
Kickbot: A Spherical Autonomous Robot

Christopher Batten and David Wentzlaff
6.836 Final Project

{cbatten|wentzlaf}@mit.edu

1 Introduction

Kickbot is a custom built autonomous robot
which wanders in its environment searching for
people who will kick it. Kickbot’s novel spheri-
cal body and solid construction make it ideal for
kicking, and its carefully counterweighted cen-
tral disk helps stabilize the robot after tumbling.
Kickbot has a two part distributed control sys-
tem which uses various sensors to avoid obsta-
cles, detect when it is being kicked, and find peo-
ple to antagonize.

There were three main objectives we hoped to
achieve by building Kickbot. First, we wanted to
build an autonomous robot from scratch. Too of-
ten it seems that building a robot simply means
obtaining a pre-made robot control board, at-
taching a few sensors and four wheels, and then
programming it to move around. We lacked the
financial means to purchase a commercial control
board with an advanced embedded microproces-
sor, but more importantly we wanted the experi-
ence of creating our own control system and ex-
perimenting with our own ideas for an interesting
robot body. Part of what makes robotics so ex-
citing is that it includes so many varied aspects:
mechanical, electrical, behavioral, and control.

The second objective for building Kickbot is
more specific. Most robots have strict orienta-
tion requirements such that they will not func-
tion correctly, if at all, when turned upside down
or placed on their side. We wanted to create a
robot where falling over was not a failure mode.
Kickbot is specifically designed to correctly ori-
ent itself when knocked over or after bouncing
into an obstacle. The third objective was to ex-
periment with various emergent behaviors with
a robot that we built ourselves. We were able
to observe Kickbot exhibiting several interesting

Figure 1: View of Kickbot

behaviors: both expected and unexpected.

Overall, the project was a success. Kickbot is
able to roll around an office building and avoid
obstacles. Due to the specifics of its sensor place-
ment, sometimes Kickbot does not see an obsta-
cle and so it rolls into it, but Kickbot doesn’t
mind. It simply bounces off in a new direction.
Kickbot can detect motion and rolls towards it
in an attempt to find someone to kick it. When
kicked it lets itself tumble, and when stable again
Kickbot wanders off once more. But the ex-
perience we gained building Kickbot is just as
important as the final robot itself. We learned
how to machine our own parts, program a micro-
controller, and build a robot body out of a ham-
ster ball and some styrofoam. We learned the
importance of decoupling capacitors, that things
can and will break, and that sensors are perfectly
happy to lie for no good reason. Ultimately,
however, we learned that building a robot from
scratch is great fun.

1

Mercury Switch

IR Sensor

(camera-backward)

(1)

(2)

Mercury Switch

D (1bit)

D (1bit)

H-bridgeH-bridge

(L) (R)

D
ir

 -
 D

 (
1

b
it

)

M
ag

 -
 P

W
M

B
rk

 -
 D

 (
1

b
it

)

(L) (R)

Motor Motor

A (0.5v to 3v)

A (0.5v to 3v)

A
 (

-1
2

v
 t

o
 1

2
v

)

A
 (

-1
2

v
 t

o
 1

2
v

)

Board

Camera Control

RS232
IR Sensor

Main Control

Board

D
ir

 -
 D

 (
1

b
it

)

B
rk

 -
 D

 (
1

b
it

)

Gameboy

Camera

M
ag

 -
 P

W
M

(camera-forward)

R
ea

d
 -

 D
 (

1
b

it
)

A
 (

1
.5

v
 t

o
 4

v
)

C
lk

 -
 D

 (
1

b
it

)

C
tr

l
-

D
 (

3
b

it
)

Figure 2: System-Level Block Diagram - Arrows indicate connectivity and format of communication between
blocks. A = analog, D = digital, PWM = pulse width modulation.

1.1 System Overview

Kickbot is composed of two plastic half-
spheres and a central disk (see Figure 1). The
central disk contains all of the electronics, sen-
sors, and motors and is attached to the half-
spheres through an aluminum hub and six
spokes. The central disk also includes signif-
icant counterweight to help stabilize the robot
and permit forward motion.

