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a b s t r a c t

We suggest approximating the distribution of the sum of independent and identi-
cally distributed random variables with a Pareto-like tail by combining extreme value
approximations for the largest summands with a normal approximation for the sum
of the smaller summands. If the tail is well approximated by a Pareto density, then
this new approximation has substantially smaller error rates compared to the usual
normal approximation for underlying distributions with finite variance and less than
three moments. It can also provide an accurate approximation for some infinite variance
distributions.
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1. Introduction

Consider approximations to the distribution of the sum Sn =
∑n

i=1 Xi of independent mean-zero random variables Xi
with distribution function F . If σ 2

0 =
∫
x2dF (x) exists, then n−1/2Sn is asymptotically normal by the central limit theorem.

The quality of this approximation is poor if maxi≤n |Xi| is not much smaller than n1/2, since then a single non-normal
random variable has non-negligible influence on n−1/2Sn. Extreme value theory provides large sample approximations
to the behavior of the largest observations, suggesting that it may be fruitfully employed in the derivation of better
approximations to the distribution of Sn.

For simplicity, consider the case where F has a light left tail and a heavy right tail. Specifically, assume
∫ 0

−∞
|x|3dF (x) <

∞ and

lim
x→∞

1 − F (x)
x−1/ξ = ω1/ξ , ω > 0 (1)

for 1/3 < ξ < 1, so that the right tail of F is approximately Pareto with shape parameter 1/ξ and scale parameter ω. Let
Xi:n be the order statistics. For a given sequence k = k(n), 1 ≤ k < n, split Sn into two pieces

Sn =

n−k∑
i=1

Xi:n +

k∑
i=1

Xn−i+1:n. (2)

Note that conditional on the n − kth order statistic Tn = Xn−k+1:n,
∑n−k

i=1 Xi:n has the same distribution as
∑n−k

i=1 X̃i, where
X̃i are i.i.d. from the truncated distribution F̃Tn (x) with F̃t (x) = F (x)/F (t) for x ≤ t and F̃t (x) = 1 otherwise. Let µ(t) and
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σ 2(t) be the mean and variance of F̃t . Since F̃Tn is less skewed than F , one would expect the distributional approximation
(denoted by ‘‘

a
∼’’) of the central limit theorem,

n−k∑
i=1

Xi:n|Tn
a
∼ (n − k)µ(Tn) + (n − k)1/2σ (Tn)Z for Z ∼ N (0, 1) (3)

to be relatively accurate. At the same time, extreme value theory implies that under (1),

k∑
i=1

Xn−i+1:n
a
∼ nξω

k∑
i=1

Γ
−ξ

i for Γi =

i∑
j=1

Ej, Ej ∼ i.i.d. exponential. (4)

Combining (3) and (4) suggests

Sn
a
∼ n1/2σ (nξΓ

−ξ

k )Z + (n − k)µ(nξΓ
−ξ

k ) + nξω

k∑
i=1

Γ
−ξ

i (5)

with Z independent of (Γi)ki=1.
If ξ < 1/2, the approximate Pareto tail (1) and E[X1] = 0 imply

µ(x) ≈ −
ω1/ξx1−1/ξ

(1 − ξ )(1 − (x/ω)−1/ξ )

and σ 2(x) ≈ σ 2
0 − ω1/ξ 1

1−2ξ x
2−1/ξ for x large. From (n − k)/(n − Γk)

a
∼ 1, this further yields

Sn
a
∼ n1/2

(
σ 2
0 −

ω2

1 − 2ξ
(Γk/n)1−2ξ

)1/2

Z − nξ ω

1 − ξ
Γ

1−ξ

k + nξω

k∑
i=1

Γ
−ξ

i (6)

which depends on F only through the unconditional variance σ 2
0 and the two tail parameters (ω, ξ ). Note that E[Γ

−ξ

i ] =

Γ (i − ξ )/Γ (i) and E[Γ
1−ξ

k ] = Γ (1 + k − ξ )/Γ (k) = (1 − ξ )
∑k

i=1 Γ (i − ξ )/Γ (i), so the right-hand side of (6) is the sum
of a mean-zero right skewed random variable, and a (dependent) random-scale mean-zero normal variable.

