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Abstract

Tests of stationarity are routinely applied to highly autocorrelated time series. Following

Kwiatkowski et al. (J. Econom. 54 (1992) 159), standard stationarity tests employ a rescaling

by an estimator of the long-run variance of the (potentially) stationary series. This paper

analytically investigates the size and power properties of such tests when the series are strongly

autocorrelated in a local-to-unity asymptotic framework. It is shown that the behavior of the

tests strongly depends on the long-run variance estimator employed, but is in general highly

undesirable. Either the tests fail to control size even for strongly mean reverting series, or they

are inconsistent against an integrated process and discriminate only poorly between stationary

and integrated processes compared to optimal statistics.

r 2004 Elsevier B.V. All rights reserved.

JEL classification: C12; C22

Keywords: Local-to-unity asymptotics; Long-run variance estimation; Mean reversion; Efficient

stationarity tests
1. Introduction

Most macroeconomic time series in levels exhibit strong positive autocorrelation.
The largest autoregressive root of reasonable models for such series is hence in the
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neighborhood of unity. For various reasons, researchers have been interested in
knowing whether this largest autoregressive root is indeed one—in which case the
series is called ‘integrated’—or smaller than one, leading to a stationary series. The
standard tool for this purpose are unit root tests, which test the null hypothesis of a
unit root against the alternative hypothesis of stationarity. Efficient unit root tests
(cf. Dufour and King, 1991; Elliott et al., 1996) direct their power at distinguishing a
series with a unit root from a series with a large, but stationary autoregressive root.
In some instances, it might be desirable to rather perform a test of the null

hypothesis of stationarity against the alternative of a unit root, a so-called ‘test of
stationarity’, or ‘stationarity test’. For the derivation of such a test it seems
appealing to rely on a model in which the null hypothesis of stationarity naturally
arises as a restricted form of the model. Research has concentrated on a components
model, in which, omitting deterministics, the observable time series is the sum of
stationary disturbances and an integrated component. An especially simple version
of the model arises when the stationary component consists of independent Gaussian
random variables, and derivations of the locally best test have focussed on this case
(cf. Nyblom, 1989). In this model the null hypothesis restricts the integrated
component to be constant and the series becomes Gaussian white noise, whereas
under the local alternative the process is a sum of a small integrated component and
Gaussian white noise. Loosely speaking, tests of stationarity in such a model direct
their power at detecting the small integrated component in the dominating
white noise.
While this simple set-up is attractive for the construction of stationarity tests in the

sense that the null hypothesis of stationarity becomes naturally a single hypothesis, it
does not lend itself to the analysis of most macro time series in levels: neither the null
nor the local alternative model generate data with even nearly the same amount of
persistence as the observed series. Despite this background, tests of stationarity are
routinely applied to very strongly autocorrelated series. Researchers justify the
applicability of tests of stationarity to such series by referring to a correction
suggested by Kwiatkowski et al. (1992), abbreviated KPSS in the following. The idea
of KPSS is to account for the autocorrelation by dividing the locally best test statistic
by an estimator of the so called long-run variance l of the stationary component.
Intuitively, this rescaling has to accomplish a delicate task: On the one hand, it has to
compensate the change in the test statistic induced by a strong, but stationary
autocorrelation in order to control size under the null hypothesis of stationarity. On
the other hand, its presence must not compromise the ability of the test statistic to
correctly reject the null hypothesis when the strong sample autocorrelation is in fact
the result of an integrated process.
And indeed, the literature contains some evidence that various estimators of the

long-run variance, l̂; yield unsatisfactory results. In their simulations, KPSS
recognized the potential fragility of size control of their stationarity tests with respect
to disturbances that follow an order-one autoregressive process. Caner and Kilian
(2001) demonstrate by means of a Monte Carlo study that the tests massively
overreject in the presence of strong autocorrelation. Lee (1996) investigates different
estimators of the long-run variance and finds that some lead to acceptable size
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control, but at the cost of dramatically reduced power. The Monte Carlo results of
Hobijn et al. (1998) corroborate this picture.
This paper develops a deeper understanding of the issues involved by analyzing

size and power of tests of stationarity under local-to-unity asymptotics. The idea of
analyzing the distribution of tests of stationarity under such non-standard
asymptotics was already briefly mentioned in the survey article of Stock (1994, p.
2826), but no special attention is given there to l̂: The local-to-unity framework,
developed by Chan and Wei (1987) and Phillips (1987), generates relevant
asymptotics for series whose dynamics are dominated by a large autoregressive
root. They give much more accurate approximations to small sample distributions
compared to standard asymptotics when the largest autoregressive root r of a series
is such that Tð1� rÞ is smaller than, say, 30, where T is the sample size. Stock and
Watson (1998) estimate values for Tð1� rÞ in the region of 3–15 for U.S. annual
series of GDP, consumption, investment, government purchases, 10-year Treasury
Bond interest rates and 90-day Treasury Bill interest rates with T ¼ 44 (OLS
estimates of Tables 6 and 7). Analyses of real exchange rate data find half-lives of
deviations from Purchasing Power Parity of about 3–5 years (cf. Rogoff (1996)),
implying a Tð1� rÞ in the region of 14–23 for 100 years of data. An analysis in a
local-to-unity framework reveals the behavior of tests of stationarity when applied to
such series, which in turn helps the applied econometrician to understand and
correctly interpret the test outcomes.
The paper shows that the behavior of tests of stationarity crucially hinges upon the

estimator of the long-run variance in local-to-unity asymptotics. There are two key
results: First, estimators of the long-run variance that employ a bandwidth that goes
to infinity more slowly than the sample size lead to tests of stationarity that reject
even highly mean reverting series with probability one for a large enough sample
size. Second, for some estimators of l that employ a bandwidth of the same order as
the sample size, the resulting tests of stationarity do reject more often for less mean
reverting series, but the exact properties depend crucially on which estimator l̂ is
used.
It is well understood that there cannot exist a statistic that perfectly discriminates

