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ABSTRACT
Weconsider inference about tail properties of a distribution froman iid sample, basedonextremevalue the-
ory. All of the numerous previous suggestions rely on asymptotics where eventually, an infinite number of
observations from the tail behave as predicted by extreme value theory, enabling the consistent estimation
of the key tail index, and the construction of confidence intervals using the delta method or other classic
approaches. In small samples, however, extreme value theory might well provide good approximations for
only a relatively small number of tail observations. To accommodate this concern, we develop asymptoti-
cally valid confidence intervals for high quantile and tail conditional expectations that only require extreme
value theory to hold for the largest k observations, for a given and fixed k. Small-sample simulations show
that these “fixed-k” intervals have excellent small-sample coverage properties, and we illustrate their use
with mainland U.S. hurricane data. In addition, we provide an analytical result about the additional asymp-
totic robustness of the fixed-k approach compared to kn → ∞ inference.

1. Introduction

Tail properties of distributions have been an important and
ongoing empirical and theoretical issue. A large literature is
devoted to exploiting implications of extreme value theory and
tail regularity conditions for purposes of estimation and infer-
ence: see Embrechts, Klüppelberg, and Mikosch (1997), Coles
(2001), Reiss and Thomas (2007), Resnick (2007), de Haan and
Ferreira (2007), Beirlant, Caeiro, and Gomes (2012) and Gomes
and Guillou (2015) for reviews and references. As demonstrated
by Balkema and deHaan (1974) and Pickands (1975), a distribu-
tionF is in the domain of attraction of an extreme value distribu-
tionwith tail index ξ if and only if its tail is well approximated by
a generalized Pareto distribution with shape parameter ξ . This
regularity assumption about the tail implies that common tail
properties of interest, such as tail probabilities, high quantiles, or
tail conditional expectations are functions of ξ and the location
and scale of the generalized Pareto distribution, at least approx-
imately. Corresponding estimators of tail properties can hence
be constructed by plugging in estimators of these three param-
eters. The literature contains numerous suggestions along those
lines, reviewed in the surveys mentioned above.

A common feature of all of these approaches is that they
model an increasing number kn → ∞, kn/n → 0 of tail obser-
vation in a sample of size n as stemming from the approximate
generalized Pareto tail. Indeed, under additional regularity con-
ditions, tail index estimators ξ̂ can typically be shown to be con-
sistent and asymptotically Gaussian, enabling the construction
of confidence intervals about tail properties using variants of the
delta method or similar approaches. For these asymptotics to
provide a good approximation, however, kn has to satisfy a del-
icate balance: on the one hand, picking kn small invalidates the
asymptotic approximation of consistency and/or Gaussianity
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of ξ̂ , and thus undermines the distribution theory that justifies
the confidence interval construction.On the other hand, picking
kn large amounts to imposing the generalized Pareto approxima-
tion on a relatively large fraction of the distribution, especially
if n is only moderately large. This can be a poor approximation,
even for underlying F in the domain of attraction of an extreme
value distribution, leading to substantial bias and undersized
confidence intervals. As such, for some combinations of n and
F , no choice of kn leads to satisfactory inference derived under
kn → ∞ asymptotics.

This article develops an alternative asymptotic embedding to
address this issue. In particular, we derive asymptotically valid
inference under the sole assumption that extreme value theory
applies to the k largest observations, for given and fixed k. This
should yield good small-sample approximationswhenever (a lit-
tle more than) a fraction k/n of the tail of F is well approximated
by a generalized Pareto distribution. These “fixed-k” asymp-
totics reflect the small-sample nature of the inference problem
in the sense that only relatively few observations are assumed
to stem from the nicely behaved tail, while previous approaches
crucially exploit that the number of such observations is (even-
tually) large. Our approach is close in spirit to recently devel-
oped alternative asymptotic embeddings in other contexts, such
as the “fixed-b” asymptotics considered by Kiefer and Vogelsang
(2005) in the context of heteroskedasticity and autocorrelation
robust inference, or the small bandwidth asymptotics in non-
parametric kernel estimation studied by Cattaneo, Crump and
Jansson (2010, 2014).

More specifically, we focus in this article on the construc-
tion of confidence intervals for the 1 − h/n quantile, for given
h, and corresponding tail conditional expectation from an iid
sample. By restricting attention to scale and location equivariant
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intervals, the asymptotic problem under fixed- k extreme value
theory becomes a reasonably transparent parametric small-
sample problem: Given a single k-dimensional draw from the
joint extreme value distribution (which is indexed only by the
scalar ξ ), construct an equivariant confidence interval for a spe-
cific deterministic function of ξ and h. One straightforward con-
struction is obtained by inverting a generalized likelihood ratio
statistic. A more systematic approach along the lines of Elliott,
Müller, andWatson (2015) and Müller and Norets (2016) mini-
mizes weighted expected length (over ξ ) subject to the coverage
constraint.

Section 2 contains the details of the corresponding deriva-
tions. Monte Carlo simulations in Section 3 show that these new
confidence intervals have excellent small-sample coverage and
length properties for moderately large k and n compared to pre-
vious confidence interval constructions. We illustrate the appli-
cation of the new intervalswith data onmainlandU.S.Hurricane
damage in Section 4. Finally, in Section 5, we conclude with a
theorem that provides an analytical sense in which the fixed-k
approach leads to more robust large sample inference compared
to potentially more informative kn → ∞ approaches.

2. Derivation of Fixed-k Inference

2.1. High Quantile

We observe a random sampleY1,Y2, . . . ,Yn from some popula-
tion with cumulative distribution function F . WriteU (F, p) for
the 1 − 1/p quantile of F . We initially consider inference about
the quantileU (F, n/h) for given h. The objective is to construct
an asymptotically valid confidence interval for U (F, n/h) of
level 1 − α, where h does not vary with n (so the quantile
of interest is of the same order of magnitude as the sample
maximum).

LetYn:1 ≤ Yn:2 ≤ · · · ≤ Yn:n denote the order statistics, so that
Yn:n is the sample maximum. The fundamental result in extreme
value theory due to Fisher and Tippett (1928) and Gnedenko
(1943) states that if there exist sequences an and bn such that

Yn:n − bn
an

⇒ X1 (1)

for some nondegenerate random variable X1, then the distribu-
tion of X1 is, up to location and scale normalization, the gener-
alized extreme value distribution with c.d.f.