Our main Theorem 1 provides an upper bound on the convergence rate of the error in the approximation (6). The proof
combines the Berry–Esseen bound for the central limit theorem approximation in (3) and the rate result in Corollary 5.5.5
of Reiss (1989) for the extreme value approximation in (4). If the tail of F is such that the approximation in (4) is accurate,
then for both fixed and diverging k the error in (6) converges to zero faster than the error in the usual mean-zero normal
approximation. The approximation (6) thus helps illuminate the nature and origin of the leading error terms in the first
order normal approximation, as derived in Chapter 2 of Hall (1982), for such F . We also provide a characterization of the
bound minimizing choice of k.

If ξ > 1/2, then the distribution of n−ξ Sn converges to a one-sided stable law with index ξ . An elegant argument
by LePage et al. (1981) shows that this limiting law can be written as ω

∑
∞

i=1 Γ
−ξ

i . The approximation (5) thus remains
potentially accurate under k → ∞ also for infinite variance distributions. To obtain a further approximation akin to (6),
note that (1) implies σ 2(ωx) − σ 2(ωy) ≈ (ω2/ξ )

∫ x
y t1−1/ξdt for large x, y. Let un = (n/k)ξ . Then

Sn
a
∼ n1/2

(
σ 2(ωun) +

ω2

ξ

∫ (n/Γk)ξ

un
y1−1/ξdy

)1/2

Z − nξ ω

1 − ξ
Γ

1−ξ

k + nξω

k∑
i=1

Γ
−ξ

i (7)

which depends on F only through the tail parameters (ω, ξ ) and the sequence of truncated variances σ 2(ωun). The
approximation (7) could also be applied to the case ξ < 1/2, so that one obtains a unifying approximation for values
of ξ both smaller and larger than 1/2. Indeed, for F mean-centered Pareto of index ξ , the results below imply that for
suitable choice of k → ∞, this approximation has an error that converges to zero much faster than the error from the
first order approximation via the normal or non-normal stable limit for ξ close to 1/2. The approach here thus also sheds
light on the nature of the leading error terms of the non-normal stable limit, such as those derived by Christoph and Wolf
(1992).

For ξ > 1/2, the idea of splitting up Sn as in (2) and to jointly analyze the asymptotic behavior of the pieces is
already pursued in Csörgö et al. (1988). The contribution here is to derive error rates for resulting approximation to the
distribution of the sum, especially for 1/3 < ξ < 1/2, and to develop the additional approximation of the truncated mean
and variance induced by the approximate Pareto tail.

The next section formalizes these arguments and discusses various forms of writing the variance term and the
approximation for the case where both tails are heavy. Section 3 contains the proofs.
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2. Assumptions and main results

The following condition imposes the right tail of F to be in the δ-neighborhood of the Pareto distribution with index
ξ , as defined in Chapter 2 of Falk et al. (2004).

Condition 1. For some x0, δ, ω, LF > 0 and 1/3 < ξ < 1, F (x) admits a density for all x ≥ x0 of the form

f (x) = (ωξ )−1(x/ω)−1/ξ−1(1 + h(x)) (8)

with |h(x)| ≤ LFx−δ/ξ uniformly in x ≥ x0.

As discussed in Falk et al. (2004), Condition 1 can be motivated by considering the remainder in the von Mises condition
for extreme value theory. It is also closely related to the assumption that the tail of F is second order regularly varying,
as studied by de Haan and Stadtmüller (1996) and de Haan and Resnick (1996). Many heavy-tailed distributions satisfy
Condition 1: for the right tail of a student-t distribution with ν degrees of freedom, ξ = 1/ν and δ = 2ξ , for the tail
of a Fréchet or generalized extreme value distribution with parameter α, ξ = 1/α and δ = 1, and for an exact Pareto
tail, δ may be chosen arbitrarily large. In general, shifts of the distribution affect δ; for instance, a mean-centered Pareto
distribution satisfies Condition 1 only for δ ≤ ξ . See Remark 4 below.

Not all heavy-tailed distributions in the domain of attraction of a Fréchet limit law satisfy Condition 1. A density of
the form (8) with h(x) = 1/log(1 + x), for example, does not. Under some additional regularity conditions on the von
Mises remainder term, Theorem 3.2 of Falk and Marohn (1993) shows Condition 1 to be necessary to obtain an error
rate of extreme value approximations of order n−δ for δ > 0. Roughly speaking, Condition 1 thus merely formalizes the
assumption that extreme value theory provides accurate approximations.

We write C for a generic positive constant that does not depend on k or n, not necessarily the same in each instance
it is used.

