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ToERE are few estimates of the rates at which spiking neurons
transmit information'~, and none for svnapses transmitting
graded signals. We have measured the rites at which blowfly
(Calliphora vicina) photoreceptors transmit information through
chemical synapses to large monopolar cells (LMCs). The graded
responses of these non-spiking cells transmit as much as
1,650 bits per second, five times the highest rates measured in
spiking neurons’. The widespread occurience of non-spiking
neurons in semsory systems could well reflect this superior
performance. Comparing transmission rates in pre- and post-
synaptic cells, we estimate that each synaptic active zone trans-
mits ~50bits s~*. This estimate assumes stz tistical independence
of the noise generated at active zones and makes use of a detailed
morphometric analysis of photoreceptor—-LMC synapses®’.
These measurements provide a benchmark for quantifying the
performance of synaptic mechanisms and lor understanding the
limitations that synaptic transmission and spike coding place
upon neural computation.

FIG. 1 Examples of raw data traces of the stimvlus

Information capacity is a basic measure, specifying the loga-
rithm of the number of distinct messages that a signalling system
can transmit per unit time. To estimate the information capacities
of neurons, we must measure the reliability and dynamics of the
neural code'™. Photoreceptors of the fly compound eye code small
intensity fluctuations as analogue changes in membrane potential.
These graded potentials drive synapses that generate graded
responses in the second-order neurons, the LMCs. For the
functionally appropriate signals used here, signal and noise are
approximately gaussian. For these conditions, Shannon® derived
R, the rate of information transmission in bitss™', as
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where S(f) and N( f) are the power spectral densities of signal and
noise respectively. Note that this formulation considers both
reliability and dynamics by treating the signal-to-noise ratio in
the frequency domain.

Coding by photoreceptors and LMCs is approximately
linear®™, enabling us to measure signal and noise spectral den-
sities by recording graded-potential responses to a pseudorandom
sequence of light intensity fluctuations. Here we specify this
stimulus by the contrast modulation ¢(f) (Fig. 1). The encoded
signal is the average response, v,(f), to repeated presentations of
(7). Note that stimulus and response are continuous functions of
time, not single numbers. Each response to a single presentation
deviates from the average, and from these random deviations we
obtain the noise power spectral density N( f) (Fig. 1).

Because coding is linear, it is described by a transfer function
T( ), which here is the contrast 1o voltage gain at each frequency.

contrast signal (a), and the average voltages as vsell
as the fluctuations around the average recorded from
a photoreceptor {(b) and an LMC (c). d-f, Probab lity
distributions corresponding to these signals. In'ra-
cellular recordings were made from photoreceptors
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and LMCs in the retinae of intact blowflies, Calliphra 0
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vicina, using conventional microelectrode recorcing
technigues™. All experiments were done at room
temperature, 22-24°C. The stimulus source was a
high-intensity green LED modulated by a 2-s pseu Jo-
random contrast sequence. Here we define contrast
as c(t) = f{t) /I, with /(t) the light intensity as a
function of time, and /; its time-average; thus c(t) is
dimensionless with a time average of 1. This
sequence, a short segment of which is shown ir a,
was repeated 76 times while an on-line compiter
recorded the set of cell voltage responses {v(t}}. The
ensemble average of this set, v, (t) (thick lines in b
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and ¢), approximates the cell's noiseless respons: to

c(t), Subtracting v, () from each of the 75 voltige
records gave the set of noise traces [v,(t] — v, ()],
and averaging the power spectra of these traces gave
the overall noise power density spectrum N(f). Three
representative noise traces are shown by the thin
lines in b and ¢. In most cases, as in this example, the
modulated stimulus ¢{t) had a gaussian distribu’ion
{data points and gaussian fit are shown in d) with
a flat contrast power density of ~ 3.1 x 107 Fz?
up to 500Hz. As expected®™, photorecepors
responded linearly to this stimulus, producing a

