes Wi(·), i = 1, · · · , 4,
where 1[·] is the indicator function. With W (s) = (1 − τω2)1/2W1(s) + ωτ 1/2W2(s ∧ τ) +
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ωτ 1/21[s > τ ]W4(s − τ), this generates B̃T (s) = M(s) − sM(1), i.e. it corresponds to

underlying disturbances {ut} that are independent Gaussian with a variance that decreases
from (1 + (1 − τ)ω2) to (1 − τω2) at t = [τT ]. Alternatively, consider S̃T (s) = 0 ∀s and
ST (s) = Q sin(2πns) for some positive integer n and Q ∼ N (0, σ2Q). Such a model captures
the behavior of LRV estimators when the data contains a seasonal or cycling component.

Finally, consider the case of ST (s) = 0 ∀s and S̃T (s) = Gγ(s)−sGγ(1) for some γ > 0, where

Gγ(s) = (1− e−γs)ZG +

Z s

0

e−γ(s−r)dWG(r)

and ZG ∼ N (0, (2γ)−1) independent of the standard Wiener process WG(·). Interest-

ingly, B̃T (s) is then given by a scaled, integrated demeaned stationary Ornstein-Uhlenbeck

process Jγ(·) with parameter γ, i.e. B̃T (s) = γ
R s
0
Jγ(r)dr − sγ

R 1
0
Jγ(r)dr and Jγ(s) =

e−γsZJ +
R s
0
e−γ(s−r)dWJ(r), where ZJ ∼ N (0, (2γ)−1) independent of the standard Wiener

process WJ(·). As B̃T (·) and S̃T (·) are independent and Gaussian, this can be checked by
computing the sum of their covariance kernels. In other words, the set-up of Definition 2

captures the popular modelling strategy of letting {ut} be local-to-unity in the sense of Chan
and Wei (1987) and Phillips (1987). It is known (Hochstadt (1973), Chapter 6) that as the

sampling interval 1/T converges to zero, the eigenvalues of the covariance matrix of a dis-

cretely sampled continuous time process (scaled by T−1) converge uniformly to those of the

(continuous) covariance kernel of the continuous time process. In the examples given here,

for large enough T , the minimal size of the the contamination neighborhood δ hence becomes

arbitrarily close to the largest eigenvalue of the (sample size independent) covariance kernels

of ST (·) and S̃T (·).
The robustness measure RT (δ) focusses on the maximal bias of the LRV estimator when

the argument is a contaminated Brownian Bridge B̃T (·). This construction renders the

following analyses mathematically tractable. At the same time, the expectation is only one

of many parameters describing the distribution of Ω̂T , and robustness of the expectation is of

course not sufficient for the whole distribution of Ω̂T to be robust to the contaminations. On

the one hand, a focus on the bias can be motivated by the finding of Andrews and Monahan

(1992) that the bias properties of LRV estimators seem to be mainly responsible for size

control of the tests (4). On the other hand, Theorem 5 below shows that, at least for a

broad class of LRV estimators, a uniformly bounded robustness function (in T ) does imply

that the distributions of the LRV estimator for an exact Brownian Bridge and a contaminated
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Brownian Bridge are arbitrarily close for a small enough contamination.

Given the discussion in Section 2, consistent LRV estimators should not be classified as

robust by the robustness measure defined here. And this is indeed the case.

Theorem 3 For any nonnegative definite, scale equivariant LRV estimator Ω̂T satisfying

Ω̂T (B(·))
p→ Im, supT RT (δ) =∞ for all δ > 0.

Much of the following discussions will concern a specific class of location invariant and

scale equivariant LRV estimators. LetMe be the T ×T matrixMe = IT −T−1ee0, where e is

a T × 1 vector of ones, and let û be the T ×m matrix with û0t in row t. Any LRV estimator

that can be written in the form

Ω̂A =
û0Aû

tr[MeA]
(5)

for A a T ×T symmetric, nonnegative definite matrix will be called a quadratic LRV estima-

tor. The assumption of nonnegative definiteness of A ensures that it is impossible to obtain

a negative definite estimate of the LRV. The denominator tr[MeA] is a normalization that

ensures that for {ut} with covariance matrix Ω and no autocorrelation, E[Ω̂A] = Ω.

The focus of the literature so far have been kernel estimators, which are usually defined

as

Ω̂ =
T−1X

j=−T+1
k(jb−1T )Γ̂(j)

with Γ̂(j) = T−1
PT

t=j+1 ûtû
0
t−j for j ≥ 0 and Γ̂(j) = Γ̂(−j)0 for j < 0, where bT is the

bandwidth and k : R → R is an even and continuous kernel function satisfying k(0) = 1

and
R∞
0
|k(s)|ds <∞. Note that all kernel LRV estimators with even kernel k(·) and data-

independent bandwidth bT are quadratic LRV estimators, where A is a bandmatrix of the

form

A = T−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

k(0) · · · · · ·
k(b−1T ) k(0) · · · · ·
k(2b−1T ) k(b−1T ) k(0) · · · ·
...

...
...

. . .
...

k((T − 1)b−1T ) k((T − 2)b−1T ) k((T − 3)b−1T ) · · · k(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Specifically, we will be concerned with two classes of kernel estimators: On the one hand,

kernel estimators whose kernel k(·) is twice differentiable at the origin, and on the other
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hand the Bartlett LRV estimator, whose kernel is given by k(x) = 1 − |x| for |x| < 1 and

k(x) = 0 elsewhere.

Theorem 4 Let F be the T × T matrix with zeros above the diagonal and ones elsewhere

and let D = F−1.

(a) The robustness function RT (δ) of quadratic LRV estimators Ω̂A (5) are constant with

robustness coefficient

RT = RT (δ) =
tr[diag(IT−1, 0)D

0AD]

tr[MeA]
T 2.

(b) For a bandwidth bT satisfying bT = o(T ) and bT → ∞, twice differentiable kernel
LRV estimators have robustness coefficients RT = −k00(0)T 2b−2T + o(T 2b−2T ), and Bartlett

estimators have robustness coefficient RT = −2T 2b−1T + o(T 2b−1T ).

(c) For bT = cT , c ≤ 1, twice differentiable kernel LRV estimators have robustness

coefficient

RT =
−k00(0)/c2

1− 2
R 1
0
(1− s)k(s/c)ds

+ o(1)

and the Bartlett LRV estimator

RT =
6

3c− 3c2 + c3
T + o(T ).

Part (a) of Theorem 4 establishes the robustness function RT (δ) of quadratic LRV esti-

mators Ω̂A as a function of A. Interestingly, the robustness function is constant, such that

the robustness properties of quadratic LRV estimators in the sense of Definition 2 reduce

to a single number, the robustness coefficient RT . The maximal bias of Ω̂A is linear in the

magnitude δ of the considered contamination neighborhood of the Brownian Bridge, with

the coefficient being RT .

Parts (b) and (c) establish the robustness coefficients for twice differentiable kernel and

Bartlett LRV estimators for bandwidths bT that are bT = o(T ) and bT = cT , respectively.

Apart from the normalization that ensures E[Ω̂T (B(·))] = Im, the robustness coefficient of

twice differentiable kernel estimators depends on the properties of the kernel at the origin

alone: The steeper the kernels at the origin, the less robust the resulting estimator as

measured by RT . At the same time, the Bartlett estimator is an order of bT less robust than

twice differentiable kernel estimators.
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When bT = cT , Kiefer and Vogelsang (2003) show that the resulting LRV estimators

are continuous mappings from BT (·) to the m × m real matrices. Interestingly, in this

case RT is uniformly bounded for twice differentiable kernel estimators only, whereas the

Bartlett estimator still has robustness coefficient of order T . It is hence possible to induce a

nonvanishing bias in the Bartlett estimator with bT = T even in a shrinking δT -neighborhood

of the Brownian Bridge, at least as long T 1/2δT does not converge to zero. This suggests

that the Bartlett estimator is more susceptible to variations of the short-run dynamics of

the underlying disturbances than twice differentiable kernel estimators.

While RT is uniformly bounded for twice differentiable kernel estimators with bT = cT ,

this only guarantees that the expectation of these estimators remains close to Im when

confronted with a contaminated Brownian Bridge in a small neighborhood of a standard

Brownian Bridge. The following Theorem ensures that uniform boundedness of RT is enough

to guarantee robustness of the whole distribution for small contamination neighborhoods.

Theorem 5 For any process B̃T (·) in the contamination neighborhood of size δ of B(·) and
quadratic LRV estimator Ω̂T with robustness coefficient RT ,

E[||Ω̂T (B̃T (·))− Ω̂T (B(·))||∞] ≤ 2m2[3δRT +
p
δRT +

p
δRT + (δRT )2].

