Keyword Search for Freenet

Likuo(Brian) Lin, David Wentzlaff, Alexander Yip
{brianlin, wentzlaf, yipal }@mit.edu

December 12, 2000

Abstract

While Freenet has laudable design goals of being an anonymous, distributed, file distribution network,
these goals stand as a direct obstacle to the efficient searching of Freenet. Currently Freenet does not even
have true search functionality let an alone an efficient mechanism to carry out searching. In this paper we
document the obstacles to implementing a searching system for Freenet and propose several solutions to
this problem. We implemented our solutions and used performance metrics to compare them.

1 Introduction

Freenet is a distributed, anonymous, information
storage system[l]. It is designed such that no one
can tell who inserted files or who is reading those
files. In addition, it is completely distributed and de-
centralized; all nodes are completely equal. No one
node has authority over another, and there is no cen-
tralized control[2]. These are all desirable features
for a system made to combat information restriction,
but unfortunately they also make building an indexed
search system for Freenet rather difficult. There are
existing solutions for searching Freenet but we find
them inadequate, and conflict with the original spirit
of Freenet[3].

We have developed several systems that enable key-
word searching in Freenet, all of which are aligned
with the original goals of Freenet. They are anany-
mous, decentralized, redundant and scalable, and re-
quire little or no change to the existing Freenet ar-
chitecture.

Our first scheme which we call the Indirect File
method was first described in Clarke’s paper[1]. It
maps a given keyword to a set of indirect files. Each
of those indirect files point to the actual file that
matches the keyword. The indirect files are named
as a function of their keyword, so given a keyword,
one would know the names of the indirect files.

Our second scheme which we call the Summary
method builds on the first, but instead of using a
single indirect file for each matching document, the
indirect files could be aggregated together. These
larger files contain many pointers to files matching a
given keyword.

These schemes depend on the ability to insert mul-

tiple files under a single file name. This feature is not
currently supported by Freenet, so we have imple-
mented a method that circumvents this requirement
which we will call the Base Enumeration method and
designed another method but have not implemented
which we call the Lightweight Indirect File (LIF)
method.

In the rest of this paper we describe the problem
in more detail, discuss past related work, and out-
line our goals. Afterwards, we propose our solutions,
describe their benefits and drawbacks, and show our
preliminary test results.

2 Background

The problem of searching through distributed infor-
mation networks has been solved in the past, but the
properties of Freenet make it both a new and inter-
esting problem. Existing search mechanisms cannot
function in Freenet because of its widespread use of
anonymity and encryption.

The simplest approach to the search problem is to
create a centralized clearing house for keyword list-
ings. All files would be listed there, including their
keywords and locations. This would allow queries
to be answered directly by the central service. This
architecture provides fast searches and accurate re-
sults. Unfortunately, there is little sense of centrality
in Freenet; all nodes are essentially equal. In ad-
dition, it adds a single point of failure; it is possi-
ble to attack the central service and prevent queries
from being answered. Since Freenet is designed to
be decentralized, we would like the searching system
to also be decentralized, ruling out the centralized

search archtitecture.

Another simple solution would be for each node to
broadcast a query to neighboring nodes for the key-
word being searched. In response, each node would
either forward the request to its neighbors, reply with
matching documents, or reply with a failure message.
Unfortunately, Freenet cannot use this solution be-
cause each individual Freenet node has no idea what
information it is storing as all the data is encrypted on
disk. Only the requestor is able to decrypt the data
that he is requesting. In addition, the requestor can-
not find out which node a retrieved file was stored on.
This means that the individual Freenet nodes cannot
answer queries about what files they are sharing.

In addition, the names of the files are not the ac-
tual names of files. Instead Freenet references files
through a one way hash of the plaintext names of
files. This means that searches cannot be performed
on the names of files.

Regardless of these constraints, it is useful to have
a keyword searching system for Freenet. Information
could be found readily by searching, rather than by
exchanging keys, or through word of mouth. At the
same time, we would like to uphold the ideals used
when designing Freenet itself.