Theorem 1. Under Condition 1,
(a) for 1/3 < ξ < 1/2

sup
s

⏐⏐⏐⏐⏐P(n−1/2Sn ≤ s) − P

(
n1/2

(
σ 2
0 −

ω2

1 − 2ξ
(Γk/n)1−2ξ

)1/2

Z

−nξ ω

1 − ξ
Γ

1−ξ

k + nξω

k∑
i=1

Γ
−ξ

i ≤ sn1/2

) ⏐⏐⏐⏐⏐ ≤ C · R(k, n, ξ , δ)

(b) for 1/3 < ξ < 1, un = (n/k)ξ and an = (n log n)−1/2 for ξ = 1/2 and an = n−max(ξ,1/2) otherwise,

sup
s

⏐⏐⏐⏐⏐P(anSn ≤ s) − P

⎛⎝n1/2

(
σ 2(ωun) +

ω2

ξ

∫ (n/Γk)ξ

un
y1−1/ξdy

)1/2

Z

−nξ ω

1 − ξ
Γ

1−ξ

k + nξω

k∑
i=1

Γ
−ξ

i ≤ s/an

) ⏐⏐⏐⏐⏐ ≤ C · R(k, n, ξ , δ)

where

R(k, n, ξ , δ) =

{
n−1/2(n/k)3ξ−1

+ (k/n)δk1/2 + k/n for 1/3 < ξ < 1/2
k−ξ

+ (k/n)δk1/2 + k/n for 1/2 ≤ ξ < 1.

It is straightforward to characterize the rate for k which minimizes the bound R(k, n, ξ , δ). For two positive sequences
an, bn, write an ≍ bn if 0 < lim inf an/bn ≤ lim supn→∞ bn/an < ∞.

Lemma 1. Let k∗
≍ nα∗

with

α∗
=

⎧⎨⎩ max(min
(

6ξ−1
6ξ ,

6ξ+2δ−3
6ξ+2δ−1

)
, 0) for 1/3 < ξ < 1/2

min
(

2δ
1+2(δ+ξ ) ,

1
1+ξ

)
for 1/2 ≤ ξ < 1.

Then mink≥1 R(k, n, ξ , δ) ≍ R(k∗, n, ξ , δ) ≍ nβ∗

with

β∗
=

⎧⎨⎩
−δ for δ ≤ 3(1/2 − ξ )
−

3+2δ−6ξ
12ξ+4δ−2 for 3(1/2 − ξ ) < δ ≤ 1/2 + 3ξ

−
1
6ξ for 1/2 + 3ξ < δ

for 1/3 < ξ < 1/2, and β∗
= −ξα∗ for 1/2 ≤ ξ < 1.
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Fig. 1. Error convergence rates nβ of refined approximation.

Remarks.
1. For 1/3 < ξ < 1/2, Hall (1979) shows that under Condition 1, the error in the usual normal approximation to

the distribution of Sn satisfies sups |P(n−1/2Sn ≤ s) − P(σ0Z ≤ s)| ≍ n1−1/(2ξ ), so convergence is very slow for ξ close to
1/2. For ξ = 1/2, Theorems 3 and 4 in Hall (1980) imply that under Condition 1, (n log n)−1/2Sn converges to a normal
distribution at a logarithmic rate. For any δ > 0, the new approximation with optimal choice of k∗ yields a better rate
nβ∗

for ξ sufficiently close to 1/2, and for sufficiently large δ, the rate is at least as fast as n−1/3 for all 1/3 < ξ ≤ 1/2.
Thus, if the tail of F is sufficiently close to being Pareto in the sense of Condition 1, then the new approximations can
provide dramatic improvements over the normal approximation. Even keeping k fixed improves over the benchmark rate
n1−1/(2ξ ) as long as δ > 1/(2ξ ) − 1 for 1/3 < ξ < 1/2. At the same time, if δ < 1/2, then β∗ is larger than 1 − 1/(2ξ )
for some ξ sufficiently close to 1/3, so the new approximation is potentially worse than the usual normal approximation
(or, equivalently, the optimal choice of k then is k∗

= 0).
For 1/2 < ξ < 1 and under Condition 1, sups |P(n−ξ Sn ≤ s) − P(ω

∑
∞

i=1 Γ
−ξ

i ≤ s)| = O(n1−2ξ
+ n−δ) by Theorem 1

of Hall (1981), and his Theorem 2 shows this rate to be sharp under a suitably strengthened version of Condition 1. More
specifically, for F mean-centered Pareto, the rate is exactly n1−2ξ (cf. Christoph and Wolf (1992), Example 4.25), which,
for any δ > 0, is slower than nβ∗

for ξ sufficiently close to 1/2.
Fig. 1 plots some of these rates.
2. An alternative approximation is obtained by replacing the term in the positive part function in parts (a) and (b) of