Figure 2 is a system-level block diagram of
the robot. The connectivity arrows also indicate
the actual communication format: A indicates
an analog signal and associated voltage range,
D indicates a digital signal and associated num-
ber of bits, and PWM indicates a pulse width
modulated signal. Kickbot has several sensors:
two infrared range sensors mounted in opposite
directions, two mercury switches to monitor ori-
entation, and a small camera. There are two cus-
tom built control boards: a main control board
and a camera control board. Each board has its
own micro-controller and some additional logic

(e.g. SRAMs, LEDs, dip switches). The main
control board is responsible for monitoring the
IR sensors and the two mercury switches, and
also controls the two H-bridges which in turn
control the two drive motors. The camera con-
trol board is responsible for operating the camera
and image processing. Communication between
the two control boards is through the standard
RS232 protocol.

1.2 Outline

The remaining sections of this report will pro-
vide more details concerning the construction
and operation of Kickbot. Section 2 discusses
Kickbot’s high-level behaviors within the con-
text of a subsumption architecture. Section 3
concentrates on the mechanical aspects of Kick-
bot, while Sections 4 and 5 discuss the electrical
and control aspects of the main control board
and the camera board. Section 6 presents some
final conclusions.

2

Board

SS

Control

Control

Board

Main

Camera

Wander

Antagonize

Camera

Motors

Motion

Detect

Mercury

Sensors
Tumble

IR Sensors

Figure 3: A Subsumption Architecture for Kickbot

2 Behaviors

To create Kickbot’s high-level behavior we
used a subsumption architecture which consists
of three simple behaviors layered on top of each
other: a wander behaviour, a tumble behaviour,
and an antagonize behavior. Using a subsump-
tion architecture was advantageous for three
reasons: it helped us better conceptualize the
robot’s behavior, it allowed us to investigate
emergent behavior at all three layers, and it was
easily extended to a modular implementation.
Figure 3 shows how these three simple behaviors
are combined to form Kickbot’s overall behavior.

System development initially focused on the
wander behavior and then the other behaviors
were added gradually. This incremental devel-
opment is a key characteristic of subsumption
architectures and definitely helped in managing
the design complexity. Even the finished ver-
sion of Kickbot exploits this modularity: there
are several switches on the main control board
which allow a user to choose between the wan-

der behavior by itself, the wander and tumble
behaviors, and all three behaviors. Although
all three behaviors are implemented on the main
control board, the majority of the work required
for the antagonize behavior is actually imple-
mented on the camera control board. This mod-
ularity made board and software development
easier since once the interface between the two
control boards was specified, we could work on
each board independently. Each behavior is dis-
cussed in more detail below.

2.1 Wander

The wander behavior enables Kickbot to roll
around its environment while avoiding obsta-
cles. As shown in Figure 3, the wander behavior
makes use of the two IR sensors to detect when
an obstacle is in front of Kickbot. If such an
obstacle is detected, then Kickbot should take
some action to avoid the obstacle. Three dif-
ferent avoidance mechanisms were investigated:
simple reverse, reverse and turn, and spin.
The simple reverse obstacle avoidance mech-

3

anism was actually an emergent behavior. An
early version of Kickbot had very little counter-
weight and was programmed to simply reverse
directions when an obstacle was detected. It
was expected that Kickbot would move back and
forth between two obstacles. Kickbot’s actual
behavior was much more interesting and a prime
example of emergence. Kickbot would see an
obstacle and stop its motors, but because of the
limited counter-weight, it would continue to roll
into the obstacle. Kickbot would then bounce in
an arbitrary direction and begin moving. The
randomness of a complex environment allowed
Kickbot to wander without any explicit turning
mechanism.
Although the simple reverse technique was in-