The current solutions to this seaching problem are
inadequete, or rather are not real search mechanisms.
They are describled later in the related work section.

3 Related Work

3.1 Searchability of Existing Peer to

Peer Networks

Recently many attempts have been made to create
distributed file systems. Among the more famous
ones are Napster, Gnutella, and Freenet. But there
are many more including CuteMX, File Rogue, File-
topia, Freebase, KaZaA, Mojo Nation, Ohaha!, Riff-
share, Scour, SongSpy, and Swapoo just to name a
few. Each one has a different flavor, with various
strengths and weaknesses. Some are completely de-
centralized, some have different types of nodes, and
some are more secure than others.

Also, recently there have been a crop of large dis-
tributed filesystems and persistent data store tech-
nologies such as OceanStore[4] and Freehaven[5]
which use many of the same techniques as Freenet to
provide thier service. OceanStore, for example uses
a system where each file can be replicated though-
out the network allowing each server to have a copy
of a document. Ocean store also mentions the abil-
ity to search through an encrypted document for an

encrypted string without ever decrypting the data[6].

Searching systems have been devised for dis-
tributed file storage mediums such as Napster and
Gnutella. Napster uses the centralized indexing strat-
egy. Search queries are sent to the indexing servers
where keywords are matched against files shared by
individual nodes. This architecture is very simple and
performs well, but it isolates a single point of failure,
namely the Napster[7] indexing servers. Their vul-
nerability has been shown by the recent legal action
taken against Napster’s network[8]. Gnutella[9] does
without a central location to store index files; it uses
the broadcast query technique. This system depends
on each node knowing the contents stored on it.

3.2 Existing Solutions for Freenet

One proposed solution to Freenet searching is out-
lined in Tan Clarke’s Freenet Paper[1]; it describes a
system that uses Lightweight Indirect Files that are
allowed to have key conflicts. These LIF files would
be named according to keywords, and they would
contain CHKs pointing to files relating to the key-
words in the LIFs’ tags. This system depends on
Freenet support for LIFs, but those are not yet sup-
ported.

The existing solutions for searching Freenet are
websites devoted to key listings[3]; these are websites
that list Freenet keys. People who insert files into
Freenet can add their keys to these lists for the pub-
lic to see and search through. We find this solution
inconsistent with the goals of Freenet because it relies
on a central repository, which is vulnerable to attack,
and is not anonymous.

4 Design Goals

Our goals in designing a search system are as follows:

e Anonymity: Since the designers of Freenet took
so much care to enforce anonymity for both pub-
lishers and readers in Freenet, we would like to
maintain this property in any searching system
we develop for it.

e Decentralization: Another one of Freenet’s goals
was decentralization. We would like to avoid any
kind of centralized structure in our searching sys-
tems.

e Scalable: We would like the searching system to
scale with Freenet.

e Efficient: Obviously, we would like the search
system to be efficient in terms of bandwidth

used, time required for insert and search oper-
ations, and the number of messages passed for
each operation.

5 Solutions and Design

5.1 Name Collision Problem

5.1.1 Enumeration Method

The enumeration method is a simple way to simu-
late the ability to insert multiple files under the same
name without making major changes to Freenet.
Changes only have to be made to the Freenet Client.
The main idea of this approach is to append num-
bers to the end of a filename. To insert a file under
a certain filename, one would insert the file under a
name with the filename and a number that has not
been used yet for this filename. To request a file with
this filename, one would request the file under a name
that contained the filename with a number that exists
on the file system.

To insert a file one could simply enumerate through
all the numbers starting from 0 until one doesn’t get
a collision. For example, suppose we wanted to insert
a file under the filename freenet. We would first try
freenet#0, then, if there was a collision we would try
freenet#1 and so on until we get a miss. Upon a miss,
we insert the file with the name we missed on.

To request a file or multiple files one could get the
files either by starting from 0 and count up to the
number of files desired or by enumerating from 0 until
the first miss and then enumerating down from the
miss. The first method gets the oldest files and is not
as desirable. The second method gets the newest files
and is more useful although more costly. From now
on we will assume that we always want the newest
files.