Theorem 1 by σ 2(ω(n/Γk)ξ ), with an approximation error that is still bounded by C ·R(k, n, ξ , δ). Substitution of the term
σ 2
0 −

ω2

1−2ξ (Γk/n)1−2ξ in part (a) of Theorem 1 by σ 2
0 −

ω2

1−2ξ (k/n)
1−2ξ (or dropping the integral in part (b) for 1/3 < ξ < 1/2)

induces an additional error of order (k/n)1−2ξk−1/2. In general, this worsens the bound, although even with this further
approximation, the rate can still be better than the baseline rate of n1−1/(2ξ ). For 1/2 < ξ < 1, dropping the integral in part
(b) induces an additional error of order k−ξ , so this simpler approximation still has an error no larger than C ·R(k, n, ξ , δ).

3. Consider the case where both tails of F are approximately Pareto, that is Condition 1 holds for ξ = ξR and δ = δR,
and for some xL, ωL, δL, LL > 0, for all x < −xL, f (x) = (ωLξL)−1(−x/ωL)−1/ξL−1(1 + hL(−x)) with |hL(x)| ≤ LLx−δL/ξL for all
x > xL. Proceeding as in the introduction then suggests

Sn
a
∼ n1/2σ (ωL(n/ΥkL )

ξL , ωR(n/ΓkR )
ξR )Z + nξL

ωL

1 − ξL
Υ

1−ξL
kL

− nξR
ωR

1 − ξR
Γ

1−ξR
kR

+ nξωR

kR∑
i=1

Γ
−ξR
i − nξLωL

kL∑
i=1

Υ
−ξL
i

with (Υi)∞i=1 an independent copy of (Γi)∞i=1 and σ 2(x, y) the variance of X1 conditional on −x ≤ X1 ≤ y. If 1/3 < ξL, ξR < 1,
then arguments analogous to the proof of Theorem 1 show that the error of this approximation is bounded by an
expression of the form C · R(kR, n, ξR, δR) + C · R(kL, n, ξL, δL), and the same form is obtained by replacing σ 2(x, y) with
max(σ 2(ωLvn, ωRun)+ (ω2

L/ξL)
∫ x

vn
t1−1/ξLdt + (ω2

R/ξR)
∫ y
un

t1−1/ξRdt, 0) for vn = (n/kL)ξL and un = (n/kR)ξR (and the integrals
may be dropped for 1/2 < ξ < 1, see the preceding remark). If ξ̄ = max(ξL, ξR) > 1/2 and ξL ̸= ξR, then the first order
approximation to the distribution of n−ξ̄ Sn is a one-sided stable law that does not depend on the smaller tail index. In
contrast, the approximation above reflects the impact of both heavy tails, and in general, ignoring the relatively lighter
tail leads to a worse bound.

4. Suppose the right tail of F is well approximated by a shifted Pareto distribution, that is for some κ ∈ R and
x1, δ1, L1 > 0, dF (x)/dx = f (x) = (ωξ )−1((x − κ)/ω)−1/ξ−1(1 + h(x − κ)) for all x > x1 + κ with |h(y)| ≤ L1y−δ1/ξ

uniformly in y ≥ x1. This implies that F satisfies Condition 1, but only for δ = min(ξ, δ1). Let F0(x) = F (x + κ) and
µ0(x) = −

∫
∞

x ydF0(y)/F0(x). Then µ(x + κ) = −
∫

∞

x+κ
ydF (y)/F (x + κ) = [µ0(x) − κ(1 − F0(x))]/F0(x). Thus, proceeding as
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for (6) yields (Xn−i+1:n)ki=1
a
∼ (κ + nξωΓ

−ξ

i )ki=1 and

Sn
a
∼ κ(k − Γk) − nξ ω

1 − ξ
Γ

1−ξ

k + n1/2σ (ω(n/Γk)ξ + κ)Z + nξω

k∑
i=1

Γ
−ξ

i . (9)

Straightforward modifications of the proof of Theorem 1 show that the approximation error in (9) is bounded by
C · R(k, n, ξ , δ1), and this form for the bound also applies if σ 2(ωx + κ) is further approximated by σ 2(ωx + κ) ≈

(σ 2(ωun) + (ω2/ξ )
∫ x
un

y1−1/ξdy)+ for un = (n/k)ξ . So, for instance, if F is mean-centered Pareto with 1/3 < ξ < 1,
then δ1 may be chosen arbitrarily large, and the approximation (9) with k = k∗ of Lemma 1 yields a substantially better
bound on the convergence rate compared to the original approximation (7) with a bound of the form C · R(k, n, ξ , ξ ). The
cost of this further refinement, however, is the introduction of a tail location parameter κ in addition to the tail scale and
tail shape parameters (ω, ξ ).

