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Centralized monolithic processor designs, such as single core and
shared bus structures, are not scaling, leading to multicore
designs becoming the norm [1-3]. Research highlights the bene-
fits of mesh networks connecting these cores. [4,5]. The TILE64™
processor [6] is a multicore SoC targeting the high-performance
demands of a wide range of embedded applications across net-
working and digital multimedia applications. Figure 4.4.1 shows
a block diagram with 64 tile processors arranged in an 8x8 array.
These tiles connect through a scalable 2D mesh network with
high-speed I/Os on the periphery. Each general-purpose processor
is identical and capable of running SMP Linux. Chip peak mem-
ory bandwidth is over 25GB/s using four 72-bit 800MHz DDR2
interfaces. Two PCI-e x4 interfaces, two XAUI interfaces and two
RGMII interfaces supply over 40Gb/s of I/O bandwidth. Flexible
general purpose I/O ports and low-speed interfaces provide seam-
less integration with a variety of systems.

Each tile processor (Figs. 4.4.2 and 4.4.3) is a 3-wide VLIW
machine with a 64-bit instruction word. The integer datapaths
are 32b wide, supporting 32-bit, 16-bit and 8-bit operations. The
TILE64 processor attains 144, 192 and 384 aggregate GOPS
respectively, at 750MHz. The processor has a 32-bit virtual
address space that translates to a 36-bit physical address
through the 8-entry instruction TLB or the 16-entry data TLB.
The translation buffers offer support for both private and shared
memory. The TLBs also support pinning blocks of memory in the
cache. There are separate 8KB L1 instruction and data caches.
The L1 caches are backed by a unified 2-way 64KB L2 cache. The
L2 cache can be shared among tiles, effectively providing up to
4MB of shared L3 Cache. An autonomous 2D DMA engine in each
tile supports block copy functions. Block copies can be cache-to-
memory, memory-to-cache, and cache-to-cache.

Tiles are connected through 2D mesh networks. The network
routing logic is included in the SoC building blocks. Each of the
five independent networks supports a distinct function: the stat-
ic network (STN), the tile dynamic network (TDN), the user
dynamic network (UDN), the memory dynamic network (MDN)
and the I/O dynamic network (IDN). No hardware virtual chan-
nels are required on any network. Each network data width is
independent of the other networks. For this implementation, all
networks are 32b wide. Each network has five full-duplex ports—
one each for the four compass points of routing (North, East,
South and West) and a fifth connection to the processor. Each tile
in the network supports 120GB/s interconnect bandwidth. The
total network supports 240GB/s of bisection bandwidth.

The STN is a software-driven, software-routed scalar network for
low-latency scalar communication between the tiles. The MDN
and TDN networks are dynamically routed networks that imple-
ment the memory subsystem. The UDN and IDN are software-
driven, message-oriented dynamically routed networks. All net-
works have single-cycle hop latency from tile to tile. The three
software-visible networks are register mapped to support low-
overhead access to them. Software on two adjacent tiles can com-
municate via register-to-register transfers with a two-cycle rout-
ing latency.

The four dynamic networks are dimensional-ordered wormhole
routed. The switch (Fig. 4.4.4) is a full crossbar for non-blocking
routing, with credit-based flow control. Buffering is implemented
on all switch inputs and on the outputs from the tile processor to
the switch. The MDN transports data requests from the tile to

any of the four memory controllers on cache misses. Cache-line
fill responses back to the tile are also transported along the MDN,
while the TDN supports memory communication between tiles.
The TDN can be used directly by the processor or the DMA engine
to access another tile’s L2 cache. This mechanism allows tiles’ L2
caches to be aggregated as a distributed L3 cache.

The UDN and IDN networks are directly accessible by the proces-
sor ALU by mapping the networks within the register space. The
UDN is used for user-level program communication. The IDN is
used for communication with I/O interfaces. The OS also uses the
IDN for inter-tile OS communication. IDN/UDN traffic is mes-
sage-based and variable-length. Message-based communication
introduces the risk of head-of-line blocking. Algorithms may
require messages to be processed in an order different from the
order received. To support this, messages are tagged to allow the
receiver tile to sort messages into multiple queues. Messages on
the IDN and UDN networks are tagged to specify in which one of
seven destination queues they should be placed. Two additional
catch-all queues handle any non-matching tags. A shared single-
port SRAM stores the message words from the two software-visi-
ble networks (Fig. 4.4.5) to allow message reordering. Small per-
flow queues provide a direct connection to the ALU. To reduce
latency, the RAM is bypassed if the per-flow queues are not full.
RAM allocation is controlled via a free-list, and head and tail
pointers. The balance of RAM utilization between IDN and UDN
is software controllable by defining the percent allocation allowed
per network. Oversubscription by both networks allows the RAM
to allocate on a first-come first-served basis. The message words
are stored in linked lists with the head and tail pointers in the
control logic and the RAM storing the next pointers along with
the data. The RAM output de-multiplexes into several queues as
defined by the original message tag. Each queue is mapped into
the tile processor’s register address namespace to allow the
appropriate message to be read. The bandwidth of the RAM is
designed to match the tile read bandwidth of a single de-multi-
plex queue. The UDN/IDN egress ports from the ALU are not
multiplexed—an entire message is sent over the network before
a new message can be started.

Figure 4.4.7 shows the die micrograph with major SoC blocks
highlighted. The SoC blocks are designed using a standard place-
and-route flow, augmented by external IP and internally
designed register-file and custom cells. The architecture of the
register file (Fig. 4.4.6) requires 3 write ports and 7 read ports.
The read ports are designed as flow-through static reads with
partial decodes of the address bits controlling the muxing of the
entries. Over 615 million transistors are fabricated in a 90nm
triple-V, CMOS process. The chip is routed in 9 layers of Cu inter-
connect with 1 additional Cu redistribution layer to the C4
bumps. The package is a 1517-pin, organic substrate BGA using
10 layers and has 786 signal pins. Low-voltage supply and clock
gating enables power efficient execution. A deep-packet inspec-
tion application running on TT silicon utilizing all the tiles is
measured at 10.8W core power at 1V, 750MHz 85°C. First silicon
is fully functional and boots SMP Linux.
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Figure 4.4.1: TILE64™ block diagram. Figure 4.4.2: Single tile block diagram.
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Figure 4.4.3: Single tile physical layout. Figure 4.4.4: Dynamic crosshar switch.
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Figure 4.4.5: IDN/UDN de-multiplexor queues.

Figure 4.4.6: Register file.
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Figure 4.4.7: Die micrograph.
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