Gξ (x) =
{
exp[−(1 + ξx)−1/ξ ], 1 + ξx ≥ 0, for ξ �= 0

exp[−e−x], x ∈ R, ξ = 0
(2)

where ξ < 0, ξ = 0 and ξ > 0 correspond to Weibull, Gum-
bel and Fréchet type extreme value distributions, respectively.
Without loss of generality, assume that any location and scale
normalization of X1 is subsumed in an and bn, so that the c.d.f.
ofX1 in (1) is equal toGξ . It is well known (see, for instance, The-
orem 3.5 of Coles (2001)) that if (1) holds, then extreme value
theory also holds jointly for the first k -order statistics⎛

⎜⎜⎝
Yn:n−bn

an
...

Yn:n−k+1−bn
an

⎞
⎟⎟⎠ ⇒ X =

⎛
⎜⎝
X1
...
Xk

⎞
⎟⎠ (3)

for any fixed k, where the joint p.d.f. of X is given by
fX|ξ (x1, . . . , xk) = Gξ (xk)

∏k
i=1 gξ (xi)/Gξ (xi) on xk ≤ xk−1

≤ · · · ≤ x1 with gξ (x) = dGξ (x)/dx, and zero otherwise.
We seek to construct an inference method that yields valid

asymptotic inference whenever (3) holds, for some given finite
k, to better approximate the small-sample effect of having a
finite number of order statistics that are reasonably modeled as
stemming from the generalized Pareto tail. Thus, the effective
data becomes Yk = (Yn:n, . . . ,Yn:n−k+1)

′, and the objective is to
construct a confidence set S(Yk) ⊂ R such that P(U (F, n/h) ∈
S(Yk)) ≥ 1 − α, at least as n → ∞.

By definition of U (F, n/h), P(Yn:n ≤ U (F, n/h)) = (1 −
h/n)n → e−h. Thus, under (3), (U (F, n/h) − bn)/an converges
to the e−h quantile of X1, denoted q(ξ , h) in the following.
A straightforward calculation shows q(ξ , h) = (h−ξ − 1)/ξ
for ξ �= 0 and q(0, h) = − log(h). If an and bn were known,
the asymptotic problem would hence become inference about
q(ξ , h) based on the k × 1 vector of observations X. But an
and bn are not known, and they depend on tail properties of F
themselves. To make further progress, we hence impose loca-
tion and scale equivariance on the confidence set S. Specifi-
cally, we impose that for any constants a > 0 and b, S(aYk +
b) = aS(Yk) + b, where aS(Yk) + b = {y : (y − b)/a ∈ S(Yk)}.
Under this equivariance constraint, we can write

P(U (F, n/h) ∈ S(Yk)) = P
(
U (F, n/h) − bn

an
∈ S

(
Yk − bn

an

))
→ Pξ

(
q(ξ , h) ∈ S(X)

)
,

where the notation Pξ indicates that the probability of the event
q(ξ , h) ∈ S(X) for any given set valued function S only depends
on ξ . Let � ⊂ R be the set of tail indices for which we impose
asymptotically valid inference. The asymptotic problem then
is the construction of a location and scale equivariant S that
satisfies

Pξ

(
q(ξ , h) ∈ S(X)

) ≥ 1 − α for all ξ ∈ � (4)

since any S that satisfies (4) also satisfies lim infn→∞
P(U (F, n/h) ∈ S(Yk)) ≥ 1 − α under (3). This is a fairly
transparent small-sample problem, involving a single observa-
tion X ∈ R

k from a parametric distribution indexed only by the
scalar parameter ξ ∈ �.

One straightforward construction of S is based on the inver-
sion of a generalized likelihood ratio statistic: let LX̃(μ, σ, ξ ) =
log( fX|ξ (X1−μ

σ
, . . . ,

Xk−μ

σ
)) − k log(σ ) be the log-likelihood of

the k × 1 random vector X̃ = μ + σX. To test the null hypoth-
esis H0 : q(ξ , h) = q0 based on X, consider the test statistic

LR(q0,X) = max
{(μ,σ,ξ ):σ>0,ξ∈�}

LX̃(μ, σ, ξ )

− max
{(μ,σ,ξ ):μ+σq(ξ ,h)=q0,σ>0,ξ∈�}

LX̃(μ, σ, ξ ).

Clearly, LR(aq0 + b, aX + b) = LR(q0,X) for all a > 0 and b ∈
R, so the set

SLR(X) = {q0 : LR(q0,X) < cvLR} (5)

is equivariant. To ensure (4) holds for S = SLR, cvLR here is cho-
sen to solve supξ∈� Pξ (LR(q(ξ , h),X) > cvLR) = α.
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Amore systematic approach to confidence interval construc-
tion seeks to minimize the weighted average expected length
criterion ∫

Eξ [lgth(S(X))]dW (ξ ), (6)

whereW is positive measure with support on �, and lgth(A) =∫
1[y ∈ A]dy for any Borel set A ⊂ R. To solve the program of

minimizing (6) subject to (4) among all equivariant set estima-
tors S, introduce

Xs =
(
X1 − Xk

X1 − Xk
,
X2 − Xk

X1 − Xk
, . . . ,

Xk − Xk

X1 − Xk

)

and

Ys(ξ ) = q(ξ , h) − Xk

X1 − Xk
.

In this notation, equivariance of S implies Eξ [lgth(S(X))] =
Eξ [(X1 − Xk)lgth(S(Xs))] = Eξ [κξ (Xs)lgth(S(Xs))] with
κξ (Xs) = Eξ [X1 − Xk|Xs], and Pξ

(
q(ξ , h) ∈ S(X)

) =
Pξ (Ys(ξ ) ∈ S(Xs)). Thus, the program of minimizing (6)
subject to (4) among all equivariant set estimators S equiva-
lently becomes

min
S(·)

∫
Eξ [κξ (Xs) lgth(S(Xs))]dW (ξ )

s.t. Pξ (Ys(ξ ) ∈ S(Xs)) ≥ 1 − α for all ξ ∈ �. (7)

Note that (7) only involves S evaluated atXs, which is an element
of a smaller dimensional subspace compared toX (since the first
and last elements ofXs are always equal to 1 and 0, respectively).
But any solution to (7) also provides the form of S for uncon-
strained X via equivariance, S(X) = (X1 − Xk)S(Xs) + Xk.

