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Abstract

What happens to the optimal interpretation of noisy data wihene
exists more than one equally plausible interpretation efdhta? In a
Bayesian model-learning framework the answer dependseopribr ex-
pectations of the dynamics of the model parameter that ig toferred
from the data. Local time constraints on the priors are figaht to
pick one interpretation over another. On the other handlotahtime
constraints, induced by B/ f noise spectrum of the priors, is shown to
permit learning of a specific model parameter even when tharan-
finitely many equally plausible interpretations of the dathis transition
is inferred by a remarkable mapping of the model estimatiablem
to a dissipative physical system, allowing the use of powestatisti-
cal mechanical methods to uncover the transition from eweinate to
determinate model learning.

1 Introduction

The estimation of a model underlying the production of nalaya becomes highly non-
trivial when there exists more than one equally plausibl@ehthat could be responsible
for the output data. The viewing of ambiguous figures, sucthadNecker cube [1], is
a classical problem of this type in the field of visual psycggl Pitch perception when
hearing a number of different harmonics is another examigeniguous perception [2].

Previous studies [3] have reduced the problem of optimakjmetation of an ambiguous
stimulus to the problem of estimating a single variable Wwhiwy vary in timex(t), given

a time sequence of noisy data. Enforcing a prior belief thatacal dynamics(t) should
not vary too rapidly embodies the observer’s knowledge tthgid variations inx(¢) are
unlikely in the natural world or in a given experiment. Sugbri@r prevents overfitting the
model estimate to the data as it arrives. The statisticagdtinal interpretation of the data
was then found to consist @f(¢) hopping randomly from one possible interpretation to
another. The rate of random switching between interpatativas found to be controlled
not by the noise level (e.g. in the neural hardware), as posly thought, but rather by
the observer’s prior hypotheses. This hopping persistsfinitely despite the fact that
the probability distribution of the incoming data remaihg tsame. In such cases it is
impossible to learn a specific model parameter.



In this paper we introduce another prior over the dynamics(of. We assume that fluc-
tuations ina(t) have al/f spectrum, as observed ubiquitously in nature. Such a mior i
shown to induce nonlocal time constraints on the trajeesoof«(¢) and, unlike the local
constraints, can result in specific model learning in the cdambiguous models. The fact
that1/f priors can induce unambiguous model learning is the cergsailt of this work.

The analyses of the long-time dynamics with nonlocal prisngsermitted by a surprising
and remarkable mapping to a dissipative quantum systens rfifpping not only guides
our intuition of the optimal trajectories af(¢) but also permits the usage of powerful
statistical mechanical techniques. In particular, theoreralization group (RG) can be
employed to uncover the conditions in which there is a ttarsfrom non-specific model
learning to specific model learning.

2 Formalism

Suppose that we are given a seriedofneasurementge; } at discrete times. Then Bayes
rule gives us the conditional probability éf; } giving rise to those data

Pl{a}{x}] = P[{If}gfé{i]}f[{at}]’

where the probability of making the observatiofs;} is given by summing up all the
possible models that may give rise to them,

P({ai}) = /da Pl{zit{a]P{ad}]. )

We further assume conditional independence of signals,

@

N
Pl{e:}{ar}] = Plerzs-anl{ad)] = [ Pladadl. 3)

A natural step is then to consider how close our estimateeofitbdelx(¢) lies to the true
underlying modetx(t), which we take to be stationary(t) = @. We can think of these
probability distributions as Boltzmann distributions ifniwh some effective potential acts
to hold « close toa; thus we envision an energy landscape indtepace with a minimum
atao.

A more interesting, and generalized, question arises wieeronsider the global properties
of the extended energy landscape. In particular there may/be 1 equally plausible
interpretations consistent with the input daitawhich case there exist degenerate minima
ata,, (m=1,2...M),

P[xt|61] = P[l‘d@g] =..= P[lﬂ@]u]. (4)
Therefore we may write Eq. (3) as

t=1 m=1 t=1

On average, the term in square brackets is related to thé&aktLeibler divergences be-
tween distributions conditional om(t) and distributions conditional on the trae If the

0Of course it may be the case that some interpretations may be more fgahai others, result-
ing in a non uniform probability distribution over possible models. In this paesillustrate the case
where all interpretations are equally likel[a..] = 1/M.



time variation of« is slow, we effectively collect many samplesxobeforea changes, and
it makes sense to replace the sum over samples by its average:

. Tt |Ot 1 M _ Plz(t)|al(t
ngnoo Z Zl $t||am ~ T—Omz_:l/dt/dacP[m(tﬂam] In %,

m=1t=1
1 M
- 1y / dtD e[| (2). ©)
70 el
wherer is the average time between observations, and we take tti@wom limit.