between stationary and integrated processes in the local-to-unity framework—in
fact, much of the appeal of this asymptotic device stems precisely from the fact that
discrimination remains difficult even as the sample size increases without bound. The
failure of tests of stationarity to reliably discriminate between the two hypotheses
under local-to-unity asymptotics hence does not come as a surprise, and is per se no
compelling argument against their usage.
But surely researchers should aim at using a test with as good a size versus power

trade-off as possible. By comparing the performance of KPSS-type tests of
stationarity with optimal stationarity tests in a local-to-unity framework, it is
shown that KPSS-type tests have much less discriminatory power than efficient tests.
In this sense, the properties of current tests of stationarity are much worse than they
need to be in highly autocorrelated time series.
The remainder of the paper is organized as follows. The next section introduces

the test statistics and the local-to-unity asymptotic framework, and derives the size
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and power properties of tests of stationarity for various estimators of the long-run
variance. Section 3 compares the performance of the tests of stationarity which
employ the most promising estimators of the long-run variance with optimal
stationarity tests in a local-to-unity set-up. Section 4 concludes. Proofs are collected
in an appendix.

2. Tests of stationarity under local-to-unity asymptotics

The Data Generating Process tests of stationarity are build upon is given by

yt ¼ dt þ wt þ ct with wt ¼ wt�1 þ ut; (1)

where yt; t ¼ 1; . . . ;T ; is the observed sample, dt is a deterministic component and
fctg and futg are independent zero mean stationary series. Under the null hypothesis
of stationarity, the variance of ut is restricted to be zero, such that fct þ w0g is
stationary. Under the alternative hypothesis, E½u2t 	40; so that fwtg is an integrated
series, and the disturbances fwt þ ctg are a sum of an integrated component fwtg and
a stationary component fctg:
The test statistic of KPSS is constructed as follows: Regress fytg on deterministic

components which consist either of a constant (indicated by a superscript m
throughout the paper) or of a constant and time trend (indicated by a superscript t)
by ordinary least squares. Denote the resulting residuals with fyi

tg; where i ¼ m; t; and
compute Si

t ¼
Pt

s¼1 yi
s: The test statistic is then given by

Liðl̂Þ ¼
T�2

PT
t¼1 ðS

i
tÞ
2

l̂
; (2)

where l̂ is an estimator of the long-run variance of fctg; l ¼
P1

j¼�1 E½ctct�j	;
1 and

the null hypothesis of stationarity is rejected for large values of Liðl̂Þ: KPSS

show that under some regularity conditions and an appropriate choice of l̂
the asymptotic distribution of Liðl̂Þ under the null hypothesis of stationarity is

given by Liðl̂Þ )
R

W iðsÞ2 ds; where ‘)’ denotes weak convergence as T ! 1; W ðsÞ

is a Wiener process, WmðsÞ ¼ W ðsÞ � sW ð1Þ; W tðsÞ ¼ W ðsÞ þ ð2s � 3s2ÞW ð1Þ þ

6ðs2 � sÞ
R

W ðlÞdl and for notational simplicity, the limits of integration are

understood to be zero and one, if not indicated otherwise. 5% critical values of

Liðl̂Þ are known to be 0:463 and 0:146 in the mean and mean and time trend case,
respectively (cf. MacNeill (1978) and Nabeya and Tanaka (1988)).
In contrast to the assumptions in KPSS, we analyze the behavior of Liðl̂Þ when yt

is generated by a Data Generating Process which is standard in the unit root testing
literature. Specifically, let

yt ¼ dt þ ut with ut ¼ rut�1 þ nt; (3)
1KPSS define the long-run variance l (which is s2 in their notation) as limT!1T�1E½ðSt
T Þ

2
	 (p. 164). St

T

is identical zero, however. One obtains the asymptotic distributions derived by KPSS when l̂ is a

consistent estimator of the long-run variance of fctg; which is the definition employed in this paper.
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where, if jrjo1; u0 ¼
P1

s¼0r
sn�s; u0 is arbitrary for r ¼ 1 and dt consists either of a

mean or of a mean and time trend. Throughout the paper we assume that if a time
trend is present in (3), then the t-version of Liðl̂Þ is used; in this sense the
deterministics are assumed to be correctly specified.
If r ¼ 1; then different values of u0 induce mean shifts of fytg: But the residuals yi

t

are independent of the mean of fytg; so that no additional assumption concerning u0
is necessary when r ¼ 1: If jrjo1; the assumption on the generation of u0 leads to a
stationary series futg as long as fntg is stationary. While somewhat natural, this
assumption might considerably affect the asymptotic distributions derived below.
See Müller and Elliott (2003) for discussion.
The innovations fntg that underlie the autoregressive process futg have not yet been

given any structure. For most of the asymptotic derivations below, we only need to
impose the following, rather weak condition.

Condition 1. The zero mean process fntg is covariance-stationary with finite
autocovariances gðjÞ ¼ E½ntnt�j	 such that
(a)
 o2 ¼
P1

j¼�1gðjÞ is finite and nonzero,P½sT 	

(b)
 the scaled partial-sum process T�1=2

t¼1 nt ) oW ðsÞ:
In contrast to the reasoning of KPSS, the following derivations employ local-to-
unity asymptotics, i.e. r in (3) is made a function of the sample size such that
r ¼ rT ¼ 1� gT�1; where gX0 is a fixed number. Lemma 2 in Elliott (1999) shows
that under Condition 1, the process ut can then be asymptotically characterized by

T�1=2ðu½Ts	 � u0Þ ) oMðsÞ

�
oW ðsÞ for g ¼ 0;

ozðe�gs � 1Þð2gÞ�1=2 þ o
R s

0
e�gðs�lÞ dW ðlÞ else;