In the scalar examples described belowDefinition 2, the covariance kernels of the processes

ST (·) and S̃T (·) converge to zero uniformly as ω → 0, σ2Q → 0 and γ →∞. For small enough

ω and σ2Q or large enough γ, the resulting processes B̃T (·) are thus within an arbitrarily
small contamination neighborhood of the Brownian Bridge, at least for large enough T .

Theorem 5 hence implies that the asymptotic distribution of quadratic LRV estimators with

uniformly bounded RT remains robust for these processes. This in particular implies that

inference based on (4) using such LRV estimators for a local-to-unity process {ut} becomes
an accurate asymptotic approximation for a large enough local-to-unity parameter γ, since

Var[γ
R 1
0
Jγ(s)ds] = 1 + (1 − e−γ)/γ → 1 as γ → ∞. Note that this is not the case for

the usual LRV estimators: As shown by Müller (2002), kernel estimators with an arbitrary

bandwidth choice bT = op(T ) underestimate the variance of WT (1) by a factor of b2T/T
2 in

local-to-unity models for any local-to-unity parameter γ > 0, resulting in arbitrarily bad size

control of the tests (4).

With a quantitative robustness measure at hand, the question arises which LRV esti-

mator is the most robust one. The following Theorem provides the answer in the class of

16



quadratic LRV estimators, along with the form of the LRV estimators that optimally trade

off robustness against efficiency. Comparable to Andrews (1991), the variance of the LRV

estimators is used as a proxy for their inefficiency when employed in the tests (4).

Theorem 6 Let v(l) be the eigenvector associated with the lth largest eigenvalue rl =

[4T 2 sin(πl/(2T ))2]−1 = (πl)−2 + o(1) of the T × T matrix T−2FMeF
0, such that the tth

element of v(l) is v(l)t =
p
2/T sin(πltT−1).

(a) The quadratic LRV estimator Ω̂MR with the smallest robustness coefficient RT =

r−11 = π2 + o(1) results when AMR = F 0v(1)v(1)0F/(r1T
2).

(b) For any λ ≥ r−11 , let pλ such that r
−1
pλ
≤ λ < r−1pλ+1 and define wl = (λ− r−1l )/(pλλ−Ppλ

j=1 r
−1
j ) for l = 1, · · · , pλ. Let K be any nonzero, nonnegative definite m2 ×m2 matrix.

The quadratic LRV estimators Ω̂RE(λ) that minimizes tr Var[K vec Ω̂T (B(·))] for a given
robustness coefficient RT =

Ppλ
l=1wlr

−1
l ≥ r−11 results when A = ARE(λ) is of the form

ARE(λ) =

pλX
l=1

wlF
0v(l)v(l)0F/(rlT

2).

Part (a) of Theorem 6 establishes the form of the most robust quadratic LRV estimator

Ω̂MR. Its weighting matrix AMR is not band-diagonal, and Ω̂MR hence does not correspond

to a kernel estimator. AMR has a single non-zero eigenvalue. For m = 1 and independent

standard normal disturbances {ut}, û ∼ N (0,Me), such that T−1/2Fû ∼ N (0, T−1FMeF
0).

T−1FMeF
0 is the covariance matrix of the small sample analogue of a Brownian Bridge,

and v(1) is the eigenvector associated with its largest eigenvalue. Of all vectors of unit

length, a weighting with v(1) extracts the largest variance of T−1/2Fû, thereby capturing the

characteristic of T−1/2Fû that is most difficult to perturb. The tth element of T−1v(l)0FMe

is a scalar multiple of
p
2/T cos(πl(t−1/2)/T ). From a spectral perspective, Ω̂MR can hence

be interpreted as extracting the lowest frequency of the Discrete Cosine Transform Type II

that û contains information about.

As robustness is traded off against efficiency, the estimator Ω̂RE(λ) extracts information

also from higher frequencies. The estimator is a weighted average of the sample variance

of T−1r−1/2l v(l)0Fû, l = 1, · · · , pλ, where v(l) are the eigenvectors of T−1FMeF
0 associated

with the pλ largest eigenvalues {Trl}pλl=1. The weights are a smooth function of λ, and put
less weight on higher frequencies. When {ut} is not autocorrelated, v(l)0Fû and v(j)0Fû

for l 6= j are uncorrelated. As T → ∞,
√
Tv(l)[Ts] → φl(s) ≡

√
2 sin(πls). Note that
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{
√
2 sin(πls)}∞l=1 are the eigenfunctions of the covariance kernel of a scalar Brownian Bridge

E[B(s)B(r)] = s ∧ r − sr corresponding to the eigenvalues (lπ)−2. The Karhunen-Loeve

expansion of the Brownian Bridge is hence given by

B(s) =
∞X
l=1

√
2 sin(πls)

πl
ξl (6)

where {ξl} are independent standard normal, cf. Phillips (1998). The right-hand side of
(6) is known to converge uniformly with probability one–see Itô and Nisio (1968). An

alternative way to write Ω̂RE(λ) is Ω̂RE(λ) =
Ppλ

l=1wlξ̂lξ̂
0
l, where ξ̂l = T−1r

−1/2
l v(l)0Fû =

√
2(πl)

R 1
0
sin(πls)BT (s)ds+ op(1). When BT (·)⇒ Ω1/2B(·) the Continuous Mapping Theo-

rem implies that ξ̂j and ξ̂l for l 6= j are asymptotically independent distributed N (0,Ω) for
any finite l and j. But for the inference based on Ω̂RE(λ) to be asymptotically justified, only

{ξ̂l}pλl=1 have to jointly converge to independent N (0,Ω) variates. Whenever this is the case,
Ω̂RE(λ) converges weakly to a weighted sum of independent Wishart random matrices with

one degree of freedom. The relative loss in robustness of Ω̂RE(λ) compared to Ω̂MR hence

consists of the requirement of convergence of {ξ̂l}pλl=1 rather than ξ̂1 only. The larger λ and

pλ, the more frequencies of the partial sum process of {ût} have to behave like a Brownian
Bridge in order to obtain accurate approximations with inference based on Ω̂RE(λ).

The Bartlett estimator with bT = T, denoted Ω̂BT (1), can also be written as a weighted

function of {ξ̂lξ̂
0
l}. Since Ω̂BT (1) is proportional to T−1

PT
t=1BT (tT

−1)BT (tT
−1)0 (cf. Kiefer

and Vogelsang (2002a)) and BT (tT
−1) =

PT−1
l=1 r

1/2
l v(l)tξ̂l for any t = 1, · · · , T , it follows

from the orthonormality of the eigenvectors that Ω̂BT (1) is proportional to
PT−1

l=1 rlξ̂lξ̂
0
l. For

inference based on Ω̂BT (1) to be asymptotically justified, the whole sequence {ξ̂l}∞l=1 has to
converge weakly to a series of independent N (0,Ω) variates. Arguably, this dependence on
the whole series {ξ̂l}∞l=1 makes Ω̂BT (1) an order of magnitude more susceptible to deviations

of BT (·) from a Brownian Bridge compared to Ω̂RE(λ) for any λ, as reflected in an unbounded

robustness coefficient of Ω̂BT (1).

An attractive slight modification to Ω̂RE(λ) is the unweighted average of {ξ̂lξ̂
0
l}pl=1 for

some integer p ≥ 1, i.e.

Ω̂UA(p) = p−1
pX
l=1

ξ̂lξ̂
0
l. (7)

Compared to the optimal LRV estimators Ω̂RE(λ), Ω̂UA(p) puts somewhat more weight on the

sample variances of higher frequency components in {ût}. In return, whenBT (·)⇒ Ω1/2B(·),
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the asymptotic distribution of pΩ̂UA(p) is Wishart with p degrees of freedom.

Asymptotically justified inference based on (4) using Ω̂UA(p) can hence proceed just

as standard small sample Gaussian inference for a sample of size p + 1: Under the null

hypothesis, the asymptotic distribution of t̃ is student-t with p degrees of freedom, and

for p ≥ d, dF̃ has the Hotelling-T2 distribution with parameters d and p. Under the null

hypothesis, the asymptotic distribution of (p+1−d)F̃ /p is hence F with d degrees of freedom
in the numerator and (p+1−d) degrees of freedom in the denominator–cf. Hotelling (1931).
Critical values for these distributions are, of course, readily available from standard tables.