3. Proofs

Let X e
n = (Xn−k+1:n, Xn−k:n, . . . , Xn:n). The proof of Theorem 1 relies heavily on Corollary 5.5.5 of Reiss (1989) (also see

Theorem 2.2.4 of Falk et al. (2004)), which implies that under Condition 1,

sup
Bk

|P(n−ξω−1X e
n ∈ Bk) − P((Γ −ξ

k , Γ
−ξ

k−1, . . . , Γ
−ξ

1 ) ∈ Bk)| ≤ C((k/n)δk1/2 + k/n) (10)

where the supremum is over Borel sets Bk in Rk.
Without loss of generality, assume x0 > e, 1 − (x0/ω)−1/ξ > 0 and σ 2

0 − ω1/ξx1−2ξ
0 /(1 − 2ξ ) > 0. We first prove two

elementary lemmas. Let L denote a generic positive constant that does not depend on x or y, not necessarily the same in
each instant it is used.

Lemma 2. Under Condition 1, for all x, y ≥ x0, there exists L > 0 such that
(a) for 1/3 < ξ < 1, |µ(x)| ≤ Lx1−1/ξ and

⏐⏐⏐µ(x) +
ω1/ξ

1−ξ
x1−1/ξ

1−(x/ω)−1/ξ

⏐⏐⏐ ≤ Lx1−(1+δ)/ξ

(b) for 1/3 < ξ < 1/2, |σ 2(x) − σ 2
0 +

ω1/ξ

1−2ξ x
2−1/ξ

| ≤ L(x2−(1+δ)/ξ
+ x2−2/ξ

+ x−1/ξ )
(c) for 1/2 < ξ < 1, L−1x2−1/ξ

≤ σ 2(x) ≤ Lx2−1/ξ and |σ 2(x) − σ 2(y) + (ω1/ξ/ξ )
∫ y
x u1−1/ξdu| ≤ L(|

∫ y
x u1−(1+δ)/ξdu| +

(x2−1/ξ
+ y2−1/ξ )(x−1/ξ

+ y−1/ξ ))
(d) for ξ = 1/2, L−1 log x ≤ σ 2(x) ≤ L log x, and |σ 2(x) − σ 2(y) + (ω1/ξ/ξ )

∫ y
x u1−1/ξdu| ≤ L(|

∫ y
x u1−(1+δ)/ξdu| +

x−1/ξ log y + y−1/ξ log x)
(e) for 1/3 < ξ < 1,

∫
|y|3dF̃x(y) ≤ Lx3−1/ξ .

Proof. (a) Follows from µ(x) = −
∫

∞

x udF (u)/F (x) and, under Condition 1, |
∫

∞

x udF (u) −
ω1/ξ

1−ξ
x1−1/ξ

| ≤
∫

∞

x u|h(u)|du ≤

Lx1−(1+δ)/ξ and |F (x) − 1 + (x/ω)−1/ξ
| ≤

∫
∞

x |h(u)|du ≤ Lx−(1+δ)/ξ .
(b), (c), (d) Since σ 2(x) = −µ(x)2 + (σ 2

0 −
∫

∞

x u2dF (u))/F (x) for ξ < 1/2 and σ 2(x) = −µ(x)2 +
∫ x

−∞
u2dF (u)/F (x)

for ξ ≥ 1/2, the results follow from |1 − F (x)| ≤ Lx−1/ξ , |
∫ y
x u2dF (u) − (ω1/ξ/ξ )

∫ y
x u1−1/ξdu| ≤ L

∫ y
x u1−(1+δ)/ξdu via

Condition 1 and the result in part (a).
(e) Follows from

∫
|u|3dF̃x(u) =

∫ x
−∞

|u − µ(x)|3dF (u)/F (x) ≤ L|µ(x)|3 + L
∫ x

−∞
|u|3dF (u) by the cr inequality and

Condition 1. ■

Lemma 3. Under Condition 1
(a) with T̃n = max(Tn, x0), E[T̃α

n ] ≤ C(n/k)αξ for all 0 ≤ α < 1/ξ
(b) with τ̃n = max(ωnξΓ

−ξ

k , x0), E[τ̃−α
n ] ≤ C(n/k)−αξ for all α ≥ 0.