There are three major drawbacks to this method.
One drawback is that to insert a file and to request
the newest file, one would need to find the highest
numbered name for that files. This makes getting
a file very slow. This is essentially a linear search
that takes O(n) time where n is the highest number
for that file. Another major problem is that if files
are purged from the system or if one of the lower
sequenced files becomes unavailible, one will not be
able to correctly search for the highest numbered file.
He end his search after querying for the unavailible
file.

Binary Search Optimization In an attempt to
speed up search, one could do an exponential search

70

T
Sequential Search —+—
Binary Search ---x-—-

60 +H

*Binary Search Done Sequentjat Search Done |

Sequence Number Probed

0 L L L L L
0 10 20 30 40 50 60

Probe Request Number

Figure 1: Comparison of Sequential and Binary Prob-
ing through 50 existing files

followed by a binary search. We first try numbers
exponentially (i.e. 0,1,2,4,8,16,...) until we get a
miss. Then, supposing we miss on k, we then do a
binary search from % to k to find the highest number.
A miss would denote that the highest number should
be lower than the current number being tested, and
a hit would denote the opposite.

5.1.2 LIF Method

Lightweight Indirect Files are another way to solve
the name collision problem. This method is much
more complicated and requires major changes to the
underlying architecture for Freenet. Both the Server
and the Client need to be modified. However, with
this new power we are able to eliminate the ineffi-
ciencies of the enumeration method. Namely, we can
simply change the system so that we can insert mul-
tiple files under the same name.

To insert a file, one would not check for any col-
lisions. A server upon receiving this request would
store multiple files that are referred to by the same
filename and possibly pass on this request so that the
file may be duplicated.

To request a file, one would send a request to a
sever with a filename and the number of desired files.
Server A upon receiving this request would get all the
files that correspond to this filename up to the num-
ber requested. If the request can be satisfied, server
A sends the files back to the node that made the re-
quest. If server A is unable to satisfy this request, it
forwards the request along with a list of CHK’s for
the files that it has found so far. The next server
B would try to fulfill this request while making sure
that there are no duplicates. If the request can be
satsfied, server B sends the files that it has found
(without duplicates) to server A. If the request can

Indirect

Filename KSK

Keyword 0

Keyword 1

Keywordn
Filename
CHK

— Data File

Figure 2: Indirect File Structure

not be satsfied, then server B also forwards the re-
quest with the list of CHK’s for files that represents
the combination of unique files that both server A and
B collectively have. This goes one until the request
is satsfied or when hops to live is zero. Eventually
all the files found should return to the node that re-
quested these files.

The main advantage of LIFs is that one does not
need to search for the highest numbered file, thus
inserts and requests can happen immediately without
any kind of search. Of course one may have to go to
many nodes to get multiple files, but this too will be
much faster since one can essentially request multiple
files at once instead of iterating through the numbers.
An added bonus of this is that the time to complete a
certain search is not adversely affected by the number
of files on the system. The performance may actually
improve if there are more files on the system since
they are now easier to find. In the Enumeration case,
the more files are on the sysetem, the longer it takes
to search for the highest numbered file. One side
effect of this though is that only the closest files are
returned and not the newest keys.

5.2 Search Problem

5.2.1 Multiple Indirect Files

One way to implement search on Freenet is to insert
indirect files under the keywords that one wants to be
associated with the data file. This requires a user to
supply a list of keywords for a file to be inserted under
upon a file insert. Then, a series of keyword files will
be inserted under those given keywords, each of which
point to the file containing the actual data. Then a
search would be done by getting for those keyword
files for the keywords that one wants to search under,
each of which will then point to a file that contains
data related to those keywords.

For example, if we wanted freenet_paper to be in-
serted under 6.899 and freenet, we would insert two
indirect files. One indirect file would have the name

6.899, the other would have the name freenet . Both
would contain the name of the data file, a pointer to
the data file, and a list of the keywords to be asso-
ciated with this file. The advantage of putting the
other keywords in the indirect file is that to do an
AND search one would only have to get files for one
keyword, and then do the operation locally. By us-
ing these indirect files one would be able to find the
Freenet paper only by knowing any of the keywords
may be associated with it.