By writing the expectations in (7) as integrals over the densi-
ties fXs|ξ ofXs and fY s(ξ ),Xs|ξ of (Ys(ξ ),Xs), it is not very difficult
to see that its solution is

S�(Xs) =
{
y :

∫
κξ (Xs) fXs|ξ (Xs)dW (ξ )

<

∫
fY s(ξ ),Xs|ξ (y,Xs)d�(ξ )

}
(8)

provided the nonnegative measure � has support on
{Pξ (Ys(ξ ) ∈ S�(Xs)) = 1 − α} ⊂ �, and S�(Xs) satisfies
the constraint in (7).∗ The only remaining challenge is thus
to identify suitable Lagrangian weights �, and to this end we
resort to the numerical approach developed in Elliott, Müller,
and Watson (2015) and Müller and Watson (2015). The output
of these numerical approximations is a level 1 − α equivari-
ant set that has, by construction,W -weighted average expected
length that is nomore than 1% longer than any other level 1 − α

equivariant set (that is, any other equivariant set satisfying (4)).
Further details are provided in the Appendix.

2.2. Tail Conditional Expectation

Now consider the problem of constructing an asymptotically
valid fixed-k confidence interval for the tail conditional expec-
tation Tn = E[Yi|Yi ≥ U (F, n/h)], for given h, where Yi is iid

∗ Theorem  in Müller and Norets () provides a corresponding formal result.

with c.d.f. F . Assume F is in the domain of attraction with tail
index ξ < 1 (otherwise, the tail conditional expectation does
not exist). Recall that for a positive random variable Z with c.d.f.
FZ , E[Z] = ∫ ∞

0 (1 − FZ(z))dz. Thus

Tn − bn
an

= U (F, n/h) − bn
an

+ h−1n
∫ ∞

U (F,n/h)−bn
an

(1 − F(any + bn))dy.

As noted before, a necessary condition for F to be in the domain
of attraction of an extreme value distributionwith index ξ is that
its tail is approximately generalized Pareto. This can be written
in the form

n(1 − F(any + bn))→(1 + ξy)−1/ξ for all y such that 1 + ξy > 0

as in Theorem 1.1.6 of de Haan and Ferreira (2007) (with
(1 + ξy)−1/ξ interpreted as e−y for ξ = 0). Furthermore, as in
Section 2.1 above, (U (F, n/h) − bn)/an → q(ξ , h).Putting this
together yields the convergence†

Tn − bn
an

→q(ξ , h)+h−1
∫

{y:y>q(ξ ,h) and (1+ξy)>0}
(1 + ξy)−1/ξdy

= h−ξ

ξ (1 − ξ )
− 1

ξ
≡ τ (ξ, h).

Thus, the only difference between fixed-k asymptotic equivari-
ant inference about the quantile U (F, n/h) and the tail condi-
tional expectation Tn is that in the resulting small-sample prob-
lem involving X, the object of interest is τ (ξ, h), rather than
q(ξ , h). The two approaches described in Section 2.1 to the con-
struction of asymptotically valid confidence sets thus readily
carry over to tail conditional expectations.

2.3. Implementation and Asymptotic Properties

The suggested confidence sets require a choice for the parameter
space of the tail index �, and, for S�, a weight functionW . We
choose � = [−1/2, 1/2], although the methods could equally
well be implemented for other � (for S�, all values in � have
to be smaller than one for the expected length to exist, though).
Since ξ < 1/2 is necessary for F to have a finite secondmoment,
� = [−1/2, 1/2] should be fairly agnostic formost applications.

For the weighting functionW , we choose a density on� that
is inversely proportional to the minimal expected length of an
equivariant confidence set under ξ ∈ � known. The idea is to
use the known tail index case as a benchmark for the relative dif-
ficulty of obtaining informative inference. The inverseweighting
then puts equal weight on all ξ ∈ � relative to this benchmark,
so loosely speaking, we seek to minimize the average regret of
not knowing ξ . This weighting scheme has the additional advan-
tage that the (essentially arbitrary) scale normalization for dif-
ferent ξ of the extreme value distributions in (2) plays no role in
the determination of S�.

† The convergence formally follows from the dominated convergence theorem for
ξ < 0 (sinceF then has bounded support), and by Karamata’s Theorem for ξ > 0,
as in Equation (.) of Zhu and Li ().
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Table . Asymptotic lengths of fixed-k confidence intervals.

h . 

ξ −0.5 −0.25 0.0 0.25 0.5 −0.5 −0.25 0.0 0.25 0.5

Quantile, k = 10
Fixed-k LR . . . . . . . . . .
Fixed-k opt . . . . . . . . . .
Fixed-k env . . . . . . . . . .

Quantile, k = 20
Fixed-k LR . . . . . . . . . .
Fixed-k opt . . . . . . . . . .
Fixed-k env . . . . . . . . . .

Quantile, k = 50
Fixed-k LR . . . . . . . . . .
Fixed-k opt . . . . . . . . . .
Fixed-k env . . . . . . . . . .

Tail conditional expectation, k = 10
Fixed-k LR . . . . . . . . . .
Fixed-k opt . . . . . . . . . .
Fixed-k env . . . . . . . . . .

Tail conditional expectation, k = 20
Fixed-k LR . . . . . . . . . .
Fixed-k opt . . . . . . . . . .
Fixed-k env . . . . . . . . . .

Tail conditional expectation, k = 50
Fixed-k LR . . . . . . . . . .
Fixed-k opt . . . . . . . . . .
Fixed-k env . . . . . . . . . .

NOTES: Entries are asymptotic expected lengths of % confidence intervals about the 1 − h/n quantile and tail conditional expectation relative to the expected length of
the k = 10 fixed-k LR interval. See the main text for a description of the three types of confidence intervals.

For any given k, h and confidence level α, the criti-
cal value cvLR and measure � only needs to be deter-
mined once. Given cvLR and �, the confidence sets SLR
and S� are readily computed from (5) and (8). We pro-
vide corresponding Matlab code, and tables of cvLR and �

distributions for k ∈ {5, 10, 15, 20, 30, 40, 50, 75, 100}, log h ∈
{−5.0,−4.5, . . . , 3.0} and α ∈ {0.01, 0.05, 0.10, 0.20}. Over
this range of parameters, the weighted expected length (6) of
SLR is up to 60% longer than S�, with the largest differences
occurring for small h and moderately large k. But for many
other parameter configurations, the gains are more moderate:
the median difference in weighted expected length is 12%. In
this sense, SLR is fairly close to weighted expected length opti-
mal in many scenarios.

