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Abstract.

Explicit methods have previously been proposed for parabolic PDEs and for stiff
ODEs with widely separated time constants. We discuss ways in which Differential
Algebraic Equations (DAEs) might be regularized so that they can be efficiently inte-
grated by explicit methods. The effectiveness of this approach is illustrated for some
simple index three problems.
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1 Introduction.

Recently there has been interest in explicit method for stiff ODEs. Methods,
such as Runge-Kutta Chebyshev [1, 15, 16] typically have extended stability re-
gions while projective [8, 6] and telescopic projective methods [9] can be tailored
to have multiple stability regions which would be useful if we knew where the
“stiff” eigenvalues were. DAEs are not usually stiff, but the solution of higher-
index DAEs is often accomplished by using index reduction and regularizing
techniques that change them to lower index DAEs or ODES that are sometimes
stiff. In this short paper we explore ways in which regularizing techniques can be
applied to give known stiff eigenvalues and additional characteristics that make
explicit projective integrators particularly efficient.

Efficient integration of general stiff problems (that is, ones with a large spread
of eigenvalues and little structure) requires an implicit method. As computers
increase in size and capacity, the size of problems being modelled increases, so
the matrix arithmetic involved in an implicit method becomes a larger fraction
of the total work (unless the Jacobian has a structure that allows for very good
preconditioning). Thus there is a growing potential for the application of explicit
methods that involve little or no matrix manipulation, even if they are slightly
less efficient as integrators in terms of function evaluations per unit step.

The paper will concentrate on index-three problems arising from an Euler-
Lagrange formulation with constraints. We will show that it is possible to inte-
grate some of these problems with simple explicit projective methods. We will
apply regularization techniques that convert the DAE into an ODE which has a
slow manifold which is an approximation to the manifold of the DAE. Because
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we can now start away from the manifold and move quickly to it, these methods
also provide a mechanism for determining the unknown initial values that would
be needed by a direct method for DAEs. It must be emphasized that we are
describing preliminary work that does not yet address issues that arise in some
DAE problems.

2 Background.

Two major sources of DAEs are electrical networks and constrained mechani-
cal systems. It has been observed by many people that few, if any, real problems
give rise to DAEs, but rather that they occur because of simplifications of the
real problem. For example, in electrical networks, Kirchhoff current laws give
rise to algebraic relationships, as do many idealizations of devices such as current
and voltage sources. If these were modelled as they really existed we would have
a differential equation (in fact, we would have a partial differential equation if
we included too many details). In mechanical systems with constraints, the con-
straints are a idealization of reality. The simple pendulum modelled in cartesian
coordinates, for example, has a constraint on the pendulum length, whereas any
real material will stretch very slightly - and it is this stretching that provides
the force that is provided by the Lagrange multiplier in the idealized DAE.

Interestingly, electrical networks were originally modelled with ODEs and a lot
of sophisticated techniques were developed to reduce a network to ODEs. (See,
for example, [4, 13] However, the ODEs were generally stiff and it was found that
implicit methods had to be used for the stiff equations. It was also found that
other types of networks could not be reduced to ODEs so we arrived at the idea
of solving DAEs directly [7] and the tableau approach to network problems [10].
Initially these were index one problems, so did not present the DAE difficulties of
higher index problems, but newer modelling appraoches have lead to index two
problems (e.g., [14]) and the problems have become so large and non-linear that
some aspects of them, such as finding consistent initial conditions, are extremely
challenging.

Mechanical systems with constraints usually lead to index three problems that
cannot be solved directly. The constraints in a DAE restrict the solution to a
manifold and usually we cannot easily find the ODE on that manifold. Instead,
two other approaches have been used. Either the index has been reduced by
differentiation (which gives an ODE or lower index DAE on a larger region of
space containing the manifold) followed by some method applied to prevent drift
of the computed solution off the manifold (such as projection back onto it [3, 11])
or a regularization technique has been applied. Regularization techniques ex-
tend the equations to the whole space such that the constraint manifold (or an
approximation to it) is a slow manifold of the reduced system. Many regular-
ization techniques have been proposed. Baumgarte’s regularization [5] has the
appealing feature that the slow manifold is precisely the constraint manifold so,
in principle, the solution is not changed (although numerical errors will move the
solution off the manifold slightly). However, as we have noted, the real problem
does not satisfy the constraints exactly either. Ideally, in a regularized problem,
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the fast solution would decay to the slow manifold very rapidly. In fact, if the
slow manifold is not the constraint manifold, its distance from the constraint
manifold is usually order of the time constant of the fast manifold (because we
have effectively created a singularly perturbed system) so that the faster the
decay to the slow manifold, the better the approximation provided by the slow
manifold. This is a reason why, except in Baumgarte’s regularization, we prefer
to have a fast return to the slow manifold. However, as [2] point out, if the rate
of return to the manifold is fast compared to the step size, all of the ill-posedness
problems of the DAE can come back to haunt us.