Ofcourse we would want to associate multiple files
with the same keyword. That is where we use the
ability to insert multiple files under the same name.
Suppose that we also wanted to insert the Freenet
presentation under the name freenet_presentation.
We would then be able to insert more indirect files
with the same names of 6.899 and freenet . Thus,
when one seaches for files under the keyword freenet
or 6.899, one would find pointers to two data files.

The main problem with this is that there are too
many files to handle and thus the system does not
scale very well. There is anothre major problem.
Files stay in Freenet as long as they are searched for.
And these indirect files are constantly being searched
for, while the actual file containing the data may not,
and may be eventually purged. This leads to a lot of
broken links that may never go away.

5.2.2 Summary Method

To improve on having just indirect files, we propose
the summary method. The basic idea behind this
method is to have all the inserted indirect keyword
files be dated and to summarize them by keyword and
date into summary files unless it is today. The reason
is that more indirect files can be added for today, so
we don’t want to create the summary for today until
the day is over. The summary will contain entries
which will be the contents of the indirect files that
this summary is summarizing. The summary method
attempts provide solutions to three major problems.
The first is that it reduces the number of files that
need to be retrieved, thus greatly reducing the search
time. Second, it allows a notion of absolute time, and
is especially useful for LIFs which have no ability to
differentiate newer files from older ones. Lastly, it
allows pointers to purged files or unused files to be
eventually purged also.

To insert an indirect file, instead of just insert-
ing on the keyword, one would also attach a date
to it. For example, instead of freenet we would use
freenet_12/09/2000. An indirect file will be inserted
whenever someone succesfully inserts a new file or
when a file from a previous day has been succesfully

Keywords Indirect Filenames

Indirect Files

Actual Documents

Hash
Insect#0———

Insect
Ant
”The Life of Ants”

Reference

CHK: DFS12X343

Insect

Ant#0———
Ant

Insect

Ant

”The Life of Ants”
CHK: DFS12X343

Insect#FH——""

Insect
Butterfly
”Butterflies of Peru

CHK: DFS12X343
”The Life of Ants”

CHK: FSGD343K1

Butterﬂ\

Butterfly#0—

Insect

Butterfly
”Butterflies of Peru]
CHK: FSGD343K

Figure 3: Keyword to Indirect Files

CHK: FSGD343K1

”Butterflies of Peru”

retrieved. The effect of this is that the indirect files
for any day will only contain files that we know to
be on the system on that day. This will be a good
property if we want to make sure links to old files will
be eventually purged.

To retreive a file is more complicated (See figure).
The user must request a list of keywords, a date
range, and the number of results desired. The key-
words are assumed to be for an AND search. The
algorithm runs in a loop until all the indirect file data
for those keywords and that date range has been ob-
tained, either by getting summary files or by getting
the indirect files themselves. It starts from today and
goes back in time. For today, it simply gets indirect
files up to the number requested. As long as we have
not gotten more results than desired or passed the
date range we continue to run this loop. For each
date, search for the summary file for that day. If it
exists, get it and continue onto the next date. If it
does not exist, pool all of the indirect files for that
day and put it into a summary file and insert it into
Freenet.

Despite it’s obvious advantages, there are also some
drawbacks. The most threatening is that people can
make bogus summaries. Since there is no idea of one
source being more trusted than another. Anyone can
insert a summary for a keyword and date. One partial
solution to this is to allow multiple summaries to be
inserted under the same keyword and date. And one
simply gets all of them and discard the ones that are
garbage if they can tell them apart. If it is garbage
they may want to pool all the keywords for that day
and insert a correct summary. Although, this seems
like a major problem, it is not entirely exclusive to
the summary files. All indirect files can have wrong

entries or garbage in them and that is just a property
of Freenet and cannot really be solved. Another per-
formance issue is that since these summaries may be
big, it would be a waste of bandwidth if someone only
wanted two entries for a certain day but was forced to
get the whole summary file. However, since time for
file retrival is small compared to that of searching for
a file, the performance improvement of summaries is
well worth than the occasionally wasted bandwidth.

