Problem 3.22
Consider the composite hypothesis testing problem in Proposition 3.4 with \(\|x_1\| = \cdots = \|x_m\| \). Consider the test that selects the most likely hypothesis among the \(m \) hypotheses and then checks whether that hypotheses belongs to \(J \).

a) Show that this test is not optimal by means of an example.
b) Show that the decisions regions of this test converge to the optimal ones as \(\sigma \to 0 \).

Solution by Jimmy Chui
a) We consider the following 4-user case. Take \(s_1(t) \) and \(s_2(t) \) to be orthonormal signals defined on the interval \(t \in \mathcal{T} \), and let:

\[
\begin{align*}
 x_1(t) &= A s_1(t) \\
 x_2(t) &= A s_2(t) \\
 x_3(t) &= (-A s_1(t) + A s_2(t))/\sqrt{2} \\
 x_4(t) &= (A s_1(t) - A s_2(t))/\sqrt{2}
\end{align*}
\]

Furthermore, let \(\mathcal{H}_J = \{H_1, H_2\} \) and \(\bar{\mathcal{H}}_J = \{H_3, H_4\} \). We plot these vectors on \(s_1s_2 \)-axes in Figure 1.

![Figure 1: \(x_1, x_2, x_3, x_4 \) plotted on \(s_1s_2 \)-axes, with \(A = 1 \)](image-url)
According to Proposition 3.2, if we were to select the most likely hypothesis among the 4 hypotheses, the decision regions that minimize the error of probability are exactly the points minimizing the mean-square distance $\int_{[a,b]} |y(t) - x_i(t)|^2 dt$. This corresponds to the regions noted in Figure 2, where we have divided the decision regions of H_1, H_2, and H_3, H_4 by a solid black line.

We obtain these decision regions by taking perpendicular bisectors between pairwise points. Specifically, for this method, the boundary dividing \mathcal{H}_J and $\bar{\mathcal{H}}_J$ are two semi-infinite lines. The equations of these lines, in polar coordinates, are:

$$\theta = \frac{5\pi}{8} \quad (r \geq 0) \quad (5)$$

$$\theta = -\frac{\pi}{8} \quad (r \geq 0) \quad (6)$$

Figure 2: Optimal decision regions for H_1, H_2, H_3, and H_4. ($A = 1$)
Since $\|x_1\| = \|x_2\| = \|x_3\| = \|x_4\|$, by Proposition 3.4, the optimal decision rule for the compound hypothesis testing problem is given by

$$
\sum_{i \in J} \exp \left(\frac{1}{\sigma^2} \int_I y(t)x_i(t) \right) dt \geq \sum_{i \notin J} \exp \left(\frac{1}{\sigma^2} \int_I y(t)x_i(t) \right) dt \tag{7}
$$

Let the projection of $y(t)$ onto $s_1(t)$ and $s_2(t)$ be $\alpha_1 A$ and $\alpha_2 A$, so that

$$
y(t) = \alpha_1 As_1(t) + \alpha_2 As_2(t) + z(t) \tag{8}
$$

where $z(t)$ is orthogonal to both $s_1(t)$ and $s_2(t)$. We also see that

$$
\int_I y(t)(\beta_1 As_1(t) + \beta_2 As_2(t)) dt \\
= A^2 \int_I (\alpha_1 s_1(t) + \alpha_2 s_2(t) + z(t)) (\beta_1 s_1(t) + \beta_2 s_2(t)) dt \tag{9}
$$

$$
= A^2 (\alpha_1 \beta_1 + \alpha_2 \beta_2) \tag{10}
$$

From (10), and using (1) to (4), we can deduce that (7) is equivalent to

$$
\exp \left(\frac{A^2}{\sigma^2} \alpha_1 \right) + \exp \left(\frac{A^2}{\sigma^2} \alpha_2 \right) \\
\geq \exp \left(\frac{A^2}{\sigma^2} \left(-\frac{1}{\sqrt{2}} \alpha_1 + \frac{1}{\sqrt{2}} \alpha_2 \right) \right) \\
+ \exp \left(\frac{A^2}{\sigma^2} \left(\frac{1}{\sqrt{2}} \alpha_1 - \frac{1}{\sqrt{2}} \alpha_2 \right) \right) \tag{11}
$$

We plot this curve with a solid black line in Figure 3, with the settings $A = 1$ and $\sigma = 1$, with \mathcal{H}_J being the upper right region, and $\bar{\mathcal{H}}_J$ being the lower left region. The dotted line represents the boundary of the suboptimal decision regions calculated earlier.
b) We use the dot product notation $\langle y, x_i \rangle = \int_I y(t)x_i(t)dt$.

The optimal decision rule is

$$\sum_{i \in J} \exp \left(\frac{1}{\sigma^2} \langle y, x_i \rangle \right) dt \gtrless \sum_{i \notin J} \exp \left(\frac{1}{\sigma^2} \langle y, x_i \rangle \right) dt$$

(12)

Note that, as $\sigma \to 0$, each sum grows asymptotically as fast as the term with the maximum dot product. That is, the decision rule becomes equivalent to:

$$\max_{i \in J} \exp \left(\frac{1}{\sigma^2} \langle y, x_i \rangle \right) dt \gtrless \max_{i \notin J} \exp \left(\frac{1}{\sigma^2} \langle y, x_i \rangle \right) dt \text{ when } \sigma \to 0$$

(13)

This is precisely identical to the process of evaluating all the m dot products, choosing the index corresponding to the largest dot product, and determining whether it lies within J or not.

(We take note that it is possible for two or more maximum dot products to occur which makes (13) invalid; however, this situation occurs only at the border of the decision regions, has measure zero, and hence can be ignored.)

Hence, as $\sigma \to 0$, the proposed decision rule approaches the optimal decision rule (almost surely).