Table 1 reports the asymptotic expected lengths of 95%
confidence intervals SLR (“fixed-k LR”) and the weighted
expected length optimal interval S� (“fixed-k opt”) for ξ ∈
{−0.5,−0.25, 0, 0.25, 0.5}, k ∈ {10, 20, 50} and h ∈ {0.1, 5},
relative to the expected lengths of SLR for k = 10 and the same
value of ξ . As an additional comparison, we also report for each
value of ξ the expected length of the length optimal confidence
interval with degenerate weight functionW with all mass at that
value of ξ . These “fixed-k env” rows do not correspond to a fea-
sible interval, but provide the lower envelope on the expected
length of any 95% fixed-k confidence interval for each value
of ξ .

As can be seen from Table 1, the SLR intervals tend to be
shorter than S� for ξ = 0.5, but they have relatively less attrac-
tive properties for ξ ≤ 0. The S� intervals are up to 40% longer
than the envelope, although for ξ ≤ 0.25 the differences are
much less pronounced. This demonstrates that a uniformly

smallest expected length interval does not exist and correspond-
ingly, the choice ofW matters. At the same time, for ξ ≤ 0.25,
the expected length of S� comes reasonably close to the enve-
lope, so no other choice ofW could lead to much shorter inter-
vals there. All these differences aremore pronounced for h = 0.1
than for h = 5. Looking across different values of k, expected
lengths tend to decrease at a rate slower than k−1/2, with a pro-
nounced exception for h = 0.1 and negative ξ , where larger k
enable dramatically more informative inference.

3. Monte Carlo Results

This section reports some small-sample results for the result-
ing confidence set for α = 0.05 and n = 250. We consider
six data-generating processes: a standard normal and stan-
dard log-normal distribution (both in the domain of attrac-
tion of the Gumbel law, ξ = 0), a Student-t distribution with
3 degrees of freedom (in the domain of attraction of the
Fréchet law with ξ = 1/3), an F-distribution with 4 degrees
of freedom in both the numerator and denominator (in
the domain of attraction of the Fréchet law with ξ = 0.5),
a 0.8 / 0.2 mixture between a standard normal distribution and
a Student-t distribution with 3 degrees of freedom (in the same
domain of attraction as the pure Student-t distribution, since
the tail is eventually dominated by the Student-t distribution),
and a symmetric triangular distribution with support equal to
[−1, 1] (in the domain of attraction of the Weibull law with
ξ = −0.5).

We compare the two intervals derived above (“fixed-k
LR” and “fixed-k opt”) with several alternatives developed in
the literature under kn → ∞ asymptotics. The first method
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(“W-H”) is the classic Weissman (1978) estimator that relies on
a Pareto tail approximation and estimates the tail index by the
Hill (1975) estimator. Denoting the Hill estimator by ξ̂H , the
1 − h/n quantile estimator is ÛWH = Yn:n−k (h/k)−ξ̂H

, and the
corresponding tail conditional expectation estimator is T̂WH =
(Yn:n−k (h/k)−ξ̂H

)/(1 − ξ̂H ). Confidence intervals are obtained
by exploiting the asymptotic normal limit of these estimators
(after suitable scaling). Note that the method is asymptotically
valid only for ξ > 0. For further discussion and small-sample
simulation results, see Drees (2003). The second method (“dH-
F”) is described in Chapter 4 of de Haan and Ferreira’s (2007)
textbook and is based on the asymptotically normal estima-
torÛdHF = Yn:n−k + â (n/k) ((h/k)−ξ̂M − 1)/ξ̂M , where â (n/k)
and ξ̂M are estimators of the scale and the tail index, correspond-
ingly (similar to what was derived by Dekkers and de Haan
(1989) and de Haan and Rootzén (1993)). The analogous esti-
mator for the tail conditional expectation is T̂dHF = Yn:n−k +
â (n/k) ((h/k)−ξ̂M − 1 + ξ̂M )/(ξ̂M(1 − ξ̂M )). See de Haan and
Ferreira (2007) for further details on the construction of the cor-
responding confidence intervals. None of these estimators are
location and scale equivariant, since ξ̂H and ξ̂M are not trans-
lation invariant. Invariant estimators were discussed by Santos,
Alves, and Gomes (2006), but we found that the suggested con-
fidence intervals based on these estimators do not perform well
in our small sample. Finally, we consider intervals constructed
from the profile likelihood based on a Poisson and generalized
Pareto approximation (“profile”), as suggested and implemented
by Davison and Smith (1990). This method assumes that the
number of exceedances above a high threshold u follows a Pois-
son distribution with mean λ, and conditionally on the number
of exceedances, the excess values are iid generalized Pareto. In
our implementation, we choose u = Yn:n−k, which renders the
corresponding intervals scale and translation equivariant. For all
three kn → ∞ methods, we impose the same parameter space
restriction � = [−1/2, 1/2] on the tail index that we chose in
the implementation of the fixed-kmethod.‡

Tables 2 and 3 report the coverage and length properties of
these five procedures for h ∈ {0.1, 5}. We find that the fixed-k
approaches have excellent small-sample coverage, especially for
k ≤ 20. In contrast, the W-H and dH-F intervals display very
substantial undercoverage in many of the considered cases. In
comparison, the profile likelihood intervals fare much better,
corroborating corresponding remarks about the superior small-
sample performance in Coles (2001) and Smith (2004). Still, the
fixed-k approaches providesmuchmore reliable inference, espe-
cially for k ≤ 20.

The small-sample performance of the fixed-k intervals mir-
rors their asymptotic properties of Table 1: size control is very
similar, and the LR intervals are shorter for underlying distribu-
tions with heavy tails, but at the expense of worse performance
under thinner tails. In our view, the relative simplicity and trans-
parency of the LR intervals give them the edge for applied work,
unless there is good reason to be believe that the data might
exhibit thin tails.

Larger k mostly leave coverage of the fixed-k intervals close
to the nominal level, and average length decreases. This pattern

‡ Not doing so leads to intervals that are very much longer on average, and with
typically no better (but often) worse coverage properties.

reflects that most distributions considered in Tables 2 and 3
have nicely behaved tails, so that a relatively large fraction can
be well approximated by a generalized Pareto distribution.
But as demonstrated by the mixture distribution, it is easy to
construct underlying distributions whose tail behavior is much
less benign—most draws stem from the normal component,
misleadingly indicating a thin tail, but the tail properties of
interest are in fact determined by the Student-t component,
especially for small h. In that case, choosing k > 10 leads to
substantial undercoverage also for the fixed-k approaches.