teresting, it was difficult to control and numerous
collisions were straining the robot. The reverse
and turn obstacle avoidance mechanism relies on
an increased counter-weight to help Kickbot stop
before colliding with the detected obstacle. Since
Kickbot is symmetrical, it just moves in the op-
posite direction without needing to actually turn
completely around. One of the motors starts
in the reverse direction before the other motor,
which causes Kickbot to turn slightly and head
off in a new direction. The amount that Kickbot
turns varies based on how charged the batteries
are and the surface that Kickbot is moving on.
Kickbot’s small wheel base means that it turns
much better on smoother surfaces such as tile.
When moving on carpet, Kickbot turns signifi-
cantly less if at all. This is a good example of
situatedness, and it has consequences on Kick-
bot’s overall behavior: Kickbot tends to explore
more when moving on smoother surfaces than
when moving on rougher surfaces.
The spin obstacle avoidance mechanism pre-

vents Kickbot from becoming trapped between
two obstacles. It was expected that Kickbot
would never move into a situation where an ob-
stacle was both in front and behind it, since the
reverse and turn mechanism should enable Kick-
bot to avoid the obstacle completely. But the
randomness and complexity of Kickbot’s envi-
ronment created several situations where it be-
came trapped. To address this, the spin obsta-
cle avoidance mechanism causes Kickbot to spin
in place for some amount of time if an obstacle

is detected both in front and behind. Kickbot
then stops and checks to see if either direction is
clear. If so, Kickbot proceeds in that direction,
otherwise it spins again. This behavior signifi-
cantly reduced the number of times Kickbot be-
came trapped, but it also revealed another un-
expected emergent behavior. Sometimes Kick-
bot goes over a small bump and the central disk
accidently swings causing the forward IR sensor
to point down. Kickbot sees the floor, thinks
there is an obstacle, and stops quickly. If Kick-
bot is moving fast enough, this can cause Kick-
bot to swing in the opposite direction and the
opposite IR sensors also sees the floor. Kickbot
thinks it is trapped and spins in place. The re-
sult is that Kickbot occasionally spins in place
and heads in a new direction even if no obsta-
cles are nearby. This slight randomness causes
Kickbot to explore in many new directions that
it would otherwise miss if it always moved in a
straight line.

2.2 Tumble

If Kickbot is kicked with just the wander be-
havior, its motors will spin wildly and Kickbot
will not roll very far. The tumble behavior uses
the two mercury switches to sense when Kickbot
is being kicked, and then suppresses all motor
messages with stop messages (as shown in Fig-
ure 3). This allows Kickbot to roll much more
cleanly after being kicked and enables it to wait
for a period time to make sure it has fully sta-
bilized before continuing. From the observer’s
perspective, this stabilization period may make
Kickbot appear to be catching its breath after
tumbling before moving on.

2.3 Antagonize

The antagonize behavior can be layered on top
of the wander and tumble behaviors to aid Kick-
bot in finding people to kick it. This behavior
allows Kickbot to periodically stop and turn in a
circle looking for movement using the camera.
If it detects movement, Kickbot rolls towards
the movement and bumps into the moving ob-
ject. Kickbot tries to annoy the moving object
so that it will be kicked. Figure 3 shows how

4

a timer on the main control board signals when
Kickbot should start looking for movement. The
camera control board handles all communication
with the camera and does the necessary image
processing to determine if there is movement in
the field of view. The camera control board can
also calculate if this movement is directly ahead,
to the left, or to the right, and the main control
board can use this information to turn slightly
towards the movement.

The antagonize behavior is not a movement
following behavior since Kickbot only looks for
movement occasionally and must stop before
capturing any images. Instead, the antagonize
behavior enables Kickbot to focus more on ar-
eas in his environment where there is movement.
This means Kickbot will have a better chance of
finding a person to kick it.

3 Mechanical Design

Kickbot’s mechanical design was primarily in-
fluenced by two key design constraints: falling
over should not be a failure mode and Kickbot
should be able to be kicked. To a lesser extent,
finacial constraints also influenced Kickbot’s me-
chanical design.