- Response (v(£))(mV)

gaussian distribution of signal levels (filled circles in
e) and of noise (open circles in e}, Gaussian fits to the 0.00

data points are shown as the continuous lines. LMC

linearity was checked explcitly by recorling

responses to two different contrast waveforms and

to their superposition. The response to the sumried

stimulus was very close to the sum of the responses to the individual
random waveforms, as required for linearity. The distributions of LMC signal
(filled circles in f) and noise (open circles in f) deviated somewhat from
gaussian (continuous lines). However, for comp ting the information rate,
the approximation is still quite reasonable. This was checked by comparing
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the entropy difference between the measured signal and noise distributions
{2.81 bits) to the entropy difference between the fitted signal and noise
distributions (3.03 bits). With these conditions, equation {1} gives a good
approximation to the information transmission of the cells.
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T(f) is determined directly as the ratio of the frequency com-
ponents of the measured average voltagz signal and the stimulus
contrast: T(f) = ¥V, (f1/Sc(f), where V_(f) and S f) are the
Fourier transforms of v,(f) and c¢(f). To combine data from
different cells, we use a common measiire appropriate for both
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FIG. 2 An account of the procedure used to rieasure information transfer
rates and information capacities. Equivalent contrast noise spectral
densities (thick lines), and distribution of optirr al stimulus contrast spectral
density (cross-hatched areas) for a photorece ptor (a), an LMC (b}, and a
single synaptic active zone (c). Note the differ 2nces in vertical scales, and
in particular that the total surface area in th: cross-hatched areas in all
three panels is equal to 0.1. Shannon® consic ered the problem of optimal
signal transmission through a gaussian chinnel, given that the total
transmitted power is limited. Our problem is the same, except that we fix
the total signal power, that is, we fix the stimu lus contrast spectral density
integrated over frequency. The solution® of th2 optimization problem is to
distribute the contrast power over the differer t frequency bands in such a
way that the summed contribution of signal plu s noise power densities is flat
where that is possible. This is analogous to filing a vessel shaped as the
equivalent contrast noise spectrum with an amount of water that is
representative of the total stimulus contrast power, This filling was per-
formed by an iterative procedure, with a fixed total contrast power of 0.1.
From the resulting contrast power spectral density, 5.(f), we then derive the
information capacity by equation (1). The equivalent contrast power
spectral density shown in ¢ is based on interp>lated experiment data (Fig.
4), This particular example was computed for the same bump rate as the
data shown in b. Note that here we compute th : information capacity for the
transfer of contrast information. This is not qu te the same as the informa-
tion capacity for transfer of pre- to postsynartic voltage. The error is very
small, as the spectra are quite flat in the regiin of interest; moreover, the
error will lead to an underestimate of the true value.
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photoreceptors and LMCs, namely the power spectral density of
equivalent contrast noise, N-(f) (Fig. 2). This is defined as a
stimulus contrast power spectral density that, after filtering by
T(f), would have the same spectral density as the measured noise:
Ne(f) =N(H/ITAIM

The information transmission rate R now follows from sub-
stituting No( f) and Sc{ f) into equation (1). However, R depends
not only upon system performance, as measured by N.(f), but
upon one’s choice of signal, §-(f). A more universal measure is
the information capacity, R,,,, defined as the maximum transmis-
sion rate, achieved by selecting the stimulus S.( f) that optimally
drives the cell. Because R, is increased by boosting stimulus
contrast, the contrast variance of S~( f) was fixed at 0.1. This is a
natural choice, as it is representative of natural levels'*" and falls
within the linear response range of photoreceptors and LMCs.
Having fixed the total contrast, we derive S.( f) for the optimum
stimulus (Fig. 2), and use this to calculate the information capacity
R, (equation (1)).

Data from five photoreceptors and three LMCs produce con-
sistent estimates of information capacity (Fig. 3). Information
capacities rise steadily with mean intensity, as expected of a system
partly limited by photon shot noise. LMCs demonstrate the
benefits of the convergence of signals from six photoreceptors'**,
achieving a capacity of 1,650 bitss™, as compared with 1,000
bitss™! in photoreceptors. Note that, because of the redundancy
inherent to parallel transmission of the same signal, the post-
synaptic information capacity is far less than the sum of the
presynaptic capacities.