Proof. (a) Let Yn = (k/n)ξ T̃n, so that we need to show that E[Y α
n ] is uniformly bounded or, equivalently, that P(Yn ≥ y)yα−1

is uniformly integrable. We have, for y > x0

P(Yn ≥ x) = P(Tn ≥ (n/k)ξy)
= P(1 − F (Tn) ≤ 1 − F ((n/k)ξy))
≤ P(Uk:n ≤ L̄y−1/ξk/n)

where Uk:n is the kth order statistic of n i.i.d. uniform [0, 1] variables, and L̄ is such that 1 − F (x) ≤ L̄x−1/ξ for all x ≥ x0.
By Lemma 3.1.2 of Reiss (1989), for all u > 0, P(Uk:n ≤

k
n+1u) ≤ L(eu)k. Thus, P(Yn ≥ y) ≤ L(L̄y−1/ξ e)k ≤ Ly−1/ξ , where the

last inequality holds for all y ≥ (L̄e)ξ , and the result follows.
(b) Clearly, E[τ̃−α

n ] ≤ (n/k)−αξE[(Γk/k)αξ
]. For 0 ≤ αξ ≤ 1, E[(Γk/k)αξ

] ≤ E[Γk/k]1/(αξ )
= 1 while for αξ > 1,

E[(Γk/k)αξ
] = E[(k−1∑k

i=1 Ei)
αξ

] ≤ E[k−1∑k
i=1 E

αξ

i ] ≤ C by two applications of Jensen’s inequality. ■
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Proof of Theorem 1. We can assume k ≤ n
2δ

1+2δ in the following, since otherwise, there is nothing to prove. Let T̃n =

max(Tn, x0). Lemma 3.1.1 in Reiss (1989) implies that under Condition 1, P(T̃n ̸= Tn) ≤ Ck/n. Write Hn(s) = P(n−γ Sn ≤ s).
Assume first 1/3 < ξ ≤ 1/2. We have

Hn(s) = E

[
P

(
n−k∑
i=1

Xi:n − µ(Tn)
(n − k)1/2σ (Tn)

≤
s/an −

∑n
i=k+1 Xi:n − (n − k)µ(Tn)
(n − k)1/2σ (Tn)

⏐⏐X e
n

)]
.

Note that conditional on X e
n , the distribution of

∑n−k
i=1 Xi:n is the same as that of the sum of i.i.d. draws from the truncated

distribution F̃Tn with mean µ(Tn) and variance σ (Tn). The Berry–Esseen bound hence implies

sup
z

⏐⏐⏐⏐⏐E
[
1[

n−k∑
i=1

Xi:n − µ(Tn)
(n − k)1/2σ (Tn)

≤ z]|X e
n

]
− Φ(z)

⏐⏐⏐⏐⏐ ≤ C(n − k)−1/2

∫
|x|3dF̃Tn (x)
σ 3(Tn)

where Φ(z) = P(Z ≤ z). Replacing Tn by T̃n, by Lemma 2(e),
∫

|x|3dF̃T̃n (x) ≤ C(T̃n)3−1/ξ and σ 3(T̃n) ≥ σ 3(x0) a.s. From
Lemma 3(a), E[T̃ 3−1/ξ

n ] ≤ C(n/k)3ξ−1, so that

sup
s

⏐⏐⏐⏐⏐Hn(s) − EΦ

(
s/an −

∑n
i=k+1 Xi:n − (n − k)µ(T̃n)

(n − k)1/2σ (T̃n)

)⏐⏐⏐⏐⏐ ≤ C(n−1/2(n/k)3ξ−1
+ k/n).

From (10), with τn = ω(n/Γk)ξ , sups

⏐⏐Hn(s) − H1
n (s)

⏐⏐ ≤ C(n−1/2(n/k)3ξ−1
+ (k/n)δk1/2 + k/n), where

H1
n (s) = EΦ

(
s/an − ωnξ

∑k
i=1 Γ

−ξ

i − (n − k)µ(τn)
(n − k)1/2σ (τn)

)
.