4. Application to Hurricane Damage

Hurricanes cause significant damage to coastal communities in
theU.S. It seems interesting to learn about tail features of the dis-
tribution of these damages, both from a public policy and insur-
ance perspective. In its technical memorandum NWS NHC-6,
the National Weather Service provides estimates of the dam-
age of the 30 costliest mainland U.S. tropical cyclones from
1900–2010, measured in 2010 US$. These estimates, however,
are based on variable methodology, which is standardized only
from the 1995 hurricane season onwards. We thus only rely on
the data about the k = 10 costliest hurricanes in the 16 year win-
dow from 1995 to 2010. Panel A in Table 4 replicates these data
points for convenience.

Note that in this example, the number n of total tropical
cyclones in the period 1995–2010 is not known to us. Under the
assumption that hurricane damage is iid and hurricane arrival
is stationary, the 1 − h/n quantiles nevertheless has a straight-
forward interpretation: a hurricane causing at least that amount
of damage is expected every 16/h years. Similarly, the tail con-
ditional expectation corresponds to the average damage of these
extreme hurricanes.

Panel B in Table 4 provides 95% confidence intervals for these
quantities for h ∈ {0.1, 1, 5} using the two fixed-k approaches
developed above. In all cases, the LR intervals are fully contained
in the weighted expected length minimizing ones. It is interest-
ing to note that the upper bound of the LR interval for h = 1
is $116.3 billion, only slightly larger than the costliest hurricane
that was observed in the sample (Katrina in 2005 with $105.8
billion). As can be seen in the first panel, Katrina is an out-
lier relative to the other costliest hurricanes in 1995–2010, mak-
ing it relatively implausible that the 1 − 1/n quantile is much
bigger than the largest observation. The corresponding upper
bound on the 95%LR confidence interval for the tail conditional
expectation is $266.4 billion. This is very large in absolute terms,
corresponding to roughly 1.7% of current U.S. gross domestic
product, and indicates substantial insurance needs even from a
macroeconomic perspective.

5. Robustness of Fixed-k Asymptotic Inference

For a given distribution F in the domain of attraction of an
extreme value distribution, there are eventually infinitely many
observations from the generalizedPareto tail asn → ∞. For this
reason, we expect the fixed-k confidence intervals to be most
useful for inference in small to moderately large samples, where
a large kwould amount tomodeling a large fraction of F as being
generalized Pareto. In this sense, the fixed-k approach can be
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Table . Small-sample performance for 1 − h/n quantile.

     

k Cov Lgth Cov Lgth Cov Lgth Cov Lgth Cov Lgth Cov Lgth

h = 0.1

Normal Student-t()

Fixed-k LR . . . . . . . . . . . .
Fixed-k opt . . . . . . . . . . . .
W-H . . . . . . . . . .  .
dH-F . . . . . . . . . . . .
Profile . . . . . . . . . . . .

Log-Normal F(,)

Fixed-k LR . . . . . . .  .  . 
Fixed-k opt .  . . . . .  .  . 
W-H .  .  . . .  .  . 
dH-F . . . . . . .  .  . 
Profile . . . . . . .  .  . .

MixtureN (0, 1)/Student-t() Triangular

Fixed-k LR . . . . . . . . . . . .
Fixed-k opt . . . . . . . . . . . .
W-H . . . . . . . . . . . .
dH-F . . . . . . . . . . . .
Profile . . . . . .  .  .  .

h = 5

Normal Student-t()

Fixed-k LR . . . . . . . . . . . .
Fixed-k opt . . . . . . . . . . . .
W-H . . . . . . . . . . . .
dH-F . . . . . . . . . . . .
Profile . . . . . . . . . . . .

Log-Normal F(,)

Fixed-k LR . . . . . . . . . . . .
Fixed-k opt . . . . . . . . . . . .
W-H . . . . . . . . . . . .
dH-F . . . . . . . . . . . .
Profile . . . . . . . . . . . .

MixtureN (0, 1)/Student-t() Triangular

Fixed-k LR . . . . . . . . . . . .
Fixed-k opt . . . . . . . . . . . .
W-H . . . . . . . . . . . .
dH-F . . . . . . . . . . . .
Profile . . . . . . . . . . . .

NOTES: Entries are coverage probabilities (in percent) and expected lengths of nominal % confidence intervals in a sample of size n = 250 about the 1 − h/n quantile
of the underlying distribution, based on the largest k order statistics. See the main text for a description of the five types of confidence intervals. Based on  Monte
Carlo simulations.

thought of as a small-sample adjustment to kn → ∞ asymptotic
approaches.

At the same time, for any sample size n, there exist F that are
in the domain of attraction of the extreme value distribution, yet
choosing k large yields poor inference (think of the mixture dis-
tribution case in the simulation section). This suggests studying
the robustness of tail inference under triangular array asymp-
totics, where the iid sample of size n is drawn from a population
indexed by n, so that F = Fn. The following theorem contrasts
fixed-k asymptotic inference with potentially more informative
kn → ∞ inference under such triangular array asymptotics. Its
proof is in the Appendix.

Theorem 5.1.
(a) Let F0 be in the domain of attraction of an extreme value

distribution with tail index ξ , that is for some sequences

an and bn

[F0(anx + bn)]n → Gξ (x). (9)

Suppose the sequence of distribution functions Fn is
such that for some rn → ∞, Fn(y) = F0(y) for all y ≥
U (F0, n/rn). LetYn:1, . . . ,Yn:n be the order statistics from
an iid sample of sizen fromFn. Then for any fixed k ∈ N,(

Yn:n − bn
an

, . . . ,
Yn:n−k+1 − bn

an

)
⇒ (X1, . . . ,Xk)

(10)
where X1, . . . ,Xk have joint extreme value distribution
with tail index ξ .

(b) Write Paξ for the c.d.f. of a Pareto distribution with sup-
port [1,∞) and shape parameter α = 1/ξ > 0. Suppose
ξ̂n is a scale invariant estimator of ξ that, when applied to
an iid sample fromPaξ0 , converges in probability to ξ0 for
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Table . Small-sample performance for 1 − h/n tail conditional expectation.