In the early days of the Kickbot design, Kick-
bot was going to be a cube with six symmetric
drive sides. But unfortunately (or fortunately),
we realized that having so many sides and drive
mechanisms was prohibitively expensive. To
overcome this problem while maintaining the
robot’s robustness to falling over, Kickbot was
redesigned as a sphere. This novel spherical de-
sign consists of three parts: two half-spheres and
a central disk. The two half-spheres rotate and
the central disk provides a place to mount sen-
sors and other electronics. The central disk is
kept stable and upright with a counterweight on
one-half of the central disk. The counterweight
makes forward motion possible and helps reori-
ent Kickbot when it is tumbling. For locomotion,
Kickbot has two motors mounted on the central
disk. Each motor is attached to one half-sphere
and this provides a basic form of differential drive
control.

3.1 Physics

To understand the physics of Kickbot, let’s
first assume that Kickbot’s half-spheres are actu-
ally two large circular wheels attached to a cen-
tral disk. Now let’s assume that the wheels and
central disk are equally weighted. Depending on
the balance of rotational moment of inertia of the
central disk, the rolling friction that the wheels
experience with the floor, and the rotational mo-
ment of inertia of the wheels, the central disk
would probably start to spin in the center of the
robot and possibly some small forward locomo-
tion would occur. But what if we increase the
weight of the central disk?

If the mass of the central disk is increased
evenly across its volume, then this would in-
crease the rotational moment of inertia of the
central disk. A heavier central disk increases its
resistance to rotation and makes the outer half-
spheres rotate more. The result is forward mo-
tion.

But in addition to forward motion, Kickbot
also needs a stable platform for its sensors. To
make the central disk more stable, we can place
a counterweight such that one-half of the central
disk is significantly heavier than the other half.
This asymmetric weight distribution is also use-
ful in propulsion of the robot. As the robot raises
its counterweight above its rest point, the weight
is moved in front of the location that the robot
contacts the ground and the robot falls forward.
A closer analysis can be see in Figure 4. In this
figure, the circle represents the half-spheres from
a side view and the counter-weight is shown in
its rest position. The large X denotes the center
of gravity of the robot system. Figure 5 shows
the system after the motors have tried to drive
it forward a bit. As can be seen, the center of
gravity is in front of the contact location with
the ground. There is now non-zero net torqoue
and the robot falls/rolls forward.

3.2 Construction

In addition to acting as Kickbot’s wheels, the
half-spheres form a protective shell around Kick-
bot. The half-spheres must be strong and sturdy
to withstand kicking, but not so heavy that they

5

weight

counter

contact with ground

Figure 4: Kickbot in Rest State

weightcounter

contact with ground

Figure 5: Kickbot Falling Forward

outweigh the central disk. We found the perfect
solution at our local pet store: an 11 inch diam-
eter hamster ball. Hamster balls are made out
of a flexible yet durable plastic. This flexibility
turned out to be very useful, since it acted as a
simple shock absorber during collisions.

Attaching the half-spheres to the motor axels
turned out to be much more challenging than we
first expected. It was difficult to design a me-
chanical connection between the curved surface
of the sphere and the motor axel that would be
both strong and relatively lightweight. We even-
tually chose a custom hub and spoke system,
where the hub attaches to the motor axel and
six spokes connect the hub with the half-sphere.
The hub was machined from stock aluminum and
has six threaded holes around its perimeter for