4 Quantitative Evaluation

This section numerically explores the properties of inference based on various LRV estima-

tors. The aim is to assess the relevance of the analytical considerations in Sections 2 and 3

for some standard small sample Data Generating Processes. There are two main questions:

On the one hand, do the standard t and F-tests (4) based on the theoretically motivated

most robust LRV estimator Ω̂MR actually control size much better than inference based on

alternative LRV estimators? On the other hand, is the robustness measure RT a useful

predictor of the small sample size control properties of these tests?

The analysis focusses on the following types of inconsistent LRV estimators: the most

robust estimator Ω̂MR, the estimators Ω̂RE(λ) that optimally trade-off robustness and effi-

ciency as derived in Theorem 6, the asymptotically Wishart distributed estimator Ω̂UA(p)

defined in (7), the quadratic spectral kernel LRV estimator Ω̂QS(c) with a bandwidth equal

to c times sample size and the Bartlett estimator Ω̂BT (c) with bandwidth equal to c times

sample size. All of these estimators can be written (up to an op(1) term) as continuous func-

tions from BT (·), such that asymptotic distributions of the tests t̃ and F̃ (4) under (3) under
both the null and local alternatives follows from the Continuous Mapping Theorem–cf.

Kiefer and Vogelsang (2003) and the discussion above.

Prior to considering size control properties of the tests (4) based on various LRV estima-

tors, we first analyze their power. Specifically, we consider their asymptotic local power of

the null hypothesis βj = β0,j based on t̃ as defined in (4) when βj − β0,j = κ0T
−1/2pΩjj.

Figure 1 depicts the asymptotic local power of a 5% level, two-sided t-test using the various

inconsistent LRV estimators, along with the power envelope that arises through substitution

19



Figure 1: Local Asymptotic Power of 5%-Level two-sided t-tests
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Table 1: Robustness and Effciency of Long-Run Variance Estimators

RT Pt-25 Pt-50 Pt-75

Ω̂MR 9.87 + o(1) 9.91 19.2 30.7

Ω̂RE(50) 16.0 + o(1) 3.04 3.67 4.47

Ω̂RE(200) 49.1 + o(1) 1.72 1.82 1.91

Ω̂RE(1500) 320.2 + o(1) 1.21 1.22 1.23

Ω̂UA(2) 24.7 + o(1) 2.92 3.39 3.86

Ω̂UA(4) 74.0 + o(1) 1.64 1.73 1.78

Ω̂UA(8) 251.7 + o(1) 1.27 1.28 1.30

Ω̂UA(15) 815.8 + o(1) 1.13 1.15 1.14

Ω̂QS(1) 14.6 + o(1) 3.17 4.13 5.62

Ω̂QS(.3) 47.7 + o(1) 1.75 1.90 2.01

Ω̂QS(.1) 323.3 + o(1) 1.21 1.22 1.23

Ω̂QS(.05) 1211.4 + o(1) 1.09 1.10 1.10

Ω̂BT (1) 6T + o(T ) 1.46 1.57 1.70

Ω̂BT (.3) 9.13T + o(T ) 1.31 1.37 1.41

Ω̂BT (.1) 22.1T + o(T ) 1.12 1.13 1.13

Ω̂BT (.05) 42.1T + o(T ) 1.06 1.07 1.06

of the LRV estimator with the population value. Similar pictures for the power of a one-sided

t-test of level 5% appear in Kiefer and Vogelsang (2003) for Ω̂QS(c) and Ω̂BT (c).

There are stark differences in the power of the test statistic constructed around different

LRV estimators: The most robust LRV estimator Ω̂MR has by far the lowest local power,

followed by Ω̂QS(1) and Ω̂UA(2). The loss of efficiency compared to the benchmark of a known

LRV of these tests is quite dramatic. In order to achieve power of 50%, for instance, a test

using Ω̂MR requires a local alternative of around κ0 = 8.6, whereas for Ω known, local power

of 50% is already achieved when κ0 = 1.96. A useful way of characterizing this efficiency

loss is the Pitman efficiency: for a given power of the efficient benchmark test, it describes

how much more data would be needed to achieve the same power with an inefficient test.

For the model here, this is simply the square of the ratio of the local alternatives against

which the inefficient test and the efficient test achieve the same local power. Table 1 lists the

Pitman efficiencies of the considered tests along with the robustness coefficient as defined in

Definition 2. For the LRV estimators with uniformly bounded robustness coefficient, there is
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a strong correlation between the robustness measure and the local power of the tests: tests

that are constructed around more more robust LRV estimators are less powerful.

We now turn to the small sample size control of tests based on various LRV estimators.

For comparison purposes, we include in our experiments two popular LRV estimators that

are consistent in the usual asymptotic thought experiment: the quadratic spectral estimator

Ω̂QA with an automatic bandwidth selection using an AR(1) model for the bandwidth deter-

mination as suggested by Andrews (1991), and an AR(1) prewhitened LRV estimator Ω̂PW

with a second stage automatic bandwidth quadratic spectral kernel estimator as described

in Andrews and Monahan (1992). The (asymptotically justified) critical values of the t̃ and

F̃ -tests (4) based on Ω̂QA and Ω̂PW are accordingly those from standard normal and χ2

distributions.

The small sample experiment design closely follows similar exercises in Andrews (1991),

Andrews and Monahan (1992) and Kiefer, Vogelsang, and Bunzel (2000). We are interested

in the empirical rejection probability of a nominal 5% level, two-sided t-test concerning

the second element of the coefficient vector in a OLS regression of {yt} on {xt}, where
xt = (1, x̃

0
t)
0 and x̃t is a 4 × 1 vector. The number of observations is T = 128 throughout.

The regressors {xt} are generated by one of three models: the AR(1) model, the MA(1)
model and the AR(1)+MA(1) model. For the AR(1) model, let the 4 × 1 vector sequence
{x̌t}Tt=1 be four independent draws from a mean-zero, Gaussian, stationary AR(1) process

of unit variance and common coefficient ρ. Let {x̄t} = {x̌t − T−1
PT

s=1 x̌s}. Then {x̃t} =
{(T−1

PT
s=1 x̄sx̄

0
s)
−1/2x̄t}. The transformations ensure that the sample covariance matrix of

{xt} is I5. In the MA(1) model, the regressors are generated in the same way, except that a
Gaussian, stationary MA(1) process of unit variance and common coefficient θ is employed

(parametrized such that θ > 0 generates a spectrum with less mass at frequency zero).

Finally, for the AR(1)+MA(1), the pretransformed sequence {x̌t} is given by the sum of

the (pretransformed and independent) AR(1) and MA(1) models with common coefficient

φ = ρ = θ for the AR(1) and MA(1) component.

For the disturbances, we consider three cases: homoskedastic disturbances (HOMO), het-

eroskedastic disturbances with heteroskedasticity solely with respect to the regressor we are

conducting inference about (HET1), and heteroskedastic disturbances with heteroskedas-

ticity with respect to all four nonconstant regressors (HET2). In the HOMO case, the
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disturbances {εt} are independent draws from the same model as the (pretransformed) re-

gressors. In the heteroskedastic cases, the disturbances are those from the HOMO case ({εt})
multiplied by the absolute value of a linear combination of the nonconstant regressors, i.e.

{εt·|ω̃0x̃t|}. In the HET1 case, ω̃ = (1, 0, 0, 0)0, and in the HET2 case ω̃ = (1/2, 1/2, 1/2, 1/2)0.
Tables 2 and 3 contain the empirical rejection probabilities of a subset of the possible

combinations of regressor models and type of disturbances, based on 10,000 replications.

Simulations for the other combinations were performed but are not reported as the results

are qualitatively very similar. As predicted by the analysis of section 3, inference based on

Ω̂MR has by far the smallest size distortions, with an effective rejection probability never

exceeding 10%. The–under the usual thought experiment consistent–estimators Ω̂QA and

Ω̂PW do much worse than Ω̂MR. As the simulations with the AR(1)+MA(1) model show,

perceptible gains from prewhitening require the prewhitening regression to be a reasonable

approximation for the whole spectrum. For this model, size control using Ω̂QA and Ω̂PW is

worse than the least robust versions of Ω̂RE(λ), Ω̂UA(p) and Ω̂QS(c) considered in this exercise.

For the LRV estimators with a bounded RT , the larger RT the larger the size distortions

become, just as predicted by the theory in section 3. Despite having an order of magnitude

larger robustness coefficient, however, inference based on Ω̂BT (c) is not dramatically worse.

As in Andrews (1991), the dire predictions of asymptotic theory for the Bartlett estimator

do not seem to fully bear out in samples of size T = 128.