     

k Cov Lgth Cov Lgth Cov Lgth Cov Lgth Cov Lgth Cov Lgth

h = 0.1

Normal Student-t()

Fixed-k LR . . . . . . . . . . . .
Fixed-k opt . . . . . . .  . . . .
W-H . . . . . . . . . . . .
dH-F . . . . . . . . . . . .
Profile . . . . . . . . . . . .

Log-Normal F(,)

Fixed-k LR .  .  .  .  .  . 
Fixed-k opt .  .  .  .  .  . 
W-H .  .  .  .  .  . 
dH-F .  .  .  .  .  . 
Profile .  .  .  .  .  . 

MixtureN (0, 1)/Student-t() Triangular

Fixed-k LR . . . . . . . . . . . .
Fixed-k opt . . . . . . . . . . . .
W-H . . . . . . . . . . . .
dH-F . . . . . . . . . . . .
Profile . . . . . .  .  .  .

h = 5

Normal Student-t()

Fixed-k LR . . . . . . . . . . . .
Fixed-k opt . . . . . . . . . . . .
W-H . . . . . . . . . . . .
dH-F . . . . . . . . . . . .
Profile . . . . . . . . . . . .

Log-Normal F (,)

Fixed-k LR . . . . . . . . . . . .
Fixed-k opt . . . . . . . . . . . .
W-H . . . . . . . . . . . .
dH-F . . . . . . . . . . . .
Profile . . . . . . . . . . . .

MixtureN (0, 1)/Student-t() Triangular

Fixed-k LR . . . . . . . . . . . .
Fixed-k opt . . . . . . . . . . . .
W-H . . . . . . . . . . . .
dH-F . . . . . . . . . . . .
Profile . . . . . .  . . . . .

NOTES: Entries are coverage probabilities (in percent) and expected lengths of nominal % confidence intervals in a sample of size n = 250 about the tail conditional
expectation E[Yi|Yi > U(F, n/h)] of the underlying distribution F , based on the largest k order statistics. See themain text for a description of the five types of confidence
intervals. Based on  Monte Carlo simulations.

Table . Empirical results on damage of U.S. mainland hurricanes.

Panel A: Damage in US$ billion of  costliest hurricanes in –

. . . . . . . . . .

Panel B: Endpoints of % confidence intervals for the 1 − h/n quantile and tail conditional expectation

h = 0.1 h = 1 h = 5

Fixed-k LR

Quantile . . . . . .
TCE . . . . . .

Fixed-k opt

Quantile . . . . . .
TCE . . . . . .

NOTE: Based on the k = 10 order statistics from Panel A.
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some ξ0 > 0. Then for any ξ1 > 0 there exists a sequence
of distributions Fn and a real sequence rn → ∞ such that
Fn(y) = Paξ1 (y) for all y ≥ U (Paξ1 , n/rn), yet ξ̂n applied
to an iid sample of size n from Fn converges in probability
to ξ0.

(c) For some fixed h > 0, let [l̂n, ûn] be a scale equiv-
ariant confidence interval for U (F, n/h). Suppose
l̂n/U (Paξ0 , n/h) and ûn/U (Paξ0 , n/h) converge in prob-
ability to unity when applied to an iid sample of size n
from Paξ0 . Then for any ξ1 �= ξ0, ξ1 > 0 there exists a
sequence of distributions Fn and a real sequence rn → ∞
such that Fn(y) = Paξ1 (y) for all y ≥ U (Paξ1 , n/rn), yet
[l̂n, ûn] applied to an iid sample of size n from Fn contains
U (Fn, n/h) = U (Paξ1 , n/h) with probability converging
to zero.

Part (a) shows that it suffices for the sequence of distributions
Fn to have a tail in the domain of attraction of extreme value dis-
tribution ofmass equal to rn/n to induce the corresponding joint
extreme value distribution for the largest k order statistics, for
any fixed k and arbitrarily slowly increasing sequence rn → ∞.
Thus, to the extent that the object of interest concerns properties
of this (extreme) tail, fixed k asymptotic inference is asymptoti-
cally valid.

In contrast, part (b) demonstrates that any approach to scale
invariant consistent tail index estimation is necessarily nonro-
bust to some sequence Fn of this sort. All popular tail index esti-
mators are scale invariant and consistent under iid data from
a Pareto distribution. Thus, Theorem 1(b) applies and shows
that for a large enough sample size, one can always construct
an underlying distribution for which the extreme tail properties
are Pareto with parameter ξ1, yet the tail index estimator takes
on values close to an entirely different value ξ0 �= ξ1 with high
probability. This typically implies very poor coverage properties
of confidence intervals based on consistent tail index estimators.

The fixed-k intervals about U (F, n/h) derived here have
length Op(U (F, n/h)) for data from a Pareto distribution. In
contrast, intervals derived under kn → ∞ asymptotics usually
are more informative and have length op(U (F, n/h)), so that
their endpoints satisfy the assumption of part (c). The theorem
shows that any such scale equivariant interval has zero asymp-
totic coverage for some underlying sequence of distributions Fn
for which fixed-k inference is asymptotically valid, whether or
not its construction involves a consistent tail index estimator
ξ̂n. Taken together, Theorem 1 thus provides a precise sense in
which fixed-k asymptotic inference is more robust than all pre-
viously suggested inference approaches we are aware of.

A key challenge for the empirical implementation of fixed-
k based inference is the selection of k. Of course, also under
kn → ∞, the determination of kn in a given sample of size n is
widely recognized as a difficult issue. But the problem is arguably
even harder under fixed-k asymptotics, as there cannot exist a
procedure based on the largest k order statistics that consistently
determines whether, say, k1 ≤ k or k2 < k1 is appropriate.

One useful way to think about the choice of k is to recall that
the number Kr of exceedances above U (F, n/r) in an iid sam-
ple from F has a Binomial distribution with parameters n and
p = r/n, so it has mean r and a variance no larger than r. In

fact, a calculation shows that if the upper tail of F of mass rk/n
with rk = k + 3 + 3

√
k is equal to a generalized Pareto distri-

bution F0, then with probability of at least 99.88%, the largest
k-order statistics stem from F0, for all k ≥ 5 and n ≥ rk. The
only remaining approximation of fixed-k asymptotic inference
in small samples then involves the approximation of the distri-
bution ofKrk by a Poisson distributionwithmean rk. Unreported
small-sample simulations with n as small as 25 show excellent
coverage properties of the fixed-k intervals derived here for all
F with upper tail of mass rk/n equal to a generalized Pareto dis-
tribution, even if below theU (F, n/rk) quantile, the shape of F
differs arbitrarily from the generalized Pareto tail distribution.
In practice, the choice of k is thus directly interpretable as an
assumption about the extent of the (approximate) generalized
Pareto tail, and it makes sense to present consumers of tail infer-
ence with results under various choices for this key regularity
assumption. We leave further consideration of this important
issue to future research.