Let τ̃n = max(τn, x0) and note that by (10), P(τ̃n ̸= τn) ≤ P(T̃n ̸= Tn) + C((k/n)δk1/2 + k/n).
Now focus on the claim in part (a). By Lemma 2(a) and (b), |µ(τ̃n) +

ω1/ξ

1−ξ

τ̃
1−1/ξ
n

1−(τ̃n/ω)−1/ξ | ≤ C τ̃
1−(1+δ)/ξ
n and

|σ 2(τ̃n) − σ 2
0 +

ω1/ξ

1−2ξ τ̃
2−1/ξ
n | ≤ C max(τ̃ 2−(1+δ)/ξ

n , τ̃
2−2/ξ
n , τ̃

−1/ξ
n ) a.s. Thus, exploiting that φ(z) = dΦ(z)/dz and |z|φ(z) are

uniformly bounded, and 0 < σ 2(x0) ≤ σ 2(τ̃n) ≤ σ 2
0 a.s., exact first order Taylor expansions and Lemma 3(b) yield

sup
s

⏐⏐⏐⏐⏐⏐⏐H1
n (s) − EΦ

⎛⎜⎝ s − nξ−1/2ω
∑k

i=1 Γ
−ξ

i − nξ−1/2 ω
1−ξ

Γ
1−ξ

k Ψn(
σ 2
0 −

ω2

1−2ξ (Γk/n)1−2ξ
)1/2

⎞⎟⎠
⏐⏐⏐⏐⏐⏐⏐

≤ C((k/n)δk1/2 + k/n + n1/2(n/k)ξ−1−δ
+ (n/k)2ξ−(1+δ)

+ (n/k)2ξ−2)

where Ψn = 1 +
Γk/n−k/n
1−Γk/n

. Let Γ̃k = n(τ̃n/ω)−1/ξ , so that P(Γ̃k ̸= Γk) = P(τ̃n ̸= τn), and we can replace any Γk by
Γ̃k in the last expression without changing the form of the right hand side. Note that 1 − Γ̃k/n ≥ 1 − (x0/ω)−1/ξ >

0 and σ 2
0 −

ω2

1−2ξ (Γ̃k/n)1−2ξ
≥ σ 2(x0) a.s. Thus, by another exact Taylor expansion and E[Γ

1−ξ

k |Γk/n − k/n|]2 ≤

E[Γ
2−2ξ
k ]E[(Γk/n−k/n)2] ≤ Ck3−2ξ/n2, we can replace Ψn by 1 at the cost of another error term of the form C(n/k)−3/2+ξ .

The result in part (a) now follows after eliminating dominated terms, and the proof of part (b) for 1/3 < ξ < 1/2 follows
from the same steps.

So consider ξ = 1/2. Let An be the event (2k)−ξ
≤ Γ

−ξ

k ≤ (k/2)−ξ . By Chebyshev’s inequality, P(An) =

P(1/2 ≤ k−1∑k
i=1 Ei ≤ 2) ≤ C/k. Conditional on An, and recalling that k ≤ n

2δ
1+2δ , C−1

≤ σ 2(τ̃n)/log(n) ≤ C ,

|σ 2(τ̃n) − σ 2(ωun) −
ω1/ξ

ξ

∫ τn
ωun

y1−1/ξdy| ≤ C((n/k)2ξ−1−δ
+ (k/n) log(n)) and |µ(τ̃n) +

ω1/ξ

1−ξ

τ̃
1−1/ξ
n

1−(τ̃n/ω)−1/ξ | ≤ C(n/k)ξ−1−δ

a.s. by Lemma 2(a) and (d). Exact first order Taylor expansions of H1
n (s) thus yield

sup
s

⏐⏐⏐⏐⏐⏐⏐H1
n (s) − EΦ

⎛⎜⎝ s(log n)1/2 − ωn1/2∑k
i=1 Γ

−1/2
i − n1/2 ω

1−ξ
Γ

1/2
k Ψn(

σ 2(ωun) + 2ω2
∫ (n/Γk)1/2

un
y−1dy

)1/2
⎞⎟⎠
⏐⏐⏐⏐⏐⏐⏐

≤ C(k−1/2
+ (k/n)δk1/2 + k/n + n1/2(n/k)−1/2−δ

+ (k/n)−δ)

and replacing Ψn by unity induces an additional error term of the form C(n/k)−1 by the same arguments as employed
above (and recalling that P(An) ≤ C/k).