Diff files Since we reinsert indirect files when they
are succesfully retrieved, it is very likely that many
of the entries in the summary for one day will be the
some as the entries for the next day. One solution to
this is to have two type of summary files for each day,
Base files and Diff files. The Diff file would contain
the entries that are in today’s indirect files but not
in yesterday’s indirect files. The Base file would then
be the entries that are not in the diff file for that day.
Then to get all the entries for a certain date range,
only the Base file of the first day and the diff files
of the other days are needed. If the files used from
day to day are mostly the same, then we will be able
to save a lot of space. Of course the combined Diff
could also have duplicates. If this become a serious
problem, one could make Diff files that span several
days.

6 Results

To study the performance characteristics of the above
described searching methods, the base enumera-
tion method with binary searhing optimizations and
the summary searching method were implemented.
These were both implemented in Java and extend the

Day Before

(Summary)

Yesterday

(Summary)

Today
(Individual Indirect Files)

Insect Summary12/08/2000

Insect Summary12/09/2000

Insect 12/10/20004£0

Insect

Ant

” Ant Farm Construction”
CHK: QR55BD773

Insect

Ant

” Ant Farm Construction”
CHK: QR55BD773

Insect

Ant

”The Life of Ants”
CHK: DFS12X343

Leaf

Bug

Insect

?Leaf Bug Camouflage”
CHK: TUR223MN5

Praying

Mantis

Insect

”The Praying Mantis”
CHK: QBSRRE343

Insect 12/10/2000#1

Insect
Ant

Insect
Butterfly

”Butterflies of Peru”
CHK: FSGD343K1

” Ant Farm Construction”
CHK: QR55BD773

Advancing Time

Figure 4: Structure of Summary Files

main Freenet implementation. The LIF method of
overcomming the name collision problem was not im-
plemented due to time constraints and difficulty since
it required massive changes to the Freenet server ar-
chitecture. It is hoped that the implimented search-
ing system will be integrated into the main Freenet
source and become widely used as the prefered search-
ing method of Freenet.

6.1 Test Methodology

All of the tests we ran were done with real Freenet
implimentations. We hope that becasue of this, our
results are more valid than if we simply used a sim-
mulator. Our testing infrastructure was a combina-
tion of instumentation of Freenet servers and Perl
scripts that automated the tests. The instumenta-
tion that was added to the server was the logging to
files of number and size of each message passed be-
tween servers and servers and clients in the Freenet
network. Also the times used for testing are real wall
clock times captured by live runs of the tests and thus
can have transient inconsistencies due to operating
system overhead and Java overhead such as Java’s
built in garbage collection. We feel that these in-
consistancies are minimal becasue the machines that
these tests were being run on were only being used
for the purpose of these tests.

Our tests were run on several dual-processor x86
computers with a gigabyte of RAM unsing Sun’s Java
JDK 1.3 for Linux. Because of the use of wall clock
time, comparative trials were run on the same com-
puters under the same load. For more information
on usage of the designed tools and a pointer to the
actual code see Appendix A.

In this paper we only display graphs for time, which

we feel to be the most useful metric because that is
what people who are searching really care about. In
addition the other metrics that we logged all followed
the same trends as the time graphs do.

6.2 Enumeration and Enumeration
with Binary Search Comparison

To prove that the Enumeration method works as a
useful searching tool, we ran simulations of searches
on our Freenet test network. We were able to use the
Enumeration method to reliably insert multiple files
with the same keywords into the testbed and retrieve
the results of querys for keywords.

Next we compared the basic Enumeration method
to the Enumeration method with the binary search
optimization. To do this, for each run, we used 50
virgin Freenet servers with randomly generated con-
nections between the nodes. All of the servers and the
test clients were running on the same computer with
the different runs not being run at the same time so
that they all would have a control environment. The
50 servers were initially connected together with 40
random connections per node to approximate a well
connected Freenet topology.