In order to gain some overall insight in the correlation between the robustness measure

RT and the behavior of tests based on the various LRV estimators with bounded RT , Figure 2

depicts scatter plots of the size distortion in the various models against the natural logarithm

of RT for ρ = θ = φ = 0.9. The size distortion here is the absolute value of the difference

between nominal level and effective rejection probability. It is seen that RT predicts the size

control behavior very well: Size distortions are close to being monotonic functions of RT in

all six experiments.

Figure 3 shows that not only size control, but also local asymptotic power at κ0 = 3

of tests constructed around the various LRV estimators strongly correlates with RT . This

implies that scatter plots of size distortions against power are also almost monotonic for most

experiments. For the range of experiments and tests considered here, more power of a test

23



24

T
ab
le
2:
R
ej
ec
ti
on
pr
ob
ab
ili
ti
es
of
no
m
in
al
5%

t-
te
st
s
ba
se
d
on
va
ri
ou
s
L
R
V
es
ti
m
at
or
s
fo
r
T
=
12
8

Ω̂
R
E
(λ
)

Ω̂
U
A
(p
)

Ω̂
Q
S
(c
)

Ω̂
B
T
(c
)

Ω̂
Q
A
Ω̂
P
W
Ω̂
M
R

50
20
0

15
00

2
4

8
15

1
0.
3

0.
1

0.
05

1
0.
3

0.
1

0.
05

ρ
A
R
(1
)-
H
O
M
O

0
6.
6

7.
0

4.
8

5.
3

5.
8

6.
2

5.
3

5.
9

6.
0

5.
8

5.
4

6.
1

6.
4

6.
1

6.
2

6.
3

6.
5

6.
1

-0
.3

7.
7

7.
1

4.
9

5.
1

5.
9

6.
3

5.
0

5.
9

6.
1

6.
2

5.
5

6.
0

6.
6

6.
7

5.
8

6.
3

6.
8

7.
1

-0
.5

8.
8

7.
5

4.
6

5.
0

5.
7

6.
1

5.
4

5.
5

5.
9

6.
7

5.
6

6.
1

6.
5

7.
1

6.
3

6.
5

7.
4

8.
1

0.
3

7.
3

6.
7

4.
9

4.
9

5.
4

5.
4

5.
0

5.
5

5.
5

5.
7

5.
5

5.
8

6.
2

6.
2

5.
6

6.
1

6.
5

6.
7

0.
5

8.
2

7.
0

5.
1

5.
2

5.
7

6.
0

5.
0

5.
5

6.
3

6.
2

5.
9

6.
2

6.
5

6.
7

6.
4

6.
8

7.
0

7.
7

0.
7

12
.6

9.
5

5.
1

6.
2

8.
1

8.
9

6.
3

7.
6

8.
6

9.
4

6.
3

7.
7

9.
5

9.
9

8.
5

9.
2

10
.7

12
.2

0.
9

25
.7

18
.5

7.
7

10
.1

13
.3

18
.8

10
.2

13
.4

17
.8

21
.2

10
.4

13
.3

19
.3

23
.4

17
.0

18
.6

22
.8

27
.7

0.
95

39
.1

28
.3

9.
3

15
.1

22
.9

30
.6

15
.4

23
.0

28
.8

33
.8

15
.4

22
.3

31
.2

37
.1

26
.1

29
.7

35
.9

41
.7

ρ
A
R
(1
)-
H
E
T
1

0
7.
2

8.
3

4.
6

5.
1

5.
2

5.
7

5.
1

5.
2

6.
0

6.
2

5.
9

6.
0

6.
2

6.
4

6.
2

6.
4

6.
2

6.
9

-0
.3

8.
5

8.
8

5.
2

5.
3

5.
9

6.
6

5.
4

6.
1

6.
4

6.
9

5.
3

6.
3

7.
1

7.
5

6.
5

6.
9

7.
4

8.
0

-0
.5

9.
5

9.
0

4.
8

5.
2

5.
5

6.
7

5.
8

5.
9

6.
4

7.
3

5.
8

6.
3

6.
9

7.
9

6.
7

7.
3

8.
0

8.
7

0.
3

8.
7

8.
6

4.
9

5.
2

5.
8

7.
0

5.
2

6.
3

7.
2

7.
2

5.
4

6.
5

7.
4

7.
7

6.
3

7.
1

7.
7

8.
0

0.
5

9.
8

9.
5

4.
8

5.
2

5.
8

6.
9

5.
3

6.
1

7.
1

7.
8

5.
7

6.
4

7.
8

8.
2

6.
9

7.
2

8.
4

9.
1

0.
7

15
.2

13
.7

5.
8

6.
5

7.
9

10
.5

6.
8

8.
0

9.
7

11
.4

7.
9

9.
0

10
.6

12
.3

10
.0

10
.5

12
.6

14
.4

0.
9

28
.1

24
.9

7.
5

10
.0

15
.0

20
.7

10
.9

15
.7

19
.6

22
.7

11
.2

15
.4

20
.8

25
.1

18
.6

20
.5

24
.6

29
.5

0.
95

38
.1

32
.1

8.
5

14
.0

21
.2

29
.0

14
.3

21
.8

27
.9

32
.8

14
.7

21
.0

30
.1

35
.5

25
.0

28
.2

34
.6

40
.7

ρ
A
R
(1
)-
H
E
T
2

0
6.
2

7.
4

4.
7

5.
1

5.
3

5.
4

4.
7

5.
3

5.
9

5.
7

4.
8

5.
5

6.
1

5.
8

5.
4

5.
9

6.
1

6.
2

-0
.3

7.
8

8.
2

5.
0

5.
2

5.
2

6.
0

4.
7

5.
2

5.
7

6.
5

5.
5

5.
8

6.
3

6.
8

6.
2

6.
2

6.
6

7.
2

-0
.5

9.
5

9.
3

5.
4

5.
4

6.
2

7.
0

5.
3

6.
2

7.
2

7.
4

5.
6

6.
5

7.
5

7.
8

7.
0

7.
5

7.
9

8.
7

0.
3

7.
6

7.
8

5.
2

5.
6

6.
1

6.
1

5.
2

5.
6

6.
3

6.
6

5.
6

6.
2

6.
6

6.
6

5.
6

6.
2

6.
8

7.
1

0.
5

9.
8

9.
6

5.
1

5.
6

5.
8

6.
9

5.
4

6.
0

7.
0

7.
2

6.
1

6.
1

7.
2

7.
9

7.
1

7.
4

7.
9

8.
7

0.
7

13
.9

12
.2

4.
9

6.
5

7.
6

9.
7

6.
2

7.
8

9.
4

10
.3

6.
2

8.
0

10
.2

11
.1

8.
7

9.
8

11
.9

13
.1

0.
9

26
.6

21
.7

7.
4

10
.3

15
.3

19
.4

10
.5

15
.4

18
.9

21
.3

10
.4

15
.2

20
.3

23
.5

17
.5

19
.6

23
.5

27
.1

0.
95

36
.5

28
.3

8.
4

13
.2

19
.3

27
.5

13
.6

20
.0

25
.4

30
.6

14
.1

20
.0

28
.3

33
.7

23
.6

26
.5

32
.7

38
.1



25

T
ab
le
3:
R
ej
ec
ti
on
pr
ob
ab
ili
ti
es
of
no
m
in
al
5%

t-
te
st
s
ba
se
d
on
va
ri
ou
s
L
R
V
es
ti
m
at
or
s
fo
r
T
=
12
8

Ω̂
R
E
(λ
)

Ω̂
U
A
(p
)

Ω̂
Q
S
(c
)

Ω̂
B
T
(c
)