(
ð4Þ

where z is a standard normal variable independent of W ð�Þ: Note that for g40; the
weak limit of the covariance-stationary series T�1=2o�1u½T �	; ~Mð�Þ ¼ Mð�Þ þ

zð2gÞ�1=2; is a stationary continuous time process.
The relationship between (3) and the Data Generating Process (1) assumed by

KPSS is straightforward: For jrjo1; (3) is a special case of (1) under the null
hypothesis of E½u2t 	 ¼ 0 with ct ¼ ut; and for r ¼ 1 (3) is a special case of (1) with
ut ¼ nt and ct ¼ 0: KPSS have derived the properties of Liðl̂Þ under the null
hypothesis of stationarity with standard asymptotics, which corresponds to an
asymptotic reasoning with fixed jrjo1 in (3). As shown below, Liðl̂Þ has radically
different properties in a local-to-unity framework. This raises the question which
asymptotic reasoning inference should be based upon.
The ultimate goal of all asymptotic reasoning is to provide useful small sample

approximations. It was shown elsewhere (cf., for instance, Nabeya and Tanaka
(1990) or Perron and Vodounou (2001)) that local-to-unity asymptotics provide
much more accurate small sample approximations when a series contains a large
autoregressive root than standard (jrjo1 fixed) asymptotics. The following results
may hence be interpreted as more accurate small sample approximations of the
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behavior of tests of stationarity when applied to highly persistent processes, which
include most macroeconomic series in levels.
The local-to-unity process MðsÞ with g40 is an asymptotic representation of a

series that reverts to a constant mean. As long as g40 we thus analyze the behavior
of tests of stationarity under the null hypothesis of stationarity. Given that KPSS-
type tests were designed to detect a small integrated component, one might argue
that the analysis should consider power not only against the ‘purely’ integrated
alternative g ¼ 0; but also against an alternative where the data suitably scaled
converges weakly to Mð�Þ þ kW wð�Þ; where W wð�Þ is a standard Wiener process
independent of Mð�Þ and the constant k describes the relative size of the integrated
component. Such an extension is straightforward; the results below, however, reveal
such poor properties of KPSS-type stationarity tests under the—in almost all
applications at least plausible—null hypothesis of weak mean reversion that the issue
is not pursued further.
From (4), straightforward calculations reveal (cf., for instance, Stock, 1994,

p. 2772) that the residuals yi
t satisfy

T�1=2yi
½Ts	 ) oMiðsÞ; (5)

where MmðsÞ ¼ MðsÞ �
R

MðlÞdl and MtðsÞ ¼ MðsÞ � ð4� 6sÞ
R

MðlÞdl � 6ð2s �

1Þ
R

lMðlÞdl: The asymptotic distribution of the (scaled) numerator of Liðl̂Þ now
follows from an application of the continuous mapping theorem (CMT):

T�4
XT

t¼1

ðSi
tÞ
2
) o2

Z 1

0

Z s

0

MiðlÞdl

� �2
ds: (6)

Note that under local-to-unity asymptotics, the numerator of Liðl̂Þ must be divided
by an additional T2 in order to obtain a stable and nondegenerate asymptotic
distribution. For this to happen, l̂ must hence be of order OpðT

2Þ:
Following KPSS, we first consider estimators of l that are a weighted sum of

sample covariances: Define

l̂kðBT Þ ¼ Ẑð0Þ þ 2
XT

j¼1

k
j

BT

� 	
ẐðjÞ; (7)

where ẐðjÞ ¼ T�1
PT�j

t¼1 yi
ty

i
tþj : The continuous function k : ½0;1Þ ! ½�1; 1	 serves as

the weighting function of the sample autocovariances and is assumed to satisfy
kð0Þ ¼ 1;

R1

0 jkðsÞjdso1 and lims!1 kðsÞ ¼ 0: The bandwidth BT is, for now, a
deterministic function of the sample size. The larger BT the more weight is attached
in (7) to higher-order sample autocovariances. These assumptions on the form of
spectral density estimators are very similar to those made in Andrews (1991) and
encompass all usual weighting schemes. The popular Bartlett estimator with lag
truncation parameter m, for instance, can be represented in this notation with kðxÞ ¼

kBðxÞ ¼ 1� jxj for jxjo1; kBðxÞ ¼ 0 for jxjX1 and BT ¼ m þ 1:
In a standard asymptotic framework it can usually be shown that long-run

variance estimators of the form (7) are consistent when BT ¼ oðT1=2Þ or
BT ¼ oðTÞ—see Andrews (1991). KPSS, for instance, employ a Bartlett weighting
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with BT ¼ oðT1=4Þ in their simulations, and such a choice is also popular in applied
work. Finally, while making BT dependent on the sample, the long-run estimators
suggested by Hobijn et al. (1998) satisfy BT ¼ opðTÞ; too.
The following proposition establishes the behavior of Liðl̂kðBT ÞÞ in a local-to-

unity asymptotic framework when BT ¼ opðTÞ:

Proposition 1. Under Condition 1 and for any g ¼ Tð1� rT ÞX0; if BT ¼ opðTÞ; then

for any critical value cv 2 R; PðLiðl̂kðBT ÞÞ4cvÞ converges to one as T ! 1:

In other words, tests based on Liðl̂kðopðTÞÞÞ reject the null hypothesis of
stationarity with probability one under local-to-unity asymptotics. To demonstrate
the relevance of this result, imagine that the observations yt stem from a discrete
sampling on the ½0; 1	 interval of the continuous time process ~Mð�Þ with g ¼ 70: This
process is highly stationary, the half-life period of a deviation from the mean is less
than 1% of the sample size. It might be that a test based on Liðl̂kðBT ÞÞ with a choice
of bandwidth of order oðTÞ only rarely rejects the null hypothesis of stationarity
when the frequency of the observations is, say, 1