Figure 6: Detail of Hub and Spokes

the spokes.1 A close-up of the custom machined
hub can be seen in in Figure 6. The hub has
a hole in it for the motor shaft and a set screw
to hold it onto the motor shaft. Threaded rods
were inserted in to the perimeter holes to act
as spokes. The threaded rods were bent to meet
the half-spheres at a 90◦ angle and are connected
with bolts to the hamster ball.
A consquence of a spherical body is that Kick-
bot has a wheel base of only 3cm. This is not a
problem when moving Kickbot forward, but can
create a significant problem when trying to turn
Kickbot with a speed differntial between the two
motors. Kickbot has trouble spinning in place
on carpet, even with both motors at max speed
in opposite directions. Kickbot is much better
at spinning on smoother surfaces such as tile.
We attempted to expand the wheel base with
strips of rubber mounted to the half-spheres, and
this did slightly increase Kickbot’s ability to turn
quickly on carpet. A better solution would be to
user drive motors with a higher gear ratio and
thus more torque.
Kickbot’s central disk is a circle cut from pink
foam house insulation with a diameter slightly
smaller than that of the half-spheres. We de-
cided to use foam because it is relatively stiff,
easy to cut with a hot wire, and lightweight.
A lightweight central disk makes forming the
asymetric weight distribution mentioned in the

1Machining the hub was quite a challenge since nei-
ther of the authors had much experience with this type
of work. We would like to thank Fred Cote who runs
the Edgerton Center Student Machine Shop for helping
us learn the basics of machining so that we could build
our part.

6

Figure 7: Detail of Main Control Board Side

previous section much easier. The drive motors
are mounted with custom brass plates such that
their shafts are directly in the center of the cen-
tral disk and are perpendicular to the disk.

Many things are attached to the central disk
with both wire ties and bolts. Lead weights and
batteries act as the counterweight and are there-
fore placed below the motor shafts. The IR sen-
sors are mounted on opposite sides of the central
disk and the camera is mounted directly above
one of the IR sensors. Figures 7, 8, and 9 show
how things are mounted to the central disk.

4 Main Control Board

This chapter describes the main control board
in more detail. As mentioned in Section 1, the
main control board is responsible for monitor-
ing the IR sensors and the mercury sensors, and
for controlling the drive motors. The main con-
trol board also acts as the master for the camera
control board, since it periodically asks the cam-
era control board to perform some work on its
behalf.

4.1 Board Description

The primary component on the main control
board is a PIC16F877 micro-controller. This
micro-controller was selected since it includes an
integrated analog to digital converter, USART
controller, and PWM generator. A very sim-
ple programmer was constructed using a resis-
tor, a parallel cable, and a host computer run-
ning Linux. The PIC16F877 is capable of in-
circuit low-voltage programming which made it
very convenient to work with.
Several additional components are also on the
main controller board. Figure 10 shows the main
control board and labels the various board com-
ponents. A 4MHz oscillator is used to clock
the micro-controller and a slide switch is used
to choose between programming and running
mode. Standard AA batteries were used to sup-
ply power to the main control board and the
camera control board. The board requires 5V,
but since one AA battery provides 1.5V, a volt-
age regulator was needed to level convert 6V (4
AA batteries). We used a Texas Instrument 7805
voltage regulator for this purpose. Although the
specifications list 6V as an acceptable input volt-
age, we found the output voltage to be unaccept-
ably less than 5V unless the input voltage was

7

Figure 8: Detail of Camera Control Board Side

Figure 9: Detail of Front

8

set to 8V or more. We therefore added two more
AA batteries to bring the total number of AA
batteries supplying the controller boards to six.
Note that the drive motors use a completely dif-
ferent set of AA batteries to avoid current spikes
when the motors switch directions or encounter
resistance.
A set of ten LEDs provide a way for the micro-

controller to visually display status information.
The current version of the main controller board
software uses one LED to indicate when the
robot is in tumbling mode, and a second LED to
indicate when the robot is in antagonize mode.
The remaining eight LEDs are used to display
the input from the currently active IR sensors.
Six dip switches are available for configuration.
The current software version uses one of these
switches as a board enable, a second switch to
enable the tumbling behavior, and a third switch
to enable the antagonize behavior.
The main controller board includes nine ports:

one 4 pin port for power, two 4 pin input ports
for the IR sensors, two 2 pin input ports for the
mercury switches, two 4 pin output ports for the
motor control, one 5 pin input port for the pro-
grammer, and one 4 pin port for the interface to
the camera control board. We chose to use Sharp
GP2D12 infrared detectors which claim a range
of 80cm, although our testing found the range to
be closer to 60cm. These IR sensors are wired to
the A/D inputs on the micro-controller. An ex-
ternal voltage divider is used to provide a voltage
reference of 3v to the A/D converter, since the
IR sensor output is only 0.5v to 3v. The mer-
cury switches and motor control bits are wired
to the digital I/O pins on the micro-controller.
The mercury switches are mounted at opposite
angles such that both switches will be on only if
the robot is not more than 90◦ away from its sta-
ble vertical position. Using two mercury sensors
instead of one provides much more flexibility in
setting this angle.
The main control board communicates to the

camera control board using the standard RS232
protocol and uses the integrated USART inter-
face on the micro-controller. Using the RS232
protocol was particularly helpful since it only
uses two micro-controller pins and saved us the
trouble of developing our own custom interface.

4.2 Drive Motors

National Semiconductor LMD18201 H-bridges
were used to connect the micro-controller to the
drive motors. These H-bridges take a pulse
width modulated input for the motor speed
and two digital inputs to indicate direction and
brake. The PIC16F877 includes two PWM chan-
nels that were directly connected to the H-
bridges. The H-bridges provide a ±12V signal
to the drive motors. Ten AA batteries supply
the H-bridge with 15V, which the H-bridge then
reduces to the appropriate voltage based on the
PWM signal.

Two 12V DC 200rpm motors were chosen
as Kickbot’s drive motors. These motors have
a 30:1 gear ratio and can provide significant
torque. Even so, we found that more torque
would have been helpful when turning on rough
surfaces (as discussed in Chapter 3).

4.3 Software

Several hundred lines of assembly code were
written for the micro-controller on the main con-
trol board. It was definitely a learning expe-
rience to program in a very primitive assembly
language. The control code consists of a large
main loop which first performs the A/D conver-
sion to determine the current IR sensor value. If
this value exceeds a threshold, an obstacle has
been detected and the control software jumps to
the corresponding obstacle avoidance code. The
main loop also checks the mercury switches and
if either switch is off, then the control software
enters the tumbling code.

The timer for motion detection is implemented
with a simple nine bit counter which starts at
all ones and is decremented every iteration of
the main loop. This results in approximately
30 to 40 seconds between stops to detect mo-
tion. The time interval varies based on what the
robot is actually doing (e.g. avoiding obstacles
increases the time per main loop iteration). As
mentioned earlier, communication with the cam-
era board uses a standard RS232 protocol. When
the main control board wants the camera board
to perform motion detection it sends a DETECT
message. The main control board should make

9

C
ap

s

D
ec

o
u
p
li

n
g

Voltage

Reg

Micro-controller
C

L
K

L
E

D
s

R
es

is
to

r
B

an
k

D
ip

 S
w

it
ch

es

IR Port

IR Port

Motor

Motor

Power

To Cam Board

P
G

M

S
w

it
ch

Mercury

P
ro

g
ra

m

Decoup.

Cap

Figure 10: The Main Control Board

To Ctrl Board P
o
w

Dip Switches

C
am

er
a

C
am

er
a

Micro-controller

P
ro

g
ra

m

C
L

K

3
2
K

B
 S

R
A

M

Flip Flops

Flip Flops

Flip Flops

Cap

LED

LED

Figure 11: The Camera Control Board

10

sure that Kickbot is stable before sending such
a message. The camera control board will then
reply once it has captured the images and per-
formed the necessary image processing. The con-
trol board communication messages are listed in
the following table (where MCB stands for main
control board and CCB stands for camera con-
trol board).

Direction Message
MCB → CCB DETECT 0x01
CCB → MCB NO MOTION 0x02
CCB → MCB MOTION LEFT 0x03
CCB → MCB MOTION FOR 0x04
CCB → MCB MOTION RIGHT 0x05

5 Camera Control Board

The camera control board is responsible for
capturing images using Kickbot’s camera and
then processing those images to aid Kickbot in
finding people to kick it.