2.1 Priors

We need to have some prior hypotheses about Wy can vary in time, serving as our
prior probability distributionP[«(t)]. We introduce two different types of priors character-
ized by whether they constrain the local or nonlocal timeadyits,

Pla(t)] = Pocat]a(®)] Paontocar[(t)]- ™

To summarize our prior expectation that the local dynamies(0) vary slowly, we assume
that the time derivative of(t) is chosen independently at each instant of time from a
Gaussian distribution,

Pocalla()] o exp [5 [ (Z—‘;‘ﬂ . (®)

Note that this distribution corresponds to random walk \efflective diffusion constanb.

Motivated by the ubiquitous occurrenceloff fluctuations in nature we chose to encapsu-
late the nonlocal dynamics by a Gaussian distribution with &power spectrum of noise,
conveniently expressed in Fourier coordinatess

dw |a(w)[?
-Pnonlocal[a(t)] OCQXP{ 2 / or S(w) ) (9)
where the spectral noise function takes the form
1
S(w) = —. 10
@ =5 (10)

Note that the spectrum must be evervisince for any stationary proceS$w) = S(—w).
The parameter) determines the strength af priori belief in nonlocal dynamics, or as
we will see later, it can be equivalently viewed as a fricéiboonstant determining the
dissipation of the time trajectories oft). In the time-domain Eq. (9) becomes

Paontocalo(t) ocexp[ & [ anar (205 ))] 1)

Combining Eg. (8) and Eq. (11) we then obtain the total priqreetation of the probability
distribution over the time-dependence of the model paramet)

Pla (t)]aexp[ 4D/ (at)Q—%/dtdt’ (Mﬂ (12)

Taken together, the local and non-local terms describeufiticins in which arel/ f up
to a cutoff frequencyw. ~ Dr. Returning to the Bayesian conditional probability Eq. (1)
we then obtain a path-integral expression

Pla(t)[{zi}] o exp(=S[a(t)]), (13)



where the actior$|«(t)] is given by

2 " alt) — alt)?
sta) = [ [5 (%) +0 [ (=) +veﬁ[a<t>1],<14)
M
Vla®] =~ > Dicslama(o). (1)

This is equivalent to the imaginary time path-integral fguantum mechanical particle [4]
of massl /2D , with coordinates given by (¢), moving in an effective potentiaf,g [ (¢))
and subject to (linear) frictional forces with a damping st@amty. This mapping provides
an extremely useful guide to our intuition for the probabégdctories ofx(t). Just as in the
analyses of particle dynamics in dissipative quantum mackd4] we anticipate that the
time-course ofv(t) may exhibit qualitatively different types of behavior deging on the
strength of the non-local terms. In addition, the equivedeto a physical system permits
exploitation of powerful techniques developed in the stofiguantum mechanical systems
with infinite degrees of freedom.

In the following we consider the casesraf= 1 andm = 2 and use the RG transformations
to consider localization-delocalization transitions.

2.2 M=1: Onetrueinterpretation of data

Now if «(t) differs froma by a smallA«(t) we can Taylor expand the Kullback-Leibler
divergence to give a quadratic distance measure

Dkr(alla) = %F[&(t)]Aa(t)2 +0(Aa?), (16)

where the metric is the Fisher information

B 1 OP[z|a(t)] >
Fleto) = [ de[m(t)]( Da(t) ) )

Thus, close to the true parametethe potential energy term in Eq. (14) is simply a har-
monic oscillator with stiffness given by the Fisher infotina. Guided by the mapping to a
dissipative quantum mechanical system we expect that ifittiel distribution ofa already
happens to be closely centered around the correct valughitbanost likely trajectory will
be simply to move closer to the minima of the potential enextgy; .