100
(such that T ¼ 100 and y1 ¼

~Mð:01Þ; y2 ¼
~Mð:02Þ; . . . ; y100 ¼

~Mð1Þ). But Proposition 1 implies that, as the
continuous time process is sampled more and more frequently (which leads to a
larger sample size T), there must be a point where the test almost always rejects. As a
real-world example, imagine that real exchange rates are mean reverting with a half-
life of one year. If 100 years of exchange rate data are employed in a test of
stationarity with BT ¼ opðTÞ; then the test is bound to reject the stationarity
hypothesis as the sampling frequency increases from yearly data to monthly data to
daily data, etc.
Proposition 1 also implies consistency of Liðl̂kðBT ÞÞ with BT ¼ opðTÞ in the sense

that an integrated process (g ¼ 0) will be rejected with probability one. This is the
reason that the above-mentioned authors promote bandwidths that are of order
opðTÞ: But Proposition 1 reveals the steep price which has to be paid for this
consistency result: tests of stationarity with BT ¼ opðTÞ control size arbitrarily badly
in the sense that for any amount of mean reversion measured by g ¼ Tð1� rT Þ a
high enough sample frequency will lead to rejection with probability one. This
necessarily leads to a contradiction with the outcome of any reasonable unit root
test, which have nontrivial power for any g40 and at a 5% level achieve power of
about 90% and 70% already for g ¼ 20 in the mean and trend cases, respectively (cf.
Elliott, 1999).
Taking the asymptotic result of Proposition 1 as an approximation for finite

samples, one would expect frequent rejections of Liðl̂kðBT ÞÞ with BT ¼ oðTÞ for
highly autocorrelated, but stationary series. And this is precisely what Caner and
Kilian (2001) find in a Monte Carlo study with a Bartlett weighting and BT ¼

½12ðT=100Þ1=4	: At a 5% nominal level and in a Gaussian sample with T ¼ 100; for
instance, the rejection rates are 55.4% for an autoregressive process of order one and
root 0:95 in the mean case and 38.0% in the trend case (Caner and Kilian (2001),
Table 1).
We now turn to the asymptotic analysis of Liðl̂Þ for some classes of long-run

variance estimators that are of order OpðT
2Þ: A first such class is given by l̂kðhTÞ;
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where l̂kð�Þ is defined above and h is positive constant—this corresponds to the
estimators recently suggested by Kiefer and Vogelsang (2002). A second OpðT

2Þ

estimator arises when l̂ is estimated by an autoregressive long-run variance
estimator. These estimators are popular in time series econometrics and try to
capture the correlations in fntg by an autoregressive parametrization. l̂AR is
computed by running the ordinary least squares regression

yi
t ¼ a1y

i
t�1 þ a2y

i
t�2 þ � � � þ apyi

t�p þ et (8)

followed by the computation of l̂AR ¼ ŝ2e=ð1�
Pp

i¼1 âiÞ
2; where âi and ŝ2e are the

estimated parameters in (8).
A third class of estimators first ‘prewhitens’ the data by a low-order autoregression

just like (8) and then applies a standard spectral density estimator to the residuals—
see Andrews and Monahan (1992) for further discussion. Specifically, we consider a
prewhitening scheme where the autoregression is of order one, i.e.

yi
t ¼ rwyi

t�1 þ ew;t (9)

and the spectral density estimator ô2
e of the residuals êw;t is constructed analogously

to (7) with a bandwidth bT ¼ oðT1=2Þ: The long-run variance estimator is then given
by l̂PW ¼ ð1� r̂wÞ

�2ô2
e :

Finally, we consider spectral density estimators (7) where the bandwidth is
endogenously determined by the data, as suggested by Andrews (1991). The
computation of the bandwidth requires the estimation of a parametric model, and we
follow Andrews (1991) by estimating the AR(1) specification (9). We concentrate the
discussion on two kernels, the Bartlett kernel kBð�Þ introduced above and the
quadratic spectral kernel kQSð�Þ as defined in Andrews (1991, p. 821). The
endogenous bandwidths for these two kernels are given by

BB;T ¼ 1:1447
4r̂2w

ð1� r̂wÞ
2
ð1þ r̂wÞ

2
T

" #1=3
and

BQS;T ¼ 1:3221
4r̂2w

ð1� r̂wÞ
4

T

" #1=5
ð10Þ

and the resulting estimators are denoted l̂A;B and l̂A;QS; respectively.
2

2For the AR(p) estimator, the prewithening estimator and the automatic bandwidth selection estimators

of the long-run variance the question arises how to treat explosive estimates of the AR processes. The

probability of such estimates is below 5% in the mean case and below 1% in the trend case even for an

integrated process, at least asymptotically, due to the heavily skewed distribution of the estimator of the

largest autoregressive root. In order to keep things as straightforward as possible, we chose to treat

negative ð1� r̂Þ just like their positive counterparts. An alternative solution is to trim the estimates away

from zero, as suggested in Andrews (1991) and Andrews and Monahan (1992). These authors propose a

trimming at r̂ ¼ :97 for T ¼ 128; which corresponds to a trimming of Tð1� r̂Þ at 3:84: Results not

reported here show that such a trimming has very little impact on the asymptotic local rejection rates of

Ltðl̂Þ for any considered l̂; moderately increases asymptotic rejection rates of Lmðl̂ARÞ and Lmðl̂PWÞ and

leads to very few rejections of Lmðl̂A;BÞ and Lmðl̂A;QSÞ at a 5% level.
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Proposition 2. For any g ¼ Tð1� rT ÞX0;
(i)
 under Condition 1

Liðl̂kðhTÞÞ )