5.1 Hardware

It was realized early during this project that
the IR sensors that Kickbot has would not be ad-
equate to detect humans, thus a different sensor
was needed for Kickbot. Unfortunately, Kick-
bot’s processing capabilities are very low so it
is not able to process the output of (nor does
it need) a very high quality image sensor. The
image sensor that was chosen was the Gameboy
Camera. This was an inexpensive ($10 on eBay)
gray-scale camera with 128x128 pixel resolution.
The camera control board is composed of a

PIC16F877 micro-controller, 32KB SRAM frame
buffer, and some TTL flip flops which allow for
pin multiplexing off of the PIC. The PIC has an
on-board analog to digital converter which was
very helpful because the Gameboy Camera is ac-
tually a CMOS sensor which supplies an analog
voltage serially to output a picture.

5.1.1 Gameboy Camera

Calling the camera a “Gameboy Camera” is a
little misleading. In actuality, to use the camera,
you need to open the Gameboy cartridge and re-
move everything having to do with the Gameboy

and instead directly connect to the imaging chip.
The imaging chip is a Mitsubishi M64282 Arti-
ficial Retina CMOS sensor, and it includes the
ability to do hardware edge detection.
The interface with this camera is quite com-
plicated. The interface boils down to a bit serial
control channel going to the camera, and analog
output which serially communicates the CMOS
sensor’s data out. Inside of the camera chip there
is a small register file which you use to set up cer-
tain functions of the chip such as exposure time,
positive vs. negative image, edge detected or
not, and gain. To load these registers you bit se-
rially clock in a data and address to the camera,
and then raise the LOAD line to load the regis-
ter. After all control registers have been setup,
you toggle the START line and provide a clock.
After a certain amount of time the camera raises
its only digital output, READ, which tells you
that data is ready and that you should start to
capture data. Now for the next 128x128 clock
transitions you sample the Vout (analog pixel
out) and store it. The analog output swings from
about 1.5V to 3.5V.
Effectively using this camera was difficult be-
cause of this interesting protocol and the strin-
gent timing constraints on the A/D when captur-
ing images. The actual frame rate of this camera
is a function of how fast your A/D samples and
how much light is in a scene. This intuitively
makes sense because if there is more light, you
need to expose the sensor for a shorter period of
time and thus can take pictures more quickly.

5.1.2 Board Description

To connect to the Gameboy Camera, a unique
interface board was needed that was capable of
doing quick (tens of micro-seconds) A/D con-
version, have some place to store images, have
some processing power to process the image,
and have communication with the outside world.
The board made to fulfill these needs contains
a PIC16F877 which is a 4MHz 8 bit accumula-
tor based micro-controller with only 300 bytes of
ram (Figure 11. The small ammount of onboard
RAM posed a problem as a single frame from
the camera was 16KB. To solve this, a 32KB
SRAM was hooked up to the general use digital

11

I/O pins on the PIC. External TTL flip flops en-
abled the PIC to time multiplex the address and
data buses ont the same PIC digital I/O pins.
To obtain pictures, the PIC’s on-chip A/D

was used. To get good contrast in the images
a voltage reference needed to be provided to the
A/D. A voltage divider was used to generate the
1.5V Vref− and 3.5V Vref+ needed. The on-chip
A/D is limited to 24 micro-seconds, thus if there
were no other overheads, one can only capture 3
frames a second (24µs ∗ 128 ∗ 128 = .39s).
The camera control board also needs to com-

municate gathered information with the outside
world. To that end, the PIC’s on-chip UART was
used. We used a 9600 baud connection to com-
municate pictures and information to the out-
side world. The same RS232 interface is used
to communicate with an desktop computer for
debugging and with the main controller board.