A. Appendix

A.1. Computational Details

The set S� in (8) requires evaluation of κξ (·) fXs|ξ (·) and fY s(ξ ),Xs (·).
Using the expression for fX|ξbelow (2), straightforward calculations
yield

κξ (Xs) fXs|ξ (Xs) = 
(k − ξ )

∫ b0(ξ )

0
sk−1

× exp

[
−(1 + ξ−1)

k∑
i=1

log(1 + ξXs
i s)

]
ds,

where 
 is the Gamma function, b0(ξ ) = −1/ξ for ξ < 0, and
b(ξ ) = ∞ otherwise, and

fY s(ξ ),Xs (y,Xs) = ∣∣y∣∣−k
∫ b1(ξ )

a1(ξ )

|q(ξ , h) − s|k−1

× exp
[−(1 + ξ s)−1/ξ − (1 + ξ−1)

×
k∑

i=1

log
(
1 + ξ s + Xs

i ξ
q(ξ , h) − s

y

)]
ds,

where a1(ξ ) and b1(ξ ) are such that for all s ∈ (a1(ξ ), b1(ξ )), 1 +
ξ s > 0, 1 + ξ s + ξ

q(ξ ,h)−s
y > 0 and (q(ξ , h) − s)/y > 0. We evalu-

ate these integrals by numerical quadrature.
The determination of � closely follows the approach devel-

oped in Elliott, Müller, and Watson (2015) and Müller and Wat-
son (2015). As discussed there, consider � = c�̃, where �̃ is a
given probability distribution with support on �. Suppose the
scalar c > 0 is such that if ξ is random and drawn from �̃,
then Sc�̃ has coverage equal to the nominal level, that is c solves∫
Pξ (Ys(ξ ) ∈ Sc�̃(Xs))d�̃(ξ ) = 1 − α (so c is a function of �̃).

Then, the W -weighted average expected length of Sc�̃, V�̃
=∫

Eξ [κξ (Xs)lgth(Sc�̃(Xs))]dW (ξ ), provides a lower bound for the
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W -weighted average expected length of any set Swith uniform cov-
erage Pξ (Ys(ξ ) ∈ S(Xs)) ≥ 1 − α for all ξ ∈ �, since uniform cov-
erage implies (at least) �̃-weighted average coverage for any proba-
bility distribution �̃ with support on �, and by construction of S�,
Sc�̃ minimizesW -weighted average expected length among all sets
with �̃-weighted coverage of at last 1 − α.

So suppose we knew of some probability distribution
�̃∗ with support on � and constant d∗ > 0 such that
(i) Pξ (Ys(ξ ) ∈ Sd∗�̃∗ (Xs)) ≥ 1 − α for all ξ ∈ � and (ii)∫
Eξ [κξ (Xs)lgth(Sd∗�̃∗ (Xs))]dW (ξ ) ≤ (1 + ε)V

�̃∗ . Then we
would have identified a level 1 − α confidence set, Sd∗�̃∗ (Xs), that
is demonstrably no more than 100ε% longer in a W -weighted
average expected sense than any other confidence set of the same
level.

The remaining challenge is the determination of a suitable dis-
tribution �̃∗. To this end, we restrict �̃∗ to be a discrete distri-
bution with support on �a = {−1/2,−1/2 + 1/59, . . . , 1/2}, and
determine the 60 point masses by fixed-point iterations based on
importance sample Monte Carlo estimates of coverage, as sug-
gested by Elliott, Müller, and Watson (2015) and Müller and Wat-
son (2015). In particular, we simulate rejection probabilities with
100,000 iid draws from a proposal with ξ drawn uniformly from
�p = {−0.5,−0.5 + 1/29, . . . , 0.5} (which yields Monte Carlo
standard errors of approximately 0.1% for 95% level confidence
sets), and iteratively increase or decrease the 60 point masses on
�a as a function of whether the (estimated) inclusion probability
under the corresponding ξ ∈ �a is larger or smaller than the nom-
inal level. After 500 iterations, the resulting discrete distribution is
a candidate for �̃∗. We compute V

�̃∗ , and then numerically deter-
mine d∗ so that

∫
Eξ [κξ (Xs)lgth(Sd∗�̃∗ (Xs))]dW (ξ ) = (1 + ε)V

�̃∗

for ε = 0.01. In a last step, we check whether Sd∗�̃∗ indeed controls
coverage uniformly by computing coverage probabilities over the
fine grid � f = {−1/2,−1/2 + 1

199 , . . . , 1/2}.
The critical value cvLR of SLR in (5) is computed from

the same 100,000 importance sampling draws. In all cases,
Pξ (LR(q(ξ , h),X) > cvLR) = α for ξ = 1/2.

For a given value of k and h, these computations take about one
minute on a modern PC. Of course, in actual applications, there is
no need to recompute cvLR, d∗, and �̃∗ ; the determination of the
confidence sets simply requires the numerical determination of (5)
and (8) for the values of cvLR and � = d∗�̃∗ we already computed.
For the latter, note that withMX̃ = max{(μ,σ,ξ ):σ>0,ξ∈�} LX̃(μ, σ, ξ ),
the upper endpoint of SLR solves the nonlinearly constrained opti-
mization problem

max
{(μ,σ,ξ ):σ>0,ξ∈�}

μ + σq(ξ , h) s.t. LX̃(μ, σ, ξ ) ≥ MX̃ − cvLR,

and the lower endpoint solves the corresponding minimization
problem. We provide tables of cvLR and � and corresponding Mat-
lab code on our website, www.princeton.edu/∼umueller.

A.2. Proof of Theorem 1

(a) Let Ui ∼ iidU [0, 1] and F−
n (p) = infy{y ∈ R : Fn(y) ≥ p}.