R 1

0

R s

0 MiðlÞdl
� 
2

ds

2
R 1

0 kðhlÞ
R 1�s

0 MiðlÞMiðs þ lÞdl ds
;

(ii)
 if fntg is a stable autoregressive process of order p � 1 where the underlying

disturbances fetg satisfy E½etjet�1; et�2; . . .	 ¼ 0; E½e2t 	 ¼ s240 and E½e4t 	o1

Liðl̂ARÞ )

R 1

0

R s

0 MiðlÞdl
� 
2

ds½Mið1Þ2 � Mið0Þ2 � 1	2

4½
R

MiðsÞ2 ds	2
;

(iii)
 if in addition to Condition 1, fntg satisfies Assumption A of Andrews (1991),
bT ! 1 and bT ¼ oðT1=2Þ

Liðl̂PWÞ )

R 1

0
½
R s

0
MiðlÞdl	2 ds½Mið1Þ2 � Mið0Þ2 � gð0Þo�2	2

4½
R

MiðsÞ2 ds	2
;

(iv)
 under Condition 1, for j 2 fB;QSg

Liðl̂A;jÞ )

R 1

0

R s

0
MiðlÞdl

� 
2
ds

2
R 1

0 kjð
l

BA;j
Þ
R 1�s

0 MiðlÞMiðs þ lÞdl ds
;

where BA;B ¼ 1:8171
2
R

MiðsÞ2 ds

Mið1Þ2 � Mið0Þ2 � gð0Þo�2

�����
�����
2=3

and

BA;QS ¼ 1:7445
2
R

MiðsÞ2 ds

Mið1Þ2 � Mið0Þ2 � gð0Þo�2

�����
�����
4=5

:

The additional assumption that is invoked in part (iii) of the proposition is
technical and requires fourth-order stationarity and certain bounds on the fourth-
order cumulants of fntg—see Andrews (1991) for details. The condition on fntg in
part (ii) is such that the proof can rely on the reasoning of Stock (1991).
The asymptotic distributions of Liðl̂PWÞ; Liðl̂A;BÞ and Liðl̂A;QSÞ of Proposition

2 depend on the ratio gð0Þ=o2; whereas this is not the case for Liðl̂kðhTÞÞ and Liðl̂ARÞ:
The local-to-unity asymptotic rejection profiles of the two former versions of Liðl̂Þ are
hence not only a function of g; but also of the correlation structure of fntg: Note that
when gð0Þ ¼ o2; the asymptotic distributions of Liðl̂PWÞ and Liðl̂ARÞ coincide.
Fig. 1 depicts the asymptotic rejection rates of Liðl̂kðhTÞÞ with a Bartlett weighting

k ¼ kB and h ¼ 0:05; 0:1 and 0:2; Liðl̂ARÞ; Liðl̂PWÞ; Liðl̂A;BÞ and Liðl̂A;QSÞ for the 5%
nominal level as a function of g: For Liðl̂PWÞ; Liðl̂A;BÞ and Liðl̂A;QSÞ; rejection rates
are investigated when gð0Þ=o2 is set to 1

2
; 1 and 2, respectively. The asymptotic

behavior of Liðl̂Þ is very different for the different estimators l̂ considered. A test
based on Liðl̂kBðhTÞÞ has arejection profile that is monotonically decreasing in g; and
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Fig. 1. Asymptotic rejection rates of stationarity tests based on various long-run variance estimators.
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larger values of h lead to fewer rejections. As the rate of mean reversion, g; increases,
the rejection rates approach the nominal level. Liðl̂ARÞ leads to a rate of rejections
that is consistently below the level and increases in g: This increasing slope is also
found for Liðl̂PWÞ; but there the frequency of rejections depends crucially on the
value of gð0Þ=o2: When this ratio is 2, the test rejects much more often than Liðl̂ARÞ;
and for gð0Þ=o2 ¼ 1

2
the test practically ceases to reject. A reversed picture can be

found for Liðl̂A;BÞ and Liðl̂A;QSÞ: Here, the smaller value of gð0Þ=o2 leads to more
rejections.

Part (i) of Proposition 2 implies that it is the ratio of the bandwidth BT to the
sample size T that determines the behavior of tests of stationarity in highly
autocorrelated series. For a sample size of T ¼ 100 and a Bartlett weighting window,
for instance, a choice of BT ¼ 10 will approximately yield a test of stationarity with
5% nominal level with power of 70% and 50% against an integrated process in the
mean and trend case, respectively, and size will be roughly 20% when the largest
autoregressive root is r ¼ 1� 10=100 ¼ 0:9: Caner and Kilian (2001) simulate
Gaussian first-order autoregressive processes with T ¼ 100 and a root of 0:9: They
find for a Bartlett window and BT ¼ 13 that size is 17.6% in the mean case and
18.6% in the trend case.

Part (iii) of Proposition 2 explains Lee’s (1996) results from a Monte Carlo study,

in which he find that the rejection rates of Liðl̂PWÞ against a stationary process are
well within the nominal level, but power against a pure random walk is also far
below the nominal level. Furthermore, in the light of part (iv) of Proposition 2 and

Fig. 1, Engel’s (2000) observation that Lmðl̂A;BÞ has very low power in 100 years of
simulated quarterly exchange rate data which consists of a slowly mean reverting
component (g � 30) and a random walk component is no longer surprising.

All of the tests considered in Proposition 2 are inconsistent in the sense that they
fail to reject an integrated process (g ¼ 0) with probability one. A similar point,
although without providing asymptotic rejection rates, has already been made by
Choi (1994) and Hobijn et al. (1998) with respect to Liðl̂PWÞ; Liðl̂A;BÞ and
Liðl̂A;QSÞ: Moreover, Hobijn et al. (1998) argue by a different set of arguments
that the parametric correction suggested by Leybourne and McCabe (1994)
and refined in Leybourne and McCabe (1999) suffers from the same drawback.
Small sample simulations by Hobijn et al. (1998) reveal a rejection rate of the
Leybourne and McCabe (1994) test of around 30% for processes with a
dominating random walk. At least qualitatively, the Leybourne and McCabe
tests therefore seem to behave similarly to KPSS-type tests with an OpðTÞ

bandwidth. A more detailed asymptotic analysis, however, is beyond the scope of
this paper.