Ω̂
Q
A
Ω̂
P
W
Ω̂
M
R

50
20
0

15
00

2
4

8
15

1
0.
3

0.
1

0.
05

1
0.
3

0.
1

0.
05

θ
M
A
(1
)-
H
O
M
O

-0
.3

7.
0

6.
8

5.
1

4.
9

5.
6

5.
3

5.
0

5.
4

5.
6

5.
7

5.
6

5.
5

6.
2

6.
3

5.
5

6.
0

6.
1

6.
6

-0
.5

7.
9

6.
7

5.
1

5.
1

5.
6

6.
1

5.
4

5.
4

6.
2

6.
2

5.
3

6.
0

6.
5

6.
6

6.
1

6.
4

6.
7

7.
1

0.
3

6.
8

6.
4

4.
9

5.
1

5.
4

5.
4

4.
9

5.
4

5.
7

5.
7

5.
3

5.
9

5.
8

6.
2

6.
0

6.
2

6.
3

6.
3

0.
5

7.
0

6.
3

5.
3

5.
6

5.
1

5.
4

4.
8

5.
4

5.
5

5.
4

5.
2

5.
9

5.
8

5.
8

5.
8

5.
9

6.
2

6.
5

0.
7

7.
9

6.
3

5.
2

5.
2

5.
7

5.
8

5.
0

5.
5

5.
8

6.
1

5.
7

6.
0

6.
0

6.
4

5.
9

6.
6

6.
6

7.
2

0.
9

8.
3

6.
3

4.
9

4.
9

5.
5

6.
2

5.
3

5.
3

6.
3

6.
4

5.
8

5.
8

6.
9

6.
8

6.
1

6.
6

7.
2

7.
7

0.
99

8.
1

6.
5

5.
2

5.
5

5.
2

6.
0

5.
5

5.
0

6.
1

6.
5

5.
9

5.
8

6.
5

7.
0

6.
4

6.
6

7.
1

7.
6

φ
A
R
(1
)+
M
A
(1
)-
H
O
M
O

-0
.3

6.
0

6.
3

4.
9

4.
7

4.
8

5.
1

5.
1

5.
1

5.
1

5.
2

5.
3

5.
6

5.
5

5.
7

5.
6

5.
8

5.
7

5.
9

-0
.5

5.
9

6.
5

4.
8

4.
9

4.
8

5.
0

4.
8

4.
8

5.
4

5.
0

4.
9

5.
5

5.
4

5.
6

5.
5

5.
7

5.
7

5.
7

0.
3

6.
0

6.
4

4.
9

5.
0

5.
2

5.
3

4.
7

5.
4

5.
3

5.
6

4.
9

5.
5

5.
9

6.
0

5.
4

5.
9

6.
0

6.
1

0.
5

6.
3

6.
6

5.
0

4.
5

5.
2

5.
4

4.
9

5.
6

5.
5

5.
8

4.
9

6.
0

6.
1

6.
0

5.
5

6.
0

6.
1

6.
1

0.
7

8.
3

8.
2

4.
9

5.
3

5.
7

6.
0

5.
3

5.
3

6.
0

5.
7

5.
4

5.
3

5.
9

6.
0

5.
5

5.
8

6.
3

6.
4

0.
9

19
.1

19
.4

5.
6

6.
8

8.
1

10
.0

6.
8

8.
4

9.
6

11
.5

7.
1

8.
5

10
.1

13
.2

10
.1

10
.3

12
.4

15
.0

0.
95

26
.4

26
.9

6.
5

8.
0

10
.1

15
.2

7.
9

10
.2

13
.6

17
.8

7.
5

10
.6

15
.4

19
.6

12
.3

14
.0

18
.0

21
.5

φ
A
R
(1
)+
M
A
(1
)-
H
E
T
1

-0
.3

6.
5

7.
4

5.
3

4.
8

5.
0

5.
6

4.
5

5.
2

5.
6

5.
9

4.
9

5.
8

6.
3

6.
2

5.
8

6.
1

6.
5

6.
4

-0
.5

8.
3

9.
3

5.
7

5.
4

6.
1

6.
6

5.
7

6.
4

6.
9

6.
6

6.
6

6.
9

7.
5

7.
2

7.
2

7.
5

7.
4

7.
7

0.
3

7.
3

7.
8

4.
6

5.
1

5.
2

6.
6

5.
1

5.
0

6.
3

6.
2

5.
2

5.
7

6.
8

6.
7

5.
6

5.
9

6.
8

6.
9

0.
5

7.
9

8.
6

4.
7

5.
7

6.
4

6.
8

5.
6

6.
1

6.
7

6.
8

6.
0

6.
6

7.
2

7.
3

7.
0

7.
1

7.
5

7.
4

0.
7

9.
9

10
.7

5.
7

5.
2

5.
8

6.
9

5.
7

5.
7

7.
4

7.
6

6.
0

6.
1

7.
5

7.
8

6.
9

7.
0

7.
9

8.
4

0.
9

19
.7

20
.7

5.
9

6.
8

8.
5

11
.2

7.
0

8.
4

10
.5

12
.8

7.
0

8.
8

11
.7

13
.9

9.
9

10
.9

13
.4

15
.3

0.
95

25
.3

26
.8

5.
7

7.
3

8.
8

14
.1

7.
2

9.
2

12
.6

16
.6

7.
2

9.
4

14
.5

18
.5

11
.7

12
.9

17
.1

20
.6



Figure 2: Small Sample Size Distortions and Robustness Coefficients of Various LRV Esti-

mators
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Figure 3: Local Asymptotic Power and Robustness Coefficients of Various LRV Estimators

comes necessarily at the cost of worse size control.4 One might argue, then, that the power

of tests constructed around a specific LRV estimator is the truly reliable predictor for its

size control, and that RT only correlates with size distortions because it predicts power well.

But this is not the case. LRV estimators that extract information only of higher frequencies

and discard low-frequency information like ξ̂4ξ̂
0
4 or

1
4

P7
l=4 ξ̂lξ̂

0
l in the notation developed at

the end of section 3 have the same asymptotic distribution as Ω̂MR and Ω̂UA(4), respectively,

as long as (3) holds. The tests (4) based on the LRV estimators ξ̂4ξ̂
0
4 or

1
4

P7
l=4 ξ̂lξ̂

0
l hence

have the same asymptotic power as tests based on Ω̂MR and Ω̂UA(4). At the same time,

simulations not reported here show that their small sample size control is much worse, and

very much in line with predictions based on their robustness coefficient.

A more natural interpretation of the similarity of the power of tests based on Ω̂RE(λ),

Ω̂UA(p) and Ω̂QS(c) conditional on the robustness coefficients is therefore that all these LRV

estimators are making close to optimal efficiency against robustness trade-offs. One way

to describe this analytically is to compare the robustness coefficients of Ω̂UA(p) and Ω̂QS(c)

with the robustness coefficient of the optimal LRV estimator Ω̂RE(λ) of Theorem 6 where

λ is chosen such that the variances of the LRV estimators coincide. In such a comparison

4In such a scatterplot of power against size distortions, the Bartlett LRV estimator Ω̂BT does worse than

either of the estimators Ω̂QS , Ω̂UA or Ω̂RE . At least in this sense, the theoretic prediction of the relative

inferiority of inference based on Ω̂BT as implied by an unbounded robustness coefficient RT of Ω̂BT does

hold.
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one finds RT to be 5%-20% larger than the smallest possible RT as generated by Ω̂RE(λ)

for the values of p and c considered in the simulation exercise. Given an average change in

size distortions induced by a one percent relative increase in RT of less than 0.05 percentage

points in Figure 2, this suggests a very moderate maximum loss of 1 percent higher size

distortions of inference based on Ω̂UA(p) and Ω̂QS(c) instead of Ω̂RE(λ).

Overall, the results of the small sample experiment conducted here are reliably predicted

by the asymptotic analysis of section 2 and 3: Despite being optimal in a certain sense (cf.

Andrews (1991)), the consistent automatic bandwidth selection LRV estimators Ω̂QA and

Ω̂PW perform considerably worse with data exhibiting strong time series dependence than

most of the inconsistent LRV estimators, underlining the relevance of Theorem 1. Further-

more, the theoretically motivated robustness measure RT is highly successful in predicting

the small sample size properties of the inconsistent LRV estimators Ω̂RE(λ), Ω̂UA(p) and

Ω̂QS(c).

5 Implications for Applied Work

The tests (4) based on Ω̂RE(λ), Ω̂UA(p) and Ω̂QS(c) have very comparable size and power

properties when λ, p and c are such that their robustness coefficient is the same. This

suggests that Ω̂UA(p) is the most convenient choice in practice, since tests based on this LRV

estimator have well-known asymptotic distributions under the null hypothesis. In detail, for

inference in the OLS regression yt = x0tβ + εt with β being m× 1 one proceeds as follows:

• Compute the ordinary least squares estimator β̂ of a regression of {yt} on {xt}, and
construct Σ̂X = T−1

PT
t=1 xtx

0
t and {ût} = {Σ̂−1X xtε̂t}, where {ε̂t} are the residuals

from the regression.

• Construct the p series {ṽ(l)t}Tt=1, l = 1, · · · , p, where ṽ(l)t =
p
2/T cos(lπ(t−1/2)/T ).

• Compute the p×m ordinary least squares estimator ξ̂ of a regression of {ût} on the p
series {ṽ(l)t}, l = 1, · · · , p.

• Compute Ω̂UA(p) = ξ̂
0
ξ̂/p.

• For a test concerning the jth element of β, construct the t-statistic t̃ = T 1/2(β̂j −
β0,j)/

q
Ω̂UA(p)jj, where Ω̂UA(p)jj is the jth element on the diagonal of Ω̂UA(p).
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• For a test of the restriction R0β = r0 for some m × d matrix R and d × 1 vector r0,
1 ≤ d ≤ p, compute G̃ = (p+ 1− d)T (R0β̂ − r0)

0(R0Ω̂UA(p)R)
−1(R0β̂ − r0)/(dp).