We are left to prove the claim for 1/2 < ξ < 1. Note that the distribution of
∑n−k

i=1 Xi:n conditional on X e
n only depends

on X e
n through Tn. Let Φn,t be the conditional distribution function of

∑n−k
i=1

Xi:n−µ(Tn)
(n−k)1/2σ (Tn)

given Tn = t . For future reference,
note that by Theorem 1.1 in Goldstein (2010), ∥Φn,t −Φ∥1 =

∫
|Φ(z) − Φn,t (z)|dz ≤ (n−k)−1/2

∫
|y|3dFt (y)/σ (t)3, so that
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by Lemma 2(c) and (e), ∥Φn,t − Φ∥1 ≤ Cn−1/2t1/(2ξ ) for t ≥ x0. We have

Hn(s) = EΦn,Tn

(
nξ s −

∑n
i=k+1 Xi:n − (n − k)µ(Tn)
(n − k)1/2σ (Tn)

)
so that by (10), sups

⏐⏐Hn(s) − H2
n (s)

⏐⏐ ≤ C((k/n)δk1/2 + k/n), where

H2
n (s) = EΦn,τn

(
nξ s − ωnξ

∑k
i=1 Γ

−ξ

i − (n − k)µ(τn)
(n − k)1/2σ (τn)

)
.

Let U be a uniform random variable on the unit interval, independent of (Γi)∞i=1, and let Φ−1
n,t be the quantile function

of Φn,t . Then

H2
n (s) = P

⎛⎝n−ξ (n − k)1/2σ (τn)Φ−1
n,τn (U) +n−ξ (n − k)µ(τn) + ω

k∑
i=1

Γ
−ξ

i ≤ s

)
.

Since Γ1/Γ2, Γ2/Γ3, . . . , Γk−1/Γk, Γk are independent (cf. Corollary 1.6.11 of Reiss (1989)), the distribution of (Γ1/Γ2)−ξ

conditional on Γ2, Γ3, . . . , Γk is the same as that conditional on Γ2, which by a direct calculation is found to be Pareto
with parameter 1/ξ . Thus, with G(z) = 1[z > 1](1 − z−1/ξ ),

H2
n (s) = EG

⎛⎝⎡⎣s − n−ξ (n − k)1/2σ (τn)Φ−1
n,τn (U) − n−ξ (n − k)µ(τn) − ω

k∑
i=2

Γ
−ξ

i

⎤⎦ /(ωΓ
−ξ

2 )

⎞⎠ .

Note that for arbitrary a ≥ 0 and y ∈ R, with g(z) = dG(z)/dz

|EG(y + aΦ−1
n,t (U)) − EG(y + aZ)| = |

∫
G(y + az)d(Φn,t (z) − Φ(z))|

= a|
∫

(Φ(z) − Φn,t (z))g(y + az)dz|

≤ a sup
y

|g(y)| · ∥Φn,t − Φ∥1

where the second equality stems from Riemann–Stieltjes integration by parts. Conditional on the event An as defined
above, ∥Φn,τ̃n − Φ∥1 ≤ Ck−1/2, C−1(n/k)2ξ−1

≤ σ 2(τ̃n) ≤ C(n/k)2ξ−1, |σ 2(τ̃n) − σ 2(ωun) −
ω1/ξ

ξ

∫ τ̃n
ωun

y1−1/ξdy| ≤

C((n/k)2ξ−1−δ
+ (n/k)2ξ−2) and |µ(τ̃n) +

ω1/ξ

1−ξ

τ̃
1−1/ξ
n

1−(τ̃n/ω)−1/ξ | ≤ C(n/k)ξ−1−δ a.s. by Lemma 2(a) and (c). Thus, by exact first

order Taylor expansions and exploiting that g(z) is uniformly bounded and E[|Z |], E[Γ
ξ

2 ] < C ,

sup
s

|H2
n (s) − H3

n (s)| ≤ C(k−1
+ (k/n)δk1/2 + k/n + k−ξ

+ n1−ξ (n/k)ξ−1−δ
+ n1/2−ξ ((n/k)ξ−1/2−δ

+ (n/k)ξ−3/2))

where

H3
n (s) = EG

([
s − n1/2−ξ

(
σ 2(ωun) +

ω1/ξ

ξ

∫ τn

ωun
y1−1/ξdy

)1/2

Z +
ω

1 − ξ
Γ

1−ξ

k Ψn − ω

k∑
i=2

Γ
−ξ

i

]
/(ωΓ

−ξ

2 )

)
.

As before, we can replace Ψn by unity at the cost of another error term of the form Ck3/2−ξ/n, and the result follows after
eliminating dominating terms.
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