We propose to use projective integration methods ([8])to solve regularized
DAEs explicitly. In projective integration a few explicit steps are taken with a
small step size (the inner steps) to damp fast components and get close to the
slow manifold and then a large explicit step (the outer step) commensurate with
the slow manifold behavior is taken. Once we are near the slow manifold, the
large step projective integrator step should not cause a large deviation from the
slow manifold, so the next small step need only focus on damping the deviation,
not accurately tracking its return. For this reason, a forward Euler method
with step size equal to the fast time constant is ideal since 1 + hM is zero
and the component is damped immediately (at least, for a linear problem).
Because the inner step is of the order of the fast time constants, we avoid the
problems mentioned by [2]. Thus the idea for the use of projective integrators
with regularization is to regularize with known very fast time constants and then
use an inner step to damp these very efficiently.

In electrical networks there are normally other “stiff” components that one
needs to retain for accurate modelling and which have to be tracked accurately
during phases of the computation when the relevant components are active. At
other times these lead to stiffness, but often with a known eigenvalue. In that
case, telescopic methods ([9]) can be used to damp multiple clusters. There are
also issues of how to regularize the DAE in a physically realistic way by including
additional capacitances and it will probably be necessary to revert to some of the
former network analysis techniques to derive ODEs. We will not pursue these
problems in this paper. Rather we will look at index-three mechanical systems
and examine regularizations that are compatible with projective integration.

3 Regularization and Damping.

Ideally we would like to regularize the system by modeling the small perturba-
tions that are present in a real system. This would guarantee us that the model
is physically realistic. Note that this regularization, unlike that of Baumgarte,
changes the solution slightly. We will illustrate it with the simple pendulum:

(3.1) ¥ =wv
(3.2) v =f—-GT\

(3.3) 0=1/2}+23—1=g(x)
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where z, v and f are 2-dimensional vectors and G = g, ~ 7. The Baumgarte
regularization replaces the eq. (3.3) with

(3.4) 9" +a1g +ag=0

where a1 and s are chosen to make g = 0 a stable solution. If we choose
ap = 24 and as = 2 then we have a double eigenvalue at —3 which is often
recommended. However, this regularization, which can also be viewed as a
reduction to index one (via the two differentiations of g followed by stabilization)
does not put it in an ODE form suitable for projective integration. A physically
realistic regularization is to view the “connecting rod” of the pendulum as a very
“stiff” spring (this is a different use of the word “stiff” since it refers to a large
spring constant, not its damping properties). In this case, we need to define the
length of the rod, L = \/z? + x3 and to replace eq. (3.3) by

A=E(L-1)

where F is a large spring constant. Since the true solution of the problem will
now permit fast oscillations in the length of the rod, we might also want to damp
them by using instead

A=E(L-1)+FL

where F' is the “friction” coefficient of the rod which absorbs some of the energy
from any changing of length.

The advantage of the above approach is that, since it specifies a value of A, it
yields an ODE system to which projective integration can be applied directly.
Indeed, if we choose E = 32 and F = 23 we will find that we have introduced a
double eigenvalue at —( which would seem to be ideal for projective integration.
However, a direct application of the method with an inner step size of —1/8
will fail miserably. By looking at the reason for the failure, we can see other
approaches that will work (and perhaps ways to make this approach work).

To look at the issue, we will consider an even simpler problem - an index 3
DAE that has no degrees of freedom. In this example, all variables are scalars.

' =v
v =—-GTX
(3.5) 0=xz—p(t) =g(x)
In this example, GT = 1. Using the approach suggested above, we replace eq.
(3.5) with
(3.6) A=E(x—pt) + F(v—p'(t))

Since p does not really play a role here except to give a non-zero answer, we will
ignore it in the discussion below. If the look at the modified ODE we get
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and, if we choose E = 32 and F = 23, we have a double eigenvalue of the
Jacobian, J, at —3. J + (I is nilpotent with index 2, which means that two
steps of forward Euler with step size 1/8 will annihilate the errors. However,
the first such forward Euler step introduces an amplification of any error in x
by E/B = [ which is large. If the problem is nonlinear the Jacobian at the
second step has changed by a large amount and we will not get any damping.
It is possible that one might get around this by “freezing” the Jacobian for
the two steps, but that implies an ability to modify the equations in some way
that may prove to be computationally expensive. Instead, we consider other
regularizations.