• Under the null hypothesis, t̃ and G̃ are asymptotically distributed student-t with p

degrees of freedom and F with d degrees of freedom in the numerator and (p+ 1− d)

degrees of freedom in the denominator, respectively.

For a two stage least squares regression with instruments {zt}, {xt} needs to be replaced
with the least-squares projection of {xt} on {zt} throughout. The steps above are also
applicable to an exactly identified GMM problem, where in the first step, β̂ is the GMM

estimator, {xt} is replaced by the derivative of the moment condition evaluated at the GMM
estimator and {ε̂t} is the moment condition evaluated at the GMM estimator, see (2) above.

The asymptotically justified inference resulting from this procedure is more efficient but

less robust for larger p. This raises the important question of how to choose p. While a

detailed answer is left to future research, Theorems 1 and 3 above put a concrete limit on

any data-dependent procedure: When {ut} is Gaussian White Noise, i.e. as well behaved
as it arguably can, a data-dependent method that results in an unbounded p (as a function

of the sample size) will necessary result in a very nonrobust LRV estimator. Intuitively,

there always exists deviations from Gaussian White Noise that are large enough to grossly

invalidate inference but that are too small to be detectable.

The most conservative way of conducting inference is then to rely solely on the most

robust but least efficient estimator with p = 1 (for the t-tests and a one-dimensional F-test).

And indeed, the numerical results of the last section suggest that extreme deviations from the

usual regularity conditions are necessary to grossly distort the nominal level of a test based

on this LRV estimator. So if a hypothesis can be rejected on the basis of Ω̂MR = Ω̂UA(1),

then a researcher can be quite confident that this does not arise from the test not controlling

size correctly. But given the low power, many practically important hypotheses will not be

rejected, although they are wrong.

From a spectral perspective, p describes the size of the neighborhood of zero of the

spectrum of {ut} that can considered to be constant. For many macroeconomic applications,
this view suggests that inference for the LRV should not be made dependent on business

cycle frequencies. Taking 10 years as an upper bound for the length of the business cycle,

this restricts p to be smaller or equal two times the number of decades of the whole span
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of the data. On this ground, for data that spans 40 years, for instance, p may be chosen to

equal 8. Such a strategy yields robust inference for all models of the macroeconomic data

that imply {ut} to have a flat spectrum below business cycle frequencies. The numerical

analysis above suggests for p = 8 a loss of efficiency compared to knowing the population

LRV of about 20%-30%. At the same time, such a value of p results in reasonable size

control over a wide array of dependence structures, including relatively strongly persistent

data. For potentially even less well-behaved data, one might want to report test results for

smaller values of p, too, allowing readers to assess the strength of the evidence as a function

of the amount of regularity imposed on the data.

6 Conclusion

In order for consistent estimators to work, any given data has to satisfy relatively strong

regularity conditions. For the problem of long-run variance (LRV) estimation, many real

world time series do not seem to exhibit enough regularity such that a substitution of the

unknown population value with a consistent estimator yields reliable approximations.

In contrast to Jansson (2004), who considers second order asymptotics under the usual

asymptotic thought experiment, this paper explores the robustness of LRV estimators by an-

alyzing first order asymptotic properties of LRV estimators in alternative asymptotic thought

experiments. It is found that one only needs to consider the set of all processes that satisfy a

Functional Central Limit Theorem to obtain arbitrary first order properties of any consistent

LRV estimator. When faced with strongly dependent data, this analytical result strongly

motivates basing inference on inconsistent LRV estimators instead, for which inference is

asymptotically justified whenever a Functional Central Limit Theorem applies.

As a guide for the choice between alternative inconsistent LRV estimators with this prop-

erty, the paper introduces an analytic measure of robustness of LRV estimators. Specifically,

robustness is quantified by considering how much bias can be induced in a LRV estima-

tor when faced with a partial sum process of the residuals that is equal to a contaminated

Brownian Bridge. Numerical results show that this measure is highly successful in predicting

the size control properties of LRV estimators in a number of small sample experiments. A

specific variant of LRV estimators–whose form is very close to LRV estimators that in a

certain sense optimally trade off robustness against efficiency–has attractive power and size
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properties while leading to test statistics that under the null hypothesis are asymptotically

student-t and F distributed, making them a convenient choice for applied work.

The amount of regularity a researcher imposes on the data while employing these LRV

estimators is directly related to the number of degrees of freedom of the t- and F-distribution

the test statistics converge to under the null hypothesis. For versions of the LRV estimator

that result in a small number of degrees of freedom, the robustness of the resulting test is

high, but its efficiency is low. The results of this paper imply that it is impossible to develop

data dependent methods that are efficient for well behaved data but remain robust for less

well behaved data. On a fundamental level, it is impossible to let the data decide how much

regularity can be safely assumed. One possibility to impose a certain degree of regularity in

a theoretically appealing yet simple way is to employ the LRV estimators suggested here.
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7 Appendix

The proof of Theorem 1 relies on a contiguity argument. Loosely speaking, the concept of

contiguity describes the closeness of two sequences of densities in the limit as T → ∞. In
particular, if a sequence of densities is contiguous to another sequence of densities, then

all convergences in probability that apply to the latter sequence also hold for the former

sequence. See van der Vaart (1998) or Pollard (2001) for an introduction to the concept.

Lemma 1 Let B(·) =
P∞

l=1 φl(·)ξl/(πl), where φl(s) =
√
2 sin(lπs) and ξl is distributed

independent N (0, Im), and let B̌n(·) = H−1Pn
l=1 φl(·)ξl/(πl) +

P∞
l=n+1 φl(·)ξl/(πl) for some

nonsingular H and fixed n. Then the sequence of densities of {B̌n(t/T )}Tt=1 are contiguous
to the densities of {B(t/T )}Tt=1.

Proof. With rl = [4T 2 sin(lπ/(2T ))2]−1 = (lπ)−2 + o(1) the lth largest eigenvalue of

T−2FMeF
0 as defined in Theorem 4, let {ξ̃l}T−1l=1 = {r−1/2l T−1

PT
t=1 φl(t/T )B(t/T )} and

{ξ̌l}T−1l=1 = {r−1/2l T−1
PT

t=1 φl(t/T )B̌n(t/T )}. Clearly, {ξ̃l}T−1l=1 and {ξ̌l}T−1l=1 are one-to-one

functions of {B(t/T )}Tt=1 and {B̌n(t/T )}Tt=1, so it suffices to show contiguity of the sequence
of densities of {ξ̌l}T−1l=1 to the densities of {ξ̃l}T−1l=1 . Since {T−1/2φl(t/T )}Tt=1 are the elements
of the eigenvector of T−2FMeF

0 corresponding to the eigenvalue rl, {ξ̃l}T−1t=1 is distributed

independent N (0, Im). Furthermore, for n < T , from the orthonormality of the eigenvectors

of T−2FMeF
0, we find {ξ̌l}nl=1 is distributed independent N (0, r−1l (lπ)−2H−1H−10+ r−1l (rl−

(lπ)−2)Im), and {ξ̌l}T−1l=n+1 is distributed independent N (0, Im). The only difference between
the multivariate normal distributions of {ξ̃l}T−1l=1 and {ξ̌l}T−1l=1 is hence the fact that the first

n elements of {ξ̌l}T−1l=1 have covariance matrix r
−1
l (lπ)

−2H−1H−10+ r−1l (rl− (lπ)−2)Im rather
than Im. For any fixed l, r−1l (lπ)

−2H−1H−10+ r−1l (rl− (lπ)−2)Im → H−1H−10. The densities

of two finite sets of independent Gaussian vectors with positive definite limiting covariance

matrices are evidently contiguous, and the result follows.

Proof of Theorem 1:

By scale equivariance, Ω̂T (HB(·)) p→ HH 0. Since the sequence of densities of {B̌n(t/T )}Tt=1
is contiguous to the densities of {B(t/T )}Tt=1 for any fixed n by Lemma 1, it follows that

Ω̂T (HB̌n(·))
p→ H 0H, too. Therefore, for any n, there exists a finite number Tn such that

for all T > Tn

P (||Ω̂T (HB̌n(·))−HH 0||∞ > n−1) < n−1.
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For any T , let n∗T be the largest n
∗ such that (maxn≤n∗ Tn) < T . By construction, n∗T is

nondecreasing in T . Furthermore, n∗T → ∞ as T → ∞. Suppose otherwise. Then there
exists nmax such that for all T , Tnmax+1 > T . But this is impossible, given that Tnmax+1 is

finite.