We varied the number of total indirect files match-
ing a particular keyword in Freenet and logged the
time that it took to do a request for one file matching
a particular keyword. We did not actually retrive the
file that a particular keyword pointed to but rather
just the indirect file. This was done for three dif-
ferent modes. The Sequential mode, Binary Search
Optimization mode, and the Baseline which is sim-
ply an oracle that knows what the highest numbered
file to retrieve is and is just shown to profile the time
that it takes to request an indirect file.

Baseline ——
Sequential x5
Binary Search —x
sor . Dbnaysead 7

Time to Complete Request (seconds)
X,

I I
0 20 40 60 80 100 120 140
Number of Matches in Freenet

Figure 5: Number of Files with Same Keyword Com-
parison

As can be seen from Figure 5 our intuiton was cor-
rect. The time it takes to search for the Sequen-
tial Enumeration grows linerarly with the number
of matching indirect files in Freenet. Also the Bi-
nary Search Optimization significantly reduces the
required time to do a seach and grows roughly as
the logs of the number of matching indirect files in
Freenet. Lastly the Baseline plot shows that the av-
erage time it takes to request an indirect file with no
need to find the highest file number is approximately
two seconds.

6.3 Enumeration and
Search Comparison

Summary

To compare the Enumeration methods versus the
Summary Search we tested them with a fixed num-
ber, 200, of matching indirect files in Freenet. Also we
distributed the files uniformly across four days all of
which were not ”today” so that the Summary method
would always summarize a day on the first request to
the server. The tests used 20 servers with 15 ini-
tial random connections between servers. We would
liked to have run more tests with a larger number of
servers, but unfortunately, due to the large amount
of memory that this test required, we were limited.
We did separate controlled requests against these
servers for the Sequence seaching, the Binary Search
and the Summary Search, varying the number of files
requested from 1 to 200. Note that this is in contrast
to our earlier results where we were always requesting
only one file, but instead varied the number of files
for a single keyword in Freenet. For the Summary
trial, the algorithm works in such a way that it gath-
ers the newest documents for a given keyword and
date range. Thus as more files are requested, the al-
gorithm starts to ask for older filesk and has to build

180

T T
Sequence —+—
Binary Search ---xg--
Summa A

60 - «]

Time to Complete Request (seconds)

20 et i i f

20 £, % i i .
| XKoo o s
i i |

) 20 40 60 80 100 120 140 160 180 200

Number of Files Requested

Figure 6: Number of Keyword Results Requested
Comparison

summaries when the summary for that day has not
been made yet. In this test the number of files for a
given keyword was static at 200 across all trials.

The results from this test show some interesting
results as can be seen in Figure 6. As expected the
Binary Search beats the Sequence search due to less
requests requests to find the top value of the inserted
keyword. But surprisingly we still see that the Se-
quence and Binary Search now grow linearly with the
number of files being retrieved. The reason for this is
that even though there is a constant time across trials
to find the highest numbered keyword, the searches
still have to retrieve the number of requested files.
This grows linearly with time.

The Summary method gives quite an improvment
over the Enumeration based methods because once
one person does the work of generating the summary
file for a given day, subsequent requests are able to
use that summary eliminating the need to get many
files. As can be seen in Figure 6, the four peaks in
for the Summary runs correspond to the four times,
once for each day, that the user had to request all
of the files for that day. Since the number of files to
retrieve has a much larger impact on time than the
size of the file, one can see that the summary method

has superior performance.
27

7 Future Work

In the future we hope to continue with this project
and work with the main developers of Freenet to inte-
grate our ideas and code into the main Freenet source
tree.

While we have not had time to impliment LIFs
for this paper, we believe that it would be a worth-

wile project to undertake as it would result in an-
other choice in solving the name collision problem in
Freenet. Also the performance gain by using LIFs
would help in the adoption of Freenet as a useful in-
formation publishing system.