Generate the sample of size n from Fn viaYn,i = F−
n (Ui), and

denote the corresponding sample from F0 by Ỹn,i = F−
0 (Ui),

so that the order statistics are given by Yn:i = F−
n (Un:i)

and Ỹn:i = F−
0 (Un:i). As is well known (see Theorem 3.5

of Coles (2001), for instance), (9) implies that (10) holds

for the sample Ỹn,i, that is a−1
n (Ỹn:n − bn, . . . , Ỹn:n−k+1 −

bn) ⇒ (X1, . . . ,Xk). Let Kn be the number of U1, . . . ,Un
that exceed 1 − rn/n. The event Yn:i = Ỹn:i for i = n − k +
1, . . . , n is clearly implied by the event Kn ≥ k. But Kn is
binomially distributed with parameters rn/n and n, so rn →
∞ implies P(Kn ≥ k) → 1, and the result follows.

(b) For r > 0, let ur,n = U (Paξ0 , n/r) = (n/r)ξ0 and define the
c.d.f. Hn,r as

Hn,r(y) =
{
Paξ0 (y) for y ≤ ur,n

Paξ1 (U (Paξ1 , n/r)y/ur,n) for y > ur,n

=
{
1 − y−1/ξ0 for y ≤ ur,n

1 − u1/ξ1−1/ξ0
r,n y−1/ξ1 for y > ur,n.

Wefirst show that for fixed r, the experiment of observing an
iid sample of size n fromHn,r , {Yn,i}ni=1, is contiguous to the
experiment of observing an iid sample of size n from Paξ0 .
Write Fn

n for the product measure of an iid sample of size n
from the distribution Fn. Note that the log likelihood ratio
log(dHn

n,r/dPa
n
ξ0

) is given by

log(dHn
n,r/dPa

n
ξ0

) =
n∑

i=1

1[Yn,i ≥ ur,n]((1/ξ0 − 1/ξ1)

× log(Yn,i/ur,n) + log(ξ0/ξ1)).

Let Kn the number of exceedances of ur,n, Kn =∑n
i=1 1[Yn,i ≥ ur,n]. Furthermore, let Wn,i, i = 1, . . . ,Kn

be a random permutation of {Yn:n−i+1 − ur,n}Kn
i=1. Then

under Panξ0 , and conditional on Kn, Wn,i is iid with
c.d.f. FW,n(w) = (Hn,r(ur,n + w) − Hn,r(ur,n))/(1 −
Hn,r(ur,n)) = 1 − (1 + w/ur,n)−1/ξ0 for w ≥ 0 as in
Smith (1987), so that Zn,i = Wn,i/ur,n + 1 is iid with
c.d.f. 1 − z−1/ξ0 for z ≥ 1. Furthermore, under Panξ0 , by
Theorem 2.1.1 in Leadbetter (1983), Kn ⇒ K, where K is
Poisson with parameter r. Thus, under Panξ0 ,

log
(
dHn

n,r/dPa
n
ξ0

) ⇒ log(L) =
K∑
i=1

((1/ξ0 − 1/ξ1)

× logZi + log(ξ0/ξ1)),

where Zi is iid with c.d.f. 1 − z−1/ξ0 independent of K (and
log(L) = 0 if K = 0). Also

E[L] = E

[
exp

[ K∑
i=1

((1/ξ0 − 1/ξ1) logZi + log(ξ0/ξ1))

]]

=
∞∑
s=0

P(K = s)E

[ s∏
i=1

ξ0

ξ1
Z1/ξ0−1/ξ1
i

]

=
∞∑
s=0

P(K = s) = 1,

where the third equality uses E[Z1/ξ0−1/ξ1
i ] = ξ1/ξ0 from a

direct calculation. But the convergence dHn
n,r/dPa

n
ξ0

⇒ L

http://www.princeton.edu/~umueller
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under Panξ0 and E[L] = 1 imply contiguity via LeCam’s
first lemma (see Lemma 6.4 in van der Vaart (1998), for
instance).
By definition of contiguity, ξ̂n

p→ ξ0 under Panξ0 implies

ξ̂n
p→ ξ0 also under Hn

n,r , for any fixed r, where we write

‘
p→’ for convergence in probability. Now for any r > 0, let

nr be the smallest n∗ ≥ 1 such that supn≥n∗ P(|ξ̂n − ξ0| >

r−1) < r−1 under Hn
n,r . Note that ξ̂n

p→ ξ0 under Hn
n,r for

any fixed r implies nr < ∞. Construct the inverse func-
tion rn via rn = sup{r > 0 : nr ≤ n}. Since nr < ∞ for all
r, rn → ∞. Thus, underHn

n,rn , P(|ξ̂n − ξ0| > r−1
n ) < r−1

n by

construction of rn, so that ξ̂n
p→ ξ0 underHn

n,rn by definition
of convergence in probability. By scale invariance, the same
holds under Fn

n , where

Fn(y) = Hn,rn
(
yu1−ξ1/ξ0

rn,n
)

=
⎧⎨
⎩
1 − u(ξ1−ξ0 )/ξ

2
0

rn,n y−1/ξ0 for y ≤ uξ1/ξ0
rn,n

1 − y−1/ξ1 for y > uξ1/ξ0
rn,n

.

Finally, since U (Fn, n/rn) = uξ1/ξ0
rn,n = U (Paξ1 , n/rn), we

have Fn(y) = Paξ1 (y) for all y ≥ U (Paξ1 , n/rn), as claimed.
(c) Proceed as in part (b) for the construction of

rn → ∞, Hn,rn and Fn, except that rn is now cho-
sen such that P(|l̂n/U (Paξ0 , n/h) − 1| > r−1

n ) +
P(|ûn/U (Paξ0 , n/h) − 1| > r−1

n ) < r−1
n under Hn

n,rn .
Scale equivariance of [l̂n, ûn] thus implies that under
Fn
n , u

1−ξ1/ξ0
rn,n (l̂n, ûn)/U (Paξ0 , n/h)

p→ (1, 1). Using ur,n =
(n/r)ξ0 andU (Paξ , n/h) = (n/h)ξ , we thus find that

(rn/h)ξ1−ξ0
(l̂n, û)

U (Paξ1 , n/h)

p→ (1, 1)

under Fn
n , so that from rn → ∞ implies P(l̂n >

U (Paξ1 , n/h)) → 1 if ξ1 < ξ0, and P(ûn <

U (Paξ1 , n/h)) → 1 if ξ1 > ξ0.
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