Define

B̄T (·) = HB̌n∗T
(·) =

n∗TX
l=1

φl(·)ξl/(πl) +H
∞X

l=n∗T+1

φl(·)ξl/(πl).

Now for all T , P (||Ω̂T (B̄T (·))−HH 0||∞ > (n∗T )
−1) < (n∗T )

−1, so that from n∗T →∞ we find

Ω̂T (B̄T (·))
p→ HH 0.

At the same time, the almost sure uniform convergence (cf. Theorem 5.2 of Itô and

Nisio (1968)) of limN→∞
PN

l=1 φl(·)ξl/(πl) to B(·) implies that for any η > 0, there exists N∗

such that for all N > N∗, sups k
P∞

l=N φl(s)ξl/(πl)k∞ < η with probability one. For T large

enough to make n∗T > N∗, with probability one,

sup
s

°°B̄T (s)−B(s)
°°
∞ = sup

s

°°°°°°(H − Im)
∞X

l=n∗T

φl(s)ξl/(πl)

°°°°°°
∞

< kH − Imk∞ η

But η was arbitrary, and the claim of the Theorem follows.

Proof of Theorem 3:

We will show that B̄T (·) of Theorem 1 for H = κIm with κ > 1 is within a neighborhood

of B(·) of size δT , where δT = o(1). Since Ω̂T (B̄T (·)) → κ2Im together with Ω̂T being

nonnegative definite implies limT→∞E[Ω̂T (B̄T (·))] ≥ κ2Im, it follows that for any δ > 0, for

T chosen sufficiently large to ensure δT < δ

RT (δ) ≥
tr
¯̄̄
E[Ω̂T (B̄T (·))]− Im

¯̄̄
δm

≥ κ2 − 1
δ

+ o(1)

which can be made arbitrarily large by choosing κ large.

In order to prove that B̄T (·) is within a δT = o(1) neighborhood of B(·), note that B̄T (·)
might alternative be written as B̄T (·) = B(·)+ST (·), where ST (·) = (κ2−1)1/2

P∞
l=n∗T+1

φl(·)ψl/(πl),

where ψl ∼ iidN (0, Im) independent of {ξl}. Let wi be the T × 1 vector with elements
wit = STi(t/T ) for any i ∈ {1, · · · ,m}, 1 ≤ t ≤ T , and let aT be any vector T × 1 vector
with elements aT,t satisfying a0TaT = 1. It is well known that a

0
TE[wiw

0
i]aT = E[(a0Twi)

2] is
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smaller or equal to the largest eigenvalue of E[wiw
0
i]. But

E[(a0Twi)
2] = (κ2 − 1)

∞X
l=n∗T+1

"
TX
t=1

aT,t
φl(t/T )

lπ

#2

≤ (κ2 − 1) 2
π2

⎡⎣ ∞X
l=n∗T+1

l−2

⎤⎦"T−1X
t=1

|aT,t|
#2

From Jensen’s inequality, we obtain
hPT−1

t=1 |aT,t|
i2
≤ T , so that

P∞
l=n∗T

l−2 → 0 as T → ∞
implies that the largest eigenvalue of E[wiw

0
i] is o(T ).

Proof of Theorem 4:

(a) Letwi, qi, w̃i and q̃i be the T×1 vectors with elementswit = STi(t/T ), qit = T 1/2[Bi(t/T )−
Bi((t − 1)/T )], w̃it = S̃Ti(t/T ) and q̃it = T 1/2[B̃Ti(t/T ) − B̃Ti((t− 1)/T )], for t = 1, · · · , T
and i = 1, · · · ,m, respectively, and denote diag(Σi, 0) = E[wiw

0
i] and diag(Σ̃i, 0) = E[w̃iw̃

0
i].

Define w = (w1, · · · , wm) and q, w̃ and q̃ analogously. Let A be such that Ae = 0 and

tr[A] = 1 without loss of generality.

From the independence assumption

E[(q̃ + T 1/2Dw̃)0A(q̃ + T 1/2Dw̃)] = E[(q + T 1/2Dw)0A(q + T 1/2Dw)]

E[q̃0Aq̃] + TE[w̃0D0ADw̃] = E[q0Aq] + TE[w0D0ADw]

E[q̃0Aq̃]− Im = TE[w̃0D0ADw̃]− TE[w0D0ADw]

and with qi ∼ N (0,Me), we find

tr |E[q̃0Aq̃]− Im| = tr |TE[w̃0D0ADw̃]− TE[w0D0ADw]|.

Since TE[w̃0D0ADw̃] and TE[w0D0ADw] are nonnegative definite, RT is maximized when

either all Σi or all Σ̃i are set to zero. Without loss of generality, let Σ̃i = 0 ∀i. It is well
known that for two conformable matrices B and C, tr[BC] ≤ λ̄B trC, where λ̄B is the largest

eigenvalue of B. Hence

tr |E[q̃0Aq̃]− Im| ≤
mX
i=1

T tr[diag(Σi, 0)D
0AD] ≤ mδT 2 tr[diag(IT−1, 0)D

0AD]

Furthermore, forΣi = δTIT−1 and Σ̃i = 0 ∀i, tr |E[q̃0Aq̃]−Im| = mδT 2 tr[diag(IT−1, 0)D
0AD],

so that the result follows.
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(b) A direct calculation reveals that the first T − 1 diagonal elements of TD0AD are

given by 2k(0)− 2k(b−1T ). For a twice differentiable kernel, a second order Taylor expansion
yields 2k(0)−2k(b−1T ) = k00(0)b−2T +o(b−2T ), whereas for the Bartlett kernel 2k(0)−2k(b−1T ) =
2b−1T + o(b−1T ). Now tr[MeA] = tr[A] − T−1e0Ae, and T−1e0Ae ≤ 2T−1

PT
t=0 |k(t/bT )|. But

b−1T
P∞

t=0 |k(t/bT )| →
R∞
0
|k(s)|ds < ∞, so that T−1

PT
t=0 |k(t/bT )| ≤ T−1

P∞
t=0 |k(t/bT )| →

0 and the result follows.

(c) From tr[MA] = tr[A]− T−1e0Ae and

T−1e0Ae = T−2
T−1X

j=−T+1
(T − j)k(j/T )→ 2

Z 1

0

(1− s)k(s)ds

the result follows from the same reasoning as in part (b).

Proof of Theorem 5:

Without loss of generality, let A be such that Ae = 0 and tr[A] = 1. In the notation of the

proof of Theorem 4, by a direct calculation for i, j ∈ {1, · · · ,m},

(q̃i + T 1/2Dw̃i)
0A(q̃j + T 1/2Dw̃j) = (qi + T 1/2Dwi)

0A(qj + T 1/2Dwj)

so that

q̃0iAq̃j + T 1/2w̃0iD
0Aq̃j + T 1/2w̃0jD

0Aq̃i + Tw̃0iD
0ADw̃j =

q0iAqj + T 1/2w0iD
0Aqj + T 1/2w0jD

0Aqi + Tw0iD
0ADwj.

Now

2w0iD
0ADwj = (wi + wj)

0D0AD(wi + wj)− w0iD
0ADwi − w0jD

0ADwj ,

and E[(wi − wj)(wi − wj)
0] = Σi +Σj −E[wiw

0
j + wjw

0
i] is nonnegative definite, so that the

largest eigenvalue of E[wiw
0
j + wjw

0
i] is smaller or equal to 2δT . Hence

2TE[|w0iD0ADwj|] ≤ 6δT 2 tr[diag(IT−1, 0)D0AD] = 6δRT

and similarly, TE[|w̃0iD0ADw̃j|] ≤ 3δRT .

Furthermore,

TE[(w0iD
0Aqj)

2] = TE[q0jADwiw
0
iD

0Aqj]

= T tr[MeAD diag(Σi, 0)D
0A]

≤ δT 2 tr[diag(IT−1, 0)D
0A2D].
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But with tr[A] = 1, the eigenvalues of A necessarily lie between zero and one, so that

TE[(w0iD
0Aqj)

2] ≤ δRT . Also, noting that E[q̃j q̃0j] =Me + TD diag(Σj − Σ̃j, 0)D
0 we find

TE[(w̃0iD
0Aq̃j)

2] = TE[q̃0jADw̃iw̃
0
iD

0Aq̃j]

= T tr[(Me + TD diag(Σj − Σ̃j, 0)D
0)AD diag(Σ̃i, 0)D

0A]

≤ δT 2 tr[diag(IT−1, 0)D
0A2D] + δ2T 4 tr[diag(IT−1, 0)D

0AD diag(IT−1, 0)D
0AD]

≤ δRT + (δT
2 tr[diag(IT−1, 0)D

0AD])2

≤ δRT + (δRT )
2.