The important point to note is that had we chosen just thd lomastraints on our priors
Eq. (8) then the trajectory af(¢) would persistently fluctuate arourd, representing a
trade-off between avoiding overfitting the data and ineofimur estimate. In the quan-
tum mechanical picture this corresponds to the zero poiatuations around the minima.
Adding the dissipative term reduces the fluctuations araently an amount monotoni-
cally dependent on, thus improving on the optimal estimate.

A RG treatment of the single-well problem, within the harriwoapproximation, renor-
malizes the Fisher information such that the curvature efgbtential well increases for
all values of then, and thus the fixed point of the dynamics is simply the coremcg
of a(t) to reduced fluctuations around the true parameterWe explicitly carry out the
RG calculation in the more interesting case where we havegtelzal minima in the next
section.



2.3 M=2: Two equally possibleinterpretations of the data

In the case of two equally viable interpretations of the d#te potential energy term
becomes that of a double-well potential with degeneratémarata; andas, and energy

barrierh )
h= 20 (Drr(@ll(@y +@2)/2) + Dir(aslla; + @2)/2)) (18)
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Figure 1: Potential energy landscape fowhere there exist two equally valid interpreta-
tions. Eq. (19)

Without any dissipative dynamics, the optimal estimatevf) will switch between the
two minima, representing instanton trajectories of a quanparticle tunnelling through
the energy barrier backwards and forwards [3]. In contiistwell known that, at least in
some regimes, the problem with dissipation has a phasettoem® a truly localized state.
Previous work has demonstrated such a dynamical phasditrans the strong-coupling
limit (i.e. large barrier height limit) using semi-clasai@pproximations for the dynamics
[4,5,6], and in this section we will show that a perturbatR& treatment yields similar
results in the opposite weak-coupling limit.

For the sake of simplicity we employ the following simple dimpotential (see Fig.1),
although the results will be independent of its exact form,

V(a) = a% (0* —a?)”. (19)

The a coordinates have been shifted such thiat= —a,, and the heighk of the energy
barrier located atv = 0 sets the overall energy scale. It is useful to write the &ffec
action of Eq. (14) in dimensionless parameters

« 5 h
= —_— = = — 2
a al’ b nay, c A7 ( 0)
whereA = D/a? is the energy/frequency scdle
1 fdw (1 9 ,
s - 2/27r <2Aw +b|w> la(w)| +cA/dtV(a), 21)
V'(a) = (a*-1)~% (22)

2The constant of proportionality between energy and frequency is detakin to the common
physics computation setting af= 1.



By power counting in the first integral the dissipative teahlow frequencies, dominates
over the kinetic energy term. In the language of RG, the Idrestergy term is an irrelevant
operator and can thus be ignored if we now focus our attetdidrequencies below some
cut-off A\. To determine the RG flow of the dimensionless coupling patars the high-
frequency components are integrated out ftom A — dA tow = A to give a new effective
action S over the low frequency modes < . To accomplish this the function(w) is
split

a(w) = ac(W)O(|lw| <A —dX) +as (W)X —dX < |w| < A), (23)

and the new action is obtained by integrating avefw),
zZ = /Daexp[fS(a)],
| [ Pa<pas expl-Stac +a-)

= /Da< exp[—S(a<)]. (24)

Therefore,

5= | 0 & el ()P +1n<eXp [CA [ dv'ia +a>>]> @29

a>

where the averaging is defined by

A
(). [ Das exp{-g | ;’—‘;|w|a><w>2} A (26)

In the weak-coupling limit, we may expand the exponentiahtén Eq. (25) before per-
forming the averaging,

<exp[cA/dtV’(a< + a>)]> = <1 + cA/dtV’(a< +as)+ > ) 27

ax a
Terminating the expansion to first order in the potentialespnts a one-loop calculation
in field theories.