Even for highly mean reverting series with g ¼ 50; only the size of Liðl̂kBðhTÞÞ with
h ¼ 0:1; 0:2 and Liðl̂ARÞ and, when gð0Þ=o2 ¼ 1; Liðl̂A;BÞ; Liðl̂A;QSÞ and Liðl̂PWÞ; are
close to the nominal level of 5%. Nevertheless, when compared to the asymptotic
behavior of Liðl̂kðBT ÞÞ with BT ¼ opðTÞ revealed in Proposition 1, it still seems
relatively preferable to use one of these long-run variance estimators for highly
autocorrelated time series.
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3. Comparison with optimal stationarity tests

One could conclude from the results of the last section that all Liðl̂Þ fail to reliably
discriminate between strongly autocorrelated, but stationary and integrated series
and hence should not be used. Such a reasoning does not take into account, however,
that this is true of any statistic: The near observational equivalence between models
with r very close to unity and r ¼ 1 makes it impossible to obtain the ideal
asymptotic rejection profile of no (or rare) rejections for any g40 and rejection with
probability one for g ¼ 0:
It is possible, however, to derive optimal stationarity tests for model (3), that

efficiently discriminate between a null hypothesis of at least a given amount of mean
reversion and the alternative of integration

H0 : gXg040 against H1 : g ¼ 0: (11)

Such an approach requires the specification of a minimal amount of mean reversion
g0 for the null hypothesis, which might or might not be appealing in practice. But
whatever its absolute merits, such an optimal stationarity test is ideally suited to
assess the relative discriminatory power of KPSS-type stationarity tests.
In order to derive asymptotically optimal stationarity tests for model (3),

we note that the optimal unit root test statistics derived by Elliott et al. (1996) and
further studied by Elliott (1999) and Müller and Elliott (2003) are point-optimal
statistics that, based on the Neyman–Pearson Lemma, optimally discriminate
between a fixed level of mean reversion g ¼ g40 and no mean reversion g ¼ 0:
The asymptotic optimality property of the statistics requires Gaussian disturbances,
but allows for unknown and very general correlations. Usually, these
optimal statistics are employed to perform a hypothesis test with integration as
the null hypothesis. But the Neyman–Pearson Lemma is not directional in the sense
that it is the same statistic (the likelihood ratio or a monotonic transformation
thereof) that optimally discriminates between two single hypotheses. A reversal of
the null and alternative hypothesis only requires to reject for large (small) values
when the original null hypothesis was rejected for small (large) values of the test
statistic.
In the local-to-unity asymptotic framework an optimal test of stationarity may

hence be based on an optimal unit root test statistic. Such a test maximizes the
(positive) difference of rejection rates at g ¼ 0 and g ¼ g: While not achieving the
ideal rejection profile either, this test maximizes power at g ¼ 0 for a given size at
g ¼ g; or, equivalently, minimizes mistaken rejections when g ¼ g for a given power
at g ¼ 0: The question remains how to choose g; but Elliott (1999) finds that the
asymptotic properties of the optimal statistics are rather insensitive to the specific
choice of g. In other words, the optimal statistic for a specific g has also close to
optimal discriminating power for values of gag: We follow Elliott’s (1999)
recommendation and set g ¼ 10 in the mean case and g ¼ 15 in the trend case in
the following analysis.
Following Müller and Elliott (2001) the asymptotically optimal statistic to

discriminate between r ¼ 1 and rT ¼ 1� gT�1 in model (3) is, in the notation
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developed here, given by

QiðgÞ ¼ qi
1ðô

�1T�1=2yi
T Þ

2
þ qi

2ðô
�1T�1=2yi

1Þ
2

þ qi
3ðô

�1T�1=2yi
T Þðô

�1T�1=2yi
1Þ þ qi

4ô
�2T�2

XT

t¼1

ðyi
tÞ
2; ð12Þ

where large values are evidence of nonstationarity, q
m
1 ¼ q

m
2 ¼ gð1þ gÞ=ð2þ gÞ; q

m
3 ¼

�2g=ð2þ gÞ; q
m
4 ¼ g2 and, qt

1 ¼ qt
2 ¼ g2ð8þ 5g þ g2Þ=ð24þ 24g þ 8g2 þ g3Þ; qt

3 ¼

2g2ð4þ gÞ=ð24þ 24g þ 8g2 þ g3Þ; qt
4 ¼ g2 and ô2 is a consistent estimator of the

long-run variance o2 of fntg under local-to-unity asymptotics. (The qi
j differ from

those in Theorem 3 of Müller and Elliott (2001) because their yi
t is defined

differently.) An example for a consistent estimator of o2 is the spectral density
estimator ô2

e of the residual of regression (9); see the proof of part (iii) of Proposition
2 for details. Also see Stock (1994) for a general discussion. The local-to-unity
asymptotic distribution of QiðgÞ follows directly from the CMT

QiðgÞ ) qi
1M

ið1Þ2 þ qi
2M

ið0Þ2 þ qi
3M

ið1ÞMið0Þ þ qi
4

Z
MiðsÞ2 ds: (13)