The synaptic information capacity can be deduced by compar-
ing the pre- and postsynaptic equivalent noise spectral densities,
Nepel f) and Ngo (). The comparison must be between cells
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FIG. 3 Information capacities of photoreceptors and LMCs as a function of
mean light intensity, computed according to equation (1), with an optimal
contrast stimulus as defined in the legend to Fig. 2. Light intensity along the
abscissa Is expressed as the number of photoconversions per photo-
receptor per second. This measure of effective intensity was extrapolated
from counts of quantum bumps (electrical events triggered by single
photon absorptions'”) at low light levels and the values of the calibrated
neutral density filters used to attenuate the light source. The bump rate
measured in LMCs was divided by 6 to give the bump rate in each of the 6
pre-synaptic photoreceptors. Lines connect points belonging to an indivi-
dual cell. The high information rates assume an optimal stimulus but are not
unreasonable: with non-optimized but stronger stimuli (total contrast
power, 0.28), we directly measured LMC transinformation rates of
1,150 bitss™*.
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driven by stimuli of equivalent quantal conte nt, because bit rates
depend on photon flux (Fig. 3). Strict equisalence could not be
achieved by recording simultaneously from .« photoreceptor and
its postsynaptic LMC. Instead we calibrated the quantum catch of
each recorded cell and corrected for the small differences.
Calibration was done by counting the ratz of production of
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FIG. 4 a, b, Measured values {black dots) of #-N, (f, f) for three photo-
receptors (a) and three LMCs (b), together with smooth surfaces obtained
from interpolation of the data points. The values of # specified on the left-
hand axes are the postsynaptic LMC bump rate f_4. The presynaptic rate is
Bore = Bron/ 6. Equivalent conitrast power spectral de 1sities for each value of
£ are computed as N(f, B) = N(f, B)/|T(f, £)°. Shit noise analysis shows
that, owing to photon poisson statistics, an ideal photon counter absorbing
photons at the extrapolated bump rate should have B-N.(f,f) = 1. A
realistic photon counter then obeys B-N.(f,f) = 1, or in other words,
(B-Nc(f, £))" is a measure of the detector’s quan um efficiency. For the
photoreceptors and LMCs studied here, this must be interpreted as a
measure of efficiency relatve to the dark-adapted state, in which the
bump count was calibrated. From about 5 to 50+Fz, the photoreceptor’s
performance is within a factor of two from the idea behaviour, At its best
frequency, the UMC stays within a factor of 7 from th: limit of 107 s~ set by
the bump rate. For both cells, the efficiency decreas =s at high frequencies,
presumably as a result of time jitter in the tran:duction process. The
decrease in efficiency at low frequencies results at least partly from
instrumental noise. The interpolated surfaces give i1 fair representation of
the measured data for each cell type, indicating tiat N.(f, ) is a good
universal description of the behaviour of each cell ‘ype. ¢, The equivalent
contrast noise contribution of the full synaptic ar-ay. The figure shows
B-Newans(f, B) (sE€ £qQUation (3)), which is compu ed by subtracting the
surface In a from that in b. B-Noge(f, §) must 2e interpreted as the
contribution of synaptic transmission noise relathe to the photon shot
noise. Al low values of §, we see that §-N.,.(f, B <« 1, so photon noise
dominates the synaptic noise. Values below 0.5 ire not shown, as low
values are hard to estimate reliably. Al higher intznsities, §-Neyn(f, £)
ncreases, indicating that synaptic transmission, rather than the photon
flux, becomes the information bottleneck?®.
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quantum bumps, discrete voltage pulses produced at very low
light levels by single photon hits'”"*. When intensity was increased
in calibrated steps, the low-level count was increased by the same
factor to give the extrapolated bump rate, f. From measurements
of N4 f) made at different values of 8, we interpolate to derive
Nc(f, B)., the function that specifies the equivalent contrast noise
spectrum for different § values (Fig. 4).