Making use of
A
dw 1 1 dA
2 = —_ =
<a>(t)>a> _/>\_dA T b|w‘ Tl'b A7 (28)

we find that the potential term renormalizes as

(cA(a® —1)%)x = (cA(a® — 1)*)x_an ~ (cA)y {(ai —1)% + (3a2 — 1)%d—)\)\ , (29)
where we have ignored terms including higher powerd)gf\. To recast the new lower-
frequency action into the same form as the original actiendimensionless coupling pa-
rameters must be renormalised. In particular, we obsemettie dimensionless barrier
heightc can either grow or shrink depending on the value of the diinetess dissipation

b. Note that the coordinates must also be rescaled (also kiaswmavefunction renor-
malization) for the potential in Eqg. (29) to maintain the saquartic form as in Eq. (22),
thereby inducing a rescaling 6f We concentrate here on the renormalized potential cou-

pling term and find that, up to a constant,

d\ 6
Cr—dx = Cx {1 + N (1 - %)] ) (30)



giving then the following differential RG flow equation

de b*
dln ) ( b 1) “ (31)
As the (dimensionless) barrier heightenormalizes towards lower frequencies we observe
two types of behavior depending on whether the parandategreater or smaller than the
critical valueb* = 6/7 (the actual numerical value may well be slightly altered bing
to higher orders in the perturbative expansion, but the imapd point to note that it is non-
zero and thus gives rise to distinct dynamical phases)b Eob* the barrier height grows
without bounds and thus effectively trap$t) in one of the two minima, representing a
localized phase. This localization can be brought abouhbseiasing the magnitude gf
the numerical prefactor of our dissipative nonlocal priarsd/or increasing; the distance
between the two possible interpretations of the data. Orother hand, folh < b* the
potential becomes ineffective in localizing and thusx freely tunnels between the two
wells, representing indeterminancy of the correct true ehpdrameter.

It is interesting to note that a flow equation, similar to E3{L); has been reported for the
opposite limit (strong-coupling) using the instanton neelfs,6]. Arguably what we have
really shown is that even if one starts with weak couplingthsd it should be "easy” to
jump from one interpretation to another, for> b* we will flow to strong-coupling, at
which point known results about localization take over.
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Figure 2: Schematic RG flow of the potential energy coupliatpmeter forl/ > 2. Note
that the flow-lines are not expected to be strictly vertiaa tb wavefunction renormaliza-
tion.

The qualitative picture does not change when there are rharettvo possible model in-
terpretations)M > 2. In fact, the case of/ = oo has been studied [7] where the potential
energy landscape is taken to be sinusoidal, and it has berond¢rated that there again
exists a critical valué* which separates a localized phase from a nonlocalized pfiase
flow of the potential energy coupling constaris shown in Fig.2 which is expected to be
gualitatively correct across the whole ralgg M < oo.

3 Discussion

In summary, the optimal model estimate in the response ofguuohbs signals always re-
sults in random perceptual switching when the priors onlyst@in the local dynamics.
We have shown that when we allow the possibilityl 8§ noise in our priors then a specific
model is learnt amongst the many possible models.

The connection between estimation theory and statistieshanics is well known. One
of the key results in statistical mechanics is that locatriattions in one dimension can



never lead to a phase transition. Thus if we are interestetbinexample, learning a
single parameter by making repeated observations, thea tam be no phase transition
to certainty about the value of this parameter as long as nar pypotheses about its
dynamics are equivalent to local models in statistical rmeats. Markov models, Gaussian
processes with rational spectra, and other common pribfallah this local class.

The common occurrence of f fluctuations in nature motivates the analyses of estimation
theory with such priors. Crucially,/ f spectra do not correspond to local models. In fact
they correspond exactly to the addition of friction to théhdategral describing a quantum
mechanical particle, a problem of general interest in coadd matter physics and more
recently in quantum computing. Here we note one importansequence of these priors,
namely that we can process data in a model which admits thehildy of time variation

for the underlying parameter, but nonetheless find that eat &stimate of this parameter
is localized for all time to one of many equally plausiblecatiatives. It seems thay f
priors may provide a way to understand the emergence oficrtaore generally as a
phase transition.

References

[1] G. H. Fisher, Perception & Psychophys#sl89 (1968)

[2] E. de Boer, Handbk. Sens. Physi8).479 (1976)

[3] W. Bialek and M. DeWeese, M. Phys. Rev. Létt, 3079 (1995)
[4] A. O. Caldeira and A. J. Leggett, Phys. Rev. Ldt, 211 (1981)
[5] A.J. Bray and M. A. Moore, Phys. Rev. Let9, 1545 (1982)

[6] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. FisherGarg and W. Zwerger, Rev. Mod.
Phys.59, 1 (1987)

[7] M. P. A. Fisher and W. Zwerger, Phys. Rev. L&% 6190 (1985)