If one wanted to employ a stationarity tests based on QiðgÞ; one would need to
choose g0 and determine the appropriate critical value such that the hypothesis test
(11) is correctly sized. For the comparison of the efficient stationarity tests and Liðl̂Þ
in Fig. 2, however, it suffices to find critical values such that the rejection rates of the
efficient tests coincide with the rejection rates of Liðl̂Þ at g ¼ 0:3 In the standard
terminology for tests of stationarity we compare ‘size control’ by looking at rejection
rates for g40: For all considered l̂; the rejection profile of Liðl̂Þ (fine lines) is
consistently above the rejection profile of the corresponding QiðgÞ (fat lines) for g40:
This must be true for g ¼ 10 in the mean case and g ¼ 15 in the trend case by the
asymptotic optimality property of Qmð10Þ and Qtð15Þ; but also holds for all other
considered values of g: The relative inferiority of Liðl̂Þ is most striking for
Liðl̂kBðhTÞÞ; and still considerable for Liðl̂A;QSÞ and Liðl̂A;BÞ:
The discriminating power of Liðl̂Þ in highly autocorrelated series must hence be

considered poor compared to what can be achieved. In other words, Liðl̂Þ contains
much less information about the integration or stationarity of the series than is
available. In a ranking of the long-run estimators considered here, tests of
stationarity constructed with the automatic bandwidth selection procedures
suggested by Andrews (1991) do relatively best. Their awkward dependence on the
correlation structure of fntg via gð0Þ=o2 could be avoided by either running the
AR(p) regression (8) instead of (9) and by using r̂p ¼

Pp
i¼1âi in place of r̂w; or by a

correction in the spirit of Phillips and Perron (1988). Nevertheless, if the stationarity
of a strongly autocorrelated series is in doubt, it seems not advisable to base
3The depicted local-to-unity analysis does not necessarily imply that the efficient stationarity tests

control size under standard asymptotics, whereas the critical values of Liðl̂Þ are chosen for this purpose.

But more detailed calculations in the working paper of this contribution reveal that the efficient tests are in

fact undersized under standard asymptotics.
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Fig. 2. Asymptotic rejection rates of efficient stationarity tests.
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inference on KPSS-type tests. An application of optimal unit root test statistics
yields far superior results.
4. Conclusions

This paper has analyzed the size and power properties of KPSS-type tests of
stationarity in the presence of high autocorrelation in an asymptotic framework. The
analysis reveals a strong dependence of the behavior of such tests on the estimator of
the long-run variance, and the tests are shown to possess highly undesirable
properties in such circumstances.
The undesirability of the behavior of tests of stationarity in highly autocorrelated

time series comes in two forms. On the one hand, for many estimators of the long-
run variance that are employed in practice, tests are bound to reject the null
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hypothesis of stationarity even if the true process is strongly mean-reverting for a
high enough sample frequency. In finite samples, this leads at least to a very
awkward dependence of the outcome of the tests on the sampling frequency
of the observations, where a higher frequency increases the probability of a
mistaken rejection. On the other hand, while preventing a degenerate behavior,
other estimators of the long-run variance yield tests with an undesirable rejection
profile. Not only are these tests inconsistent in the sense that they reject integrated
series with probability far below one; their discriminating power between stationary
and integrated series is also much inferior compared to optimal tests. While KPSS-
type tests of stationarity are a valuable tool in other contexts, these properties cast
strong doubts on their usefulness when applied to strongly persistent macroeco-
nomic series.
One alternative is to use tests of stationarity that are based on optimal unit root

statistics, but that reject for values of the statistic that indicate stationarity.
The appeal of such a solution is limited, however, since the decision of such a test is a
one-to-one mapping of the p-value of the corresponding optimal unit root test,
so no additional information is gained by separately computing such a test of
stationarity. This outcome also makes intuitive sense: If a statistic optimally
summarizes the mean-reverting property of a time series, then both a hypothesis of
mean reversion (stationarity) and a hypothesis of no mean reversion (integration)
should be decided by this statistic. Following this reasoning further leads to the
(almost) optimal confidence intervals for the mean reverting parameter, derived by
Elliott and Stock (2001), as the best description of our knowledge about potential
mean reversion.
The findings of the present paper might also have implications for higher-order

systems. The multivariate analogue of tests of stationarity are cointegration tests
with the null hypothesis of cointegration, and generalizations of KPSS statistic for
such cases have been derived by Shin (1994) and Harris and Inder (1994), among
others. If the stationary linear combination of the series is only slowly mean
reverting, then these methods are likely to suffer from drawbacks similar to those
found here for univariate tests of stationarity.
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Appendix A

A.1. Proof of Proposition 1

From PðLiðl̂kðBT ÞÞ4cvÞ ¼ PðT�4
PT

t¼1 ðS
i
tÞ
24cvT�2l̂kðBT ÞÞ and (6) it suffices to

show that T�2l̂kðBT Þ!
p
0: Now with T�1ẐðjÞpðsupt T�1=2jyi

tjÞ
2 for all j we have for



ARTICLE IN PRESS

U.K. Müller / Journal of Econometrics 128 (2005) 195–213210
all T4T1=2B
1=2
T

T�2jl̂kðBT Þjp2ðsup
t

T�1=2jyi
tjÞ

2T�1
XT1=2B

1=2
T

j¼0

k
j

BT

� 	����
����þ XT

j¼T1=2 B
1=2
T

þ1

k
j

BT

� 	����
����

2
64

3
75:

From Condition 1 and the CMT, ðsupt T�1=2jyi
tjÞ

2
) o2ðsups jM

iðsÞjÞ2;
so that ðsupt T�1=2jyi

tjÞ
2
¼ Opð1Þ: Furthermore, since jkðsÞjp1 for

all s, T�1
PT1=2B

1=2
T

j¼0 jkð j
BT
ÞjpT�1=2B

1=2
T !

p
0; and from lims!1 kðsÞ ¼ 0;

T�1
PT

j¼T1=2 B
1=2
T

þ1
jkð j

BT
Þj!

p
0; such that T�2jl̂kðBT Þj!

p
0; completing the proof.