Proceeding analogously for TE[(w0jD
0Aqi)

2] and TE[(w̃0jD
0Aq̃i)

2], we find using Jensen’s

inequality

E[|Ω̂Tij(B̃T (·))− Ω̂Tij(B(·))|] ≤ 6δRT + 2
p
δRT + 2

p
δRT + (δRT )2

and the result follows.

Proof of Theorem 6:

(a) Define Ã implicitly byA = T−1F 0 diag(PΛ−1/2ÃΛ−1/2P 0, 0)F , where PΛP 0 is the spectral

decomposition of the upper-left T − 1× T − 1 block of T−1FMeF
0 with the eigenvalues Trl

decreasing along the diagonal of Λ. Apart from the inconsequential restriction Ae = 0, this

leaves A as a function of Ã unrestricted. Since A is nonnegative definite, so is Ã. Note that

tr[MeA] = T−1 tr[FMeF
0 diag(PΛ−1/2ÃΛ−1/2P 0, 0)]

= tr[diag(Λ−1/2P 0PΛP 0PΛ−1/2Ã, 0)] = tr[Ã]

and

tr[diag(IT−1, 0)D
0AD] = T−1 tr[PΛ−1/2ÃΛ−1/2P 0] = T−1 tr[Λ−1Ã],

such that in terms of Ã, RT = T tr[Λ−1Ã]/ tr[Ã].

Write Ã = BB0. The minimization problem may hence be written as

min
B
tr[Λ−1BB0]− λ0 tr[BB

0]

for some λ0 ≥ 0, yielding the first order condition

Λ−1B − λ0B = 0.
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This necessary condition can only be satisfied when the columns of B are either zero or

proportional to a single Cartesian Basis vector, such that Ã is proportional to ιT−1,lι
0
T−1,l,

where ιl is the lth column of IT−1. The minimizing choice corresponds to the smallest λ0, and

since the diagonal elements of Λ−1 are increasing, this yields the solution Ã = ιT−1,1ι
0
T−1,1.

(b) Building on the results of part (a), note that for qi ∼ N (0,Me) for i = 1, · · · ,m and

qi and qj independent for i 6= j, Var[q0iAqi] = 2 tr[(MeA)
2] = 2 tr[Ã2] and Var[q0iAqj] = tr[Ã

2].

Hence

trVar[K vec Ω̂T (B(·))] = tr[Ã2] tr[K(Im2 +
mX
i=1

mX
j=1

(ιm,iι
0
m,j)⊗ (ιm,jι

0
m,i))K

0]

where ιm,i is the ith column of Im and ⊗ denotes the Kronecker product.
With Ã = BB0, the optimization problem might hence be written as

min
B
tr[BB0BB0] + λ0 tr[Λ

−1BB0]− λ1 tr[BB
0] (8)

for λ0 and λ1 nonnegative constants, with first order condition

2BB0B + λ0Λ
−1B − λ1B = 0.

Denoting with Ã∗ the solution to the optimization problem, clearly the symmetric matrix

B∗ = (Ã∗)1/2 must satisfy the necessary condition. We might hence assume B to be sym-

metric without loss of generality. Let vB be any eigenvector of B associated with a nonzero

eigenvalue rB. Then

2r3BvB + rB(λ0Λ
−1 − λ1IT−1)vB = 0

which is possible only when vB is proportional to a Cartesian basis vector, at least when

λ0 > 0. A solution when λ0 = 0 is easily ruled out, and therefore, B∗ and Ã∗ are diagonal.

Recomputing the first order conditions of the optimization problem (8) in terms of the

diagonal elements ãll of Ã under the conditions ãll ≥ 0∀l, we find 2ãll = (λ1 − λ0r
−1
l ) ∨ 0.

From the relationship between Ã and A, the result follows.

37



References

Andrews, D. (1991): “Heteroskedasticity and Autocorrelation Consistent Covariance Ma-

trix Estimation,” Econometrica, 59, 817—858.

Andrews, D., and J. Monahan (1992): “An Improved Heteroskedasticity and Autocor-

relation Consistent Covariance Matrix Estimator,” Econometrica, 60, 953—966.

Berk, K. (1974): “Consistent Autoregressive Spectral Estimates,” Annals of Statistics, 2,

489—502.

Chan, N., and C. Wei (1987): “Asymptotic Inference for Nearly Nonstationary AR(1)

Processes,” The Annals of Statistics, 15, 1050—1063.

de Jong, R., and J. Davidson (2000): “Consistency of Kernel Estimators of Heteroscedas-

tic and Autocorrelated Covariance Matrices,” Econometrica, 68, 407—423.

Faust, J. (1999): “Conventional Confidence Intervals for Points on Spectrum Have Confi-

dence Level Zero,” Econometrica, 67, 629—637.

Gallant, A. (1987): Nonlinear Statistical Models. John Wiley and Sons, New York.

Haan, W. D., and A. Levin (1997): “A Practitioner’s Guide to Robust Covariance Matrix

Estimation,” in Handbook of Statistics 15, ed. by G. Maddala, and C. Rao, pp. 309—327.

Elsevier, Amsterdam.

Hansen, B. (1992): “Consistent Covariance Matrix Estimation for Dependent Heterogenous

Processes,” Econometrica, 60, 967—972.

Hansen, L. (1982): “Large Sample Properties of Generalized Method of Moments Estima-

tors,” Econometrica, 50, 1029—1054.

Hochstadt, H. (1973): Integral Equations. John Wiley and Sons, New York.

Hotelling, H. (1931): “The Generalization of Student’s Ratio,” The Annals of Mathe-

matical Statistics, 2, 360—378.

Itô, K., and M. Nisio (1968): “On the Convergence of Sums of Independent Banach Space

Valued Random Variables,” Osaka Journal of Mathematics, 5, 35—48.

38



Jansson, M. (2004): “The Error in Rejection Probability of Simple Autocorrelation Robust

Tests,” Economcetrica, 72, 937—946.

Kiefer, N., and T. Vogelsang (2002a): “Heteroskedasticity-Autocorrelation Robust

Standard Errors Using the Bartlett Kernel Without Truncation,” Econometrica, 70, 2093—

2095.

(2002b): “Heteroskedasticity-Autocorrelation Robust Testing Using Bandwidth

Equal to Sample Size,” Econometric Theory, 18, 1350—1366.

(2003): “A New Asymptotic Theory for Heteroskedasticity-Autocorrelation Robust

Tests,” mimeo, Cornell University.

Kiefer, N., T. Vogelsang, and H. Bunzel (2000): “Simple Robust Testing of Regres-

sion Hypotheses,” Econometrica, 68, 695—714.

Lehmann, E., and G. Casella (1998): Theory of Point Estimation. Springer, New York,

2nd edn.

Müller, U. (2002): “Size and Power of Tests for Stationarity in Highly Autocorrelated

Time Series,” University of St. Gallen Working Paper 2002-26.

Newey, W., and K. West (1987): “A Simple, Positive Semi-Definite, Heteroskedasticity

and Autocorrelation Consistent Covariance Matrix,” Econometrica, 55, 703—708.

(1994): “Automatic Lag Selection in Covariance Matrix Estimation,” Review of

Economic Studies, 61, 631—653.

Phillips, P. (1987): “Towards a Unified Asymptotic Theory for Autoregression,” Bio-

metrika, 74, 535—547.

(1998): “New Tools for Understanding Spurious Regression,” Econometrica, 66,

1299—1325.

Pollard, D. (2001): “Contiguity,” unpublished draft,

http://www.stat.yale.edu/~pollard/Paris2001/Lectures/Contiguity.pdf.

39



Pötscher, B. (2002): “Lower Risk Bounds and Properties of Confidence Sets for Ill-Posed

Estimation Problems with Applications to Spectral Density and Persistence Estimation,

Unit Roots, and Estimation of Long Memory Parameters,” Econometrica, 70, 1035—1065.

Sims, C. (1971): “Distributed Lag Estimation When the Parameter Space is Explicitly

Infinite-Dimensional,” The Annals of Mathematical Statistics, 42, 1622—1636.

(1972): “The Role of Approximate Prior Restrictions in Distributed Lag Models,”

Journal of the American Statistical Society, 67, 169—175.

Vaart, A. V. d. (1998): Asymptotic Statistics. Cambridge University Press, Cambridge,

UK.

White, H. (1984): Asymptotic Theory for Econometricians. Academic Press, New York.

40