5.2 Software

There were two main software interfacing is-
sues. One being how to use serial communica-
tions. Interfacing with RS232 was surprisingly
easy. On the PIC all you really have to do is set
up some special purpose registers which set the
baud rate. Then to send and receive you sim-
ply write to a send register and read from a recv
register. You can also check a different register
to see if incoming traffic has come thus allowing
you to do a blocking receive. A problem which
cropped up in the course of development was get-
ting the two controller boards which were started
up out of sync into sync via this asynchronous
communications channel. It was made worse by
the channel being full duplex. Having a full du-
plex channel is usually a good thing, but getting
to a point where two PICs can have a conver-
sation requires a synchronizing handshake. A
three way handshake was used which allowed the
two PICs to get synchronized after startup. Af-
ter that the interfacing protocol works by having
the motor control board ask if the camera board
saw motion and then the camera control board
responds saying if any was detected and where.
The other interesting piece of interfacing soft-

ware is the software which communicates with
the camera. This software implements the pro-

tocol described in Section 5.1.1. This software
required the use of the PIC’s interrupt facilities
to generate a stable software clock for the camera
device. This was an unfortunate artifact of the
camera chip using the same clock pin for logic
control and image capture. When the PIC is
configuring the registers on the camera it slowly
clocks in data, and when an actual image is be-
ing captured, an interrupt routine gets fired once
every 48 micro-seconds to toggle the clock pin.
If the the camera is outputting pixels, it analog
to digital converts them and stores them to the
off chip SRAM.

5.2.1 Picture Capture

The only real feedback to know if you have
properly configured the camera is to take a look
at pictures generated by the camera. To do this,
PIC assembly was written to capture a frame
and then dump the frame to the computer over
the RS232 port. On the computer side, a termi-
nal program waits and receives the data into a
file. This file is post-processed in Matlab, and
then displayed as an image. Figure 12 shows the
robot looking at David’s legs in the lab. Fig-
ure 13 shows Kickbot exploring Tech Square’s
6th floor playroom. Lastly Figure 14 shows Kick-
bot’s view of a hallway on the 6th floor.

5.2.2 Motion Detection

In order for Kickbot to find people to antag-
onize, it needs some way to detect them, and
an easy way to detect people is to look for mo-
tion. To detect motion, Kickbot simply captures
two consecutive frames and it unsigned subtracts
one frame from the other. Any motion will show
up as a difference in the two frames. This of
course assumes that the camera is not moving.
The test version of the program takes two frames,
subtracts one from the other, and then outputs
them to the serial port. An example of the re-
sults can be seen in Figure 15. This is a photo
taken with Chris on the left side of the frame
moving himself and his hand. Figure 16 shows
the motion map (the diff done on the PIC) of the
two captured frames. The white represents the
movement and indeed it picks up Chris moving

12

Figure 12: Kickbot Looking at Dave’s Legs

Figure 13: View of 6th Floor Playroom

Figure 14: View Down 6th Floor Hall

Figure 15: Picture with Chris Moving

Figure 16: Chris Moving Motion Map

and his hand moving.

For Kickbot, a program analyzes the difference
between two frames and reports back to the main
controller board if there was motion and if so was
the motion to the left, right, or straight ahead.
This communication occurs over the RS232 port
between the two boards. An optimization was
made that does not require the PIC to write the
picture back to the SRAM, but does a running
summation of how much movement is detected
into the three buckets, left, right, and middle.
Lastly these totals are compared to a hard-coded
movement threshold which is tuned for motion
detection.

13

6 Conclusion

Overall we feel that Kickbot was a great suc-
cess. We fulfilled our objectives of making a real
robot that you can kick and used it to investigate
interesting real world embodied behaviors.
From this project we are able to draw three

conclusions about building real robots. First,
building a real robot is expensive. We received
no support from our research groups and had to
finance the project ourselves. Second, building
a real robot is hard. We had to learn how to
machine custom parts, and real world consider-
ations such as power supply noise, faulty wiring,
IR sensor noise, and the physics of a spherical
robot can cause significant complications. Fi-
nally, building a real robot is fun. We enjoyed
this project and would build another robot in the
future.

14