‘We calculate synaptic transmission rates as follows. Six photo-
receptors carrying identical signals converge upon a single LMC
and contribute equally to the postsynaptic response®'. Thus,
when transmitting the same signal, the bump rate in a photo-
receptor is one sixth that in an LMC: B, = f../6. The six
photoreceptors contribute independent noise so that convergence
improves the signal-to-noise ratio, reducing the equivalent con-
trast power of presynaptic noise by a factor of 6. Given that the
total postsynaptic noise is the sum of noise injected by photo-
receptors and noise introduced during transmission, Ney,...(f, ),
we have:

Newe S, pre
Nc‘pm(faﬁpw}:—_p%‘E'FNMru(fsﬁm) (2)

Calculating Negf f, ) from equation (2), we obtain a synaptic
information capacity of 2,110 bits s at our highest light intensity.
This synaptic rate exceeds the LMC rate of 1,650 bits s~ because it
is equivalent to the capacity of an LMC that is driven by noise free
photoreceptors.

Photoreceptor-LMC synapses resemble their graded response
counterparts in the vertebrate retina in several respects. Their
active zones, measuring 0.5 x 0.2 pm, contain a high density of
vesicles grouped around a prominent presynaptic structure’. Each
active zone faces a tetrad of postsynaptic elements in which the
dendrites of two LMCs form the central pair. In the housefly
Musca each of the six presynaptic photoreceptors drives an LMC
with approximately 200 separate and regularly spaced active
zones, giving a total of approximately 1,200 zones driving each
LMC®. With an optima) synaptic coding strategy, every zone would
carry a unique signal component, at a rate of 2,110/1,200 =
1.8 bitss~'. However, this strategy requires sophisticated encoding
mechanisms (for example, tuning individual zones to a per-
sonalized narrow band of signal frequencies or decorrelation
through local spatial interactions) for which there are no
precedents in graded synapses. Indeed, the active zones are
structurally identical®’, and appear to act in parallel to induce
additive postsynaptic responses, with approximately linear trans-
mission from photoreceptor to LMC'*"**. Thus the available
evidence suggests that this array of active zones is employed to
average out synaptic noise’’, leading to considerable redundancy
because each zone carries, on average, the same signal. With m
zones in parallel, the synaptic response amplitude and the total
synaptic noise power both increase by a factor of m. Consequently,
for the full array

mem(f} — Nme{fj =NCM:(f) (3)
7 [ Toone P 72| Toome () m

with None( /) the equivalent contrast spectral density of a single
zone. Computing Ne,,..(f) from equations (2) and (3) at the
highest § and combining this with an optimized stimulus of
contrast variance (.1 (Fig. 2), gives (equation (1)) an information
capacity of 55 bits s™' per active zone. Owing to redundancy, just as
with converging photoreceptors, the total information capacity is
far below the sum of the individual capacities. The number of
zones is unknown for Calliphora, so that we have used data from
the smaller fly Musca. However, any overestimate of active zone
capacity will be small because the neurons of the two species are
similar in size”. Moreover, the noise in each zone could be non-
gaussian, in which case we underestimate the information capa-
city.

Our study demonstrates that sensory neurons and chemical
synapses are remarkably effective. The information capacities of
photoreceptors and LMCs are respectively 3 and 5 times higher
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than the maximum rates reported by spiki1g neurons, measured in
cricket cercal afferents’. This large differ¢ nce implies that graded
potential neurons are specialized for fast and accurate signalling
over short distances®, so explaining teir widespread use in
sensory systems”'. Moreover, information can easily be lost when
graded synaptic inputs are converted into spike trains and this,
together with the information capacity of : ynapses, must constrain
neural network design. Information capat ities also set constraints
upon the underlying molecular mechan sms. For example, the
information capacity of a single active zone, about 50bitss™',
ultimately depends upon the precision >f synaptic vesicle dis-
charge. Any description of synaptic tr:nsmission that cannot
account for this level of performance is incomplete. Thus mea-
sures of information capacity provide henchmarks for under-
standing the performance and design o neural systems at the
network, cellular and molecular levels. O
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