Other ideas that we didn’t extensively explore but
had merit were the caching of intersection searches
and use of a centrally administered indexing system.
The idea behind caching of intersection searches is
that when one person does a search such as a search
for foo AND bar, they insert some type of index into
Freenet such that people in the future who want to
search for the intersection of keywords just search for
thier summary file so that subsequent searches don’t
have to do multiple searches with merging. This sum-
mary file would be inserted under some convention
such as being indexed by the first keyword in lexi-
cographic order. A centrally administered searching
system is another way to speed up searching. The
idea is to use some type of summarized system, such
as the one described in this paper, or a crawler of
Freenet webpages and have a trusted centrally ad-
ministered entity like Yahoo every night rebuild a
large index of keywords in Freenet. Unfortunately
this has all of the problems with current indexing
systems such as accountability but it may prevail be-
casue it would significantly reduce searching time.

8 Conclusion

In this paper, we have explored the problem of search-
ing Freenet files by keyword. We analyzed the prob-
lem and designed several solutions for it. We went
on to implement a number of them, and compared
query performance experimentally. In the future, we
plan to implement more of our proposed solutions
and characterize their query performance.

9 Acknowledgements

We would like to thank Proffessor Hari Balakrishnan
for showing much interest in this project and taking
the time to have heated debates on the best way to
implement portions of this project. We would also
like to thank the MIT Computer Architecture Group
for lending thier spare computer cycles on really fast
computers such that we could quickly generate mean-
ingful results for this project. Lastly we would like
to acknowledge the Freenet project and all its con-
tributers without which this project would not have
existed.

References

[1] I. Clarke, O. Sanberg, B. Wiley, and T. W. Hong,
“Freenet: A distributed anonymous information
storage and retrieval system,” in Proceedings of
The Workshop on Design Issues in Anonymity
and Unobservability, 2000.

[2] I. Clarke, “A distributed decentralized informa-
tion storage and retrieval system,” Master’s the-
sis, University of Edinburgh, 1999.

[3] B. Wiley, “Key index server
listing,” December 2000.

http://uts.cc.utexas.edu/ blanu/keyindex.html.

[4] J. Kubiatowicz, D. Bindel, Y. Chen, S. Cz-
erwinski, P. Eaton, D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, W. Weimer, C. Wells,
and B. Zhao, “Oceanstore: An architecture for

global-scale persistent storage,” in Proceedings of
ASPLOS-IX, November 2000.

[5] R. R. Dingledine, “The free haven project: De-
sign and deployment of an anonymous secure data
haven,” Master’s thesis, Massachusetts Institute
of Technology, 2000.

[6] D. X. Song, D. Wagner, and A. Perrig, “Prac-
tical techniques for searches encrypted data,” in
Proceedings of Security and Privacy Symposium,
May 2000.

[7] “Napster,” 2000. http://www.napster.com.

[8] J. Gallivan, “Napster shut down - federal judge
rules against rouge music site,” The New York
Post, July 27, 2000.

[9] “Gnutella,” 2000. http://gnutella.wego.com.

A User Interface and Usage

The source code along with extra docu-
mentation for this project can be found at
http://cag.lcs.mit.edu/"wentzlaf/
classes/6.899/public/project/source.

A.1 Enumeration Method and Binary
Optimization

Currently to use these tools, there are simple com-
mand line interfaces that are derived from the default
request and insertion clients included with Freenet.
These all can take the default flags such that you

can use custom port numbers and change the logging
verbocity, etc.
Usage: freenet_insert keyword URL

[input-file] {[keyword 0] ... [keywordn]}
Usage: freenet_insert keyword URL
[input-file] {[keyword 0] ... [keywordn]}

Usage: freenet keyword request KEYWORD
OUTPUT_FILE_PREFIX NUMBER_TO_RETURN

Usage: freenet keyword request_log
KEYWORD OUTPUT _FILE_PREFIX NUMBER_TO_RETURN

Summary Method Currently this is
how one inserts an indirect file for the
summary method
Usage: MainSearch -i [string of entry] =
[date] ## [name] ## [key] ## [keyword] ## [keyword] . . .
Currently this is how one performs a

search
Usage: MainSearch -s [string
of query] = [number of files

wanted] ## [startDay0fYear] [startYear]##[endDayOfYear] [endYear]## [keyword]##[keyword]...

