Solution to text problem 3.2 by Ankit Gupta

Statement of the problem
Consider the binary hypothesis testing problem between a standard Cauchy distribution and a zero mean Gaussian distribution with variance equal to 2 as shown in figure 1.

(a) Find the minimum probability of error P if both hypothesis are equiprobable
(b) Find the test that minimizes the maximum of the probability of deciding H_1 when H_2 is true and the probability of deciding H_2 when H_1 is true.

![Figure 1: Gaussian and Cauchy hypothesis](image)

Solution to part A

Let the decision regions be Ω_1 and Ω_2 i.e. we declare hypothesis H_1 if the observable falls in Ω_1 and hypothesis H_1 if the observable falls in Ω_2. The the regions that minimize error probability are given by Proposition 3.1 in the textbook. Note that H_1 is the cauchy distribution and H_2 is the gaussian distribution.

$$\Omega_i = \left\{ z : f_{z|j}(z) = \max_{j=1,\ldots,n} f_{z|j}(z) \right\} - \bigcup_{j=1}^{i-1} \Omega_j$$

For the given distributions the regions are derived in the textbook using 1.

$$\Omega_1 = (-\infty, -2.9220) \cup (-0.4248, 0.4248) \cup (2.9220, \infty)$$
$$\Omega_2 = (-2.9220, -0.4248) \cup (0.4248, 2.9220)$$
Thus the probability of error is computed to be equal to

\[P = 1 - \frac{1}{2} \sum_{i=1}^{2} \int_{\Omega_i} f_{z|i}(z)dz \]

(4)

Using \(\Omega_1 \) and \(\Omega_2 \) from equations 2 and 3 respectively and substituting in equation 4

\[P = 1 - \frac{1}{2} (0.4632 + 0.7275) = 0.4046 \]

(5)

Solution to part B

Suppose as before the decision regions are \(\Omega_1 \) and \(\Omega_2 \). Then

\[\Omega_1 + \Omega_2 = \Omega \]

(6)

Then we have to find \(\Omega_1 \) and \(\Omega_2 \) such as to optimize the following equations. Where equivalence indicates that the optimal \(\Omega_1 \) and \(\Omega_2 \) are the same for both equations.

\[
\text{Min}(\text{Max}(P((i \in \Omega_1)|H_2), P((i \in \Omega_1)|H_2))) \equiv \text{Min}(\text{Max}(1 - P((i \in \Omega_1)|H_1), 1 - P((i \in \Omega_2)|H_2))) \\
\equiv \text{Min}(\text{Max}(-P(i \in \Omega_1|H_1), -P(i \in \Omega_2|H_2))) \\
\equiv \text{Max}(\text{Min}(P(i \in \Omega_1|H_1), P(i \in \Omega_2|H_2)))
\]

(7)

The last step is justified due to the negative sign that causes maxima to change to minima and vice versa. Consider the following two propositions for finding the optimal \(\Omega_1 \) and \(\Omega_2 \)

Proposition 1

The optimal \(\Omega_1 \) and \(\Omega_2 \) are such that.

\[
\int_{\Omega_1} f_{z|1} = \int_{\Omega_2} f_{z|2}
\]

(8)

Proof by contradiction

Suppose 8 is not true at the optimum value of \(\Omega_1 \) and \(\Omega_2 \) satisfying 7, then the smaller of the R.H.S and L.H.S in equation 8 contributes to the final optimum expression. Now since both the PDFs are greater than zero for all value in \(\Omega \) we can add sample points from the bigger side of the inequality to the smaller side thus making the smaller value large and shrinking the larger value and thus obtaining a value which is greater than the original hence the original values are not the optimal decision regions. Therefore the optimal \(\Omega_1 \) and \(\Omega_2 \) satisfy the equation 8
Proposition 2
The optimal Ω_1 and Ω_2 are given by.

$$\begin{align*}
\Omega_1 &= \{ z : \frac{f_1(z)}{f_2(z)} \geq k \} \\
\Omega_2 &= \Omega - \Omega_2
\end{align*}$$

(9) (10)

Where k is chosen to satisfy 8

Proof by contradiction
Suppose that 9 is not true at optimality. But 8 still holds at optimality as shown in Proposition 1. This implies that Ω_1 contains some sample space points apart from those for which 9 holds. But since k was chosen to satisfy 8 therefore Ω_2 contains sample space points where the equation 9 holds. If we choose an infinitesimal subspace Ω_2' in Ω_2 where 9 is true i.e. $\frac{f_1(z)}{f_2(z)} \geq k$. Such that

$$\int_{\Omega_2'} f_2 = \epsilon$$

(11)

Then

$$\int_{\Omega_2'} f_1 = k' \epsilon$$

(12)

$$k' > k$$

(13)

$$k' = k + \delta$$

(14)

And we choose another infinitesimal subspace Ω_1' in Ω_1 where 9 does not hold. And let

$$\int_{\Omega_1'} f_1 = k' \epsilon$$

(15)

Then

$$\int_{\Omega_1'} f_2 = \frac{k}{k'} \epsilon$$

(16)

$$k'' < k$$

(17)

$$\int_{\Omega_1'} f_2 = \epsilon + \gamma$$

(18)

$$\gamma > 0$$

(19)

If we exchange the subspaces Ω_2' and Ω_1' amongst Ω_1 and Ω_2. Then with such an exchange call the new decision regions Ω_1' and Ω_2'. Then

$$\int_{\Omega_1'} f_{z|1} = \int_{\Omega_1} f_{z|1} + \delta \epsilon$$

(20)

$$\int_{\Omega_2'} f_{z|2} = \int_{\Omega_2} f_{z|2} + \gamma$$

(21)
Instead of Ω_1 and Ω_2 if we use Ω'_1 and Ω'_2 in equation 7 we get a greater value. Therefore the assumption of optimality was false to begin with hence the optimal values satisfy the equation 9.

Final Solution

For the problem at hand and using Proposition 1 and Proposition 2 we get the

![Figure 2: Ratio of Cauchy and gaussian hypothesis](image)

optimal decision regions using Matlab as,

\[
\begin{align*}
\Omega_2 & = (2.7567, 0.6585) \cup (0.6585, 2.7567) \\
\Omega_1 & = \Omega - \Omega_2 \\
k & = 1.14
\end{align*}
\]

The value for the minimax error probability is 0.41.