A.2. Proof of Proposition 2

(i) The result is proved along the same lines as part (iv) below and is omitted.
(ii) Part (ii) is an implication of the results of Stock (1991). We concentrate on the

time trend case, the reasoning for the mean case is analogous. Consider the least-
squares regression

ut ¼ c þ dt þ b1ut�1 þ b2 Dut�1 þ � � � þ bp Dut�p�1 þ et

¼ X 0
tbþ et ð14Þ

with X t ¼ ð1; t; ut�1;Dut�1; . . . ;Dut�pþ1Þ
0 and b ¼ ðc; d; b1; . . . ; bpÞ

0:
Let L ¼ diagðT1=2;T3=2;T ;T1=2Ip�1Þ: Then Stock’s results imply that Lðb̂� bÞ has

a nondegenerate asymptotic distribution,

Tðb̂1 � 1Þ )
s
o

R
MiðsÞdW ðsÞR

MiðsÞ2 ds
� g

" #

and the standard error of regression (14) converges to s in probability. We cannot
directly apply these results, however, because regression (8) does not contain a mean
and a time trend, but rather has yt

t in place of ut:
Now clearly a substitution of ut by yt

t in (14) does not alter the estimated
coefficient vector b̂ ¼ ðb̂1; . . . ; b̂pÞ

0; and T�3=2PT
t¼pþ1 yt

t�jð1;T
�1tÞ0 !

p
0 for j ¼ 0; 1

and T�1
PT

t¼pþ1 Dyt
t�jð1;T

�1tÞ0 !
p
0 for j ¼ 1; . . . ; p � 1; so that in the appropriate

scaling, both the regressors and the explained variable are asymptotically orthogonal

to the mean and the time trend. It follows that the coefficient vector b̂
n

¼ ðb̂
n

1 ; . . . ; b̂
n

pÞ
0

of the short least squares regression

yt
t ¼ bn

1yt
t�1 þ bn

2 Dyt
t�1 þ � � � þ bn

p Dyt
t�p�1 þ ent (15)

satisfies diagðT ;T1=2Ip�1Þðb̂
n

� b̂Þ!
p
0; and the standard error of regression (15)

converges to s in probability, too.
But the regressors in regression (8) in the trend case are a linear transformation

of the regressors in (15). By standard linear regression algebra 1�
Pp

j¼1 âj ¼ 1� b̂
n

1 ;
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so that

T�2l̂AR ) o2 g�

R
MiðsÞdW ðsÞR

MiðsÞ2 ds

�����
�����
�2

¼ o2 2
R

MiðsÞ2 ds

Mið1Þ2 � Mið0Þ2 � 1

" #2
:

The result now follows from another application of the CMT.
(iii) We find for the autoregressive estimator in the ‘whitening’ regression (9)

Tð1� r̂wÞ ¼
T�1ðyi

T Þ
2
� T�1ðyi

1Þ
2
� T�1

PT
t¼2 ðDyi

tÞ
2

2T�2
PT

t¼2 ðy
i
t�1Þ

2

)
o2Mið1Þ2 � o2Mið0Þ2 � gð0Þ

2o2
R

MiðlÞ2 dl
;

where the last line follows from suptjDyi
t � ntj ¼ OpðT

�1=2Þ; the law of large numbers
and the CMT. It hence remains to show that the estimator ô2

e of the long-run
variance of ew;t; is consistent for o2: We find for the estimated residuals êw;t

êw;t ¼ yi
t � r̂wyi

t�1

¼ nt þ ðyi
t � ut þ u0Þ � rT ðy

i
t�1 � ut�1 þ u0Þ � ð1� rT Þu0 þ ðrT � r̂wÞy

i
t�1

� nt þ xi
t:

Let VmðsÞ ¼ g
R

MðlÞdl and V tðsÞ ¼ 4g
R

MðlÞdl � 6g
R

lMðlÞdl � ð6
R

MðlÞdl �

12
R

lMðlÞdlÞðgs þ 1Þ: Then from a direct calculation and the CMT

T1=2o�1xi
½Ts	 )

Mið1Þ2 � Mið0Þ2 � gð0Þo�2

2
R

MiðlÞ2 dl
� g

" #
MiðsÞ � ð2gÞ1=2z=2� ViðsÞ;

so that XT � T1=2suptjx
i
tj ¼ Opð1Þ: Under the conditions of part (iii), Proposition 1

of Andrews (1991) implies that T�1
PT

t¼1 n
2
t þ 2

PT
j¼1 kð j

bT
ÞT�1

PT�j
t¼1 ntntþj !

p
o2: But

XT

j¼0

k
j

bT

� 	
T�1

XT�j
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ðntntþj � êw;têw;tþjÞ

�����
�����

p
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k
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����T�3=2XT

XT�j

t¼1

ðT�1=2XT þ jntþjj þ jntjÞ
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jntj
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T�1=2
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j¼0

k
j
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� 	����
����:

Since E½n2t 	 ¼ gð0Þ; E½jntj	pgð0Þ1=2 by Jensen’s inequality, so that
T�1E

PT
t¼1 jntj

h i
pgð0Þ1=2 and T�1

PT
t¼1 jntj ¼ Opð1Þ by Markov’s inequality. Note

that
R1

0 jkðsÞjdso1 implies b�1
T

P1

j¼0 jkð
j

bT
Þj ¼ Opð1Þ; so that T�1=2PT

j¼0 jkð
j

bT
Þj!

p
0

from bT ¼ opðT
1=2Þ: The result now follows from the CMT.
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(iv) Standard arguments show that the mapping f 7!2
R

kð s
Bðf Þ

Þ
R 1�s

0 f ðlÞf ðl þ sÞdl ds

with Bðf Þ ¼ b0
2
R

f ðsÞ2 ds

f ð1Þ2�f ð0Þ2�gð0Þo�2

����
����
b1

for b0; b140 from the set of continuous functions

on the unit interval to the reals has a discontinuity set of measure zero with respect to
the sup norm when applied to Mð�Þ; so that the result follows from the CMT.
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