The difficulty that a simple explicit ODE method like forward Euler is going
to have with equations in the form eq. (3.3) is that once z has wandered off the
constraint, at least two steps are needed to move it back since the constraining
force only enters into the velocity derivative. Hence, if a one-stage explicit
method is going to move x back to the constraint in one step there will have to be
a regularization term in the expression for 2’. Hence we consider a regularization
of the form
(3.8) P =v—-GTXA, v =f-GT)
where \; will be chosen to return any drift back to the manifold. The obvious
choices are to use deviations of g and ¢’ from zero as returning “forces,” so we
consider

ANi = Eing + Eing’
With this definition of A;, the Jacobian of eq. (3.8) is

—FEu1 1—-FEpp
—Fy —Fap

Since we would like to place both eigenvalues at —3 and not have elements larger
than the order of 8 we naturally consider F1; = Foy = (8 and E15 = Fy1 = 0.

Applying this approach to the general form of egs. (3.1), (3.2) and (3.3),
namely

"=
‘= -G
(3.9) 0=g(z)
where now x and v are n-dimensional and g is m-dimensional (m < n), we will
replace these equations with
¢ =v—BGT(GGT) g(x)
(3.10) o = f - BGT(GGT) g/ ()
If 3 is large, this forces the solution onto a manifold where g and ¢’ are cor-

respondingly small, which is hence close to the manifold of the DAE. (The
(GGT)~! scaling is chosen because

T
[

_19g(x)

T T
aT(Gan) =
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is idempotent which makes the additional eigenvalues close to —/3.)

The ODE in eq. (3.10) is now of order 2n which is 2m larger that the order of
the original DAE in eq. (3.9). Its 2m additional eigenvalues are asymptotically
close to —f3 as (3 gets large. While this would not be particularly nice system
for a conventional stiff solver, it is very well suited to projective integration as
will be discussed in the Section 4.

An alternative formulation is to set E11 = Fos = 0 and —FE19 = Fy; = [
giving

¥ =0+ BGT(GGT) g ()
(3.11) v = f—BGT(GGT) g(x)

This adds m pairs of eigenvalues almost at =0 on the imaginary axis. This may
seem a curious thing to do, but, as we will see in the Section 4, we can arrange
for the inner steps of projective integration to damp these components.

4 Implementation and Numerical Tests.

The formulations given in eq. (3.10) and eq. (3.11) require the computation
of the term GT(GGT)~'z for various vectors 2. This can be accomplished by
orthonormalizing the rows of G. Suppose that S is an m by m matrix such that
N = SG has orthonormal rows. Then

GT(GGT) 2 =GTsTSs T(GGT) 1SSz
=GTST(SGGTST) 1Sz
(4.1) =NTSsz

In other words, we simply orthonormalize G to get N and at the same time,
modify z. Then we multiply the modified z by NT. If the constraints are
redundant it will show up in the orthonormalization when we are left with nearly
zero rows of the transformed matrix. As long as the modified z is consistent,
the process simply drops the remaining rows.

To thoroughly evaluate the proposed method we will need to implement an au-
tomatic code (as well as provide further theory). For the purposes of demonstrat-
ing that the approach has sufficient potential to be worth additional exploration
we made a minimal modification to an off-the shelf ODE package, specifically
ode113 in Matlab. This is a variable order Adams code for non stiff equations.
When requested to integrate over an interval, ode113 calls a function to evalu-
ate the derivatives at specified “y” values (in this case the values of the vectors
x and v). We wrote a derivative evaluation function that first performed the
appropriate inner steps and then calculated the derivative. During these inner
steps the inner integrator changes the state variables (z and v) so they are in the
vicinity of the slow manifold. Hence it is necessary to change the corresponding

[T

y” values inside ode113. This was done by adding a return argument to the
derivative evaluation function that returned the new “y” values, and modifying
ode113 so that it changed its internal “y” values - but only after a step was ac-

cepted. Because ode113 is an Adams-based code, all of the error estimation and
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step and order changing computations are done on the derivatives, so changing
the “y” values does not impact the logic of the code.

For the regularization given in eq. (3.10) we used two inner forward Euler
steps of length 1/6. These advance “time” a short amount unbeknownst to
ode113. Since we are using 3 values of around 10~7 or smaller on a problem
where the typical outer time step is about 1072 to 107!, it is not a significant
amount and we did not correct for it (although a good code should take care of
that).

The regularization given in (3.11) requires a different inner integrator. Clearly
it would not be computationally efficient to use imaginary steps sizes (neither
would it work) but we need an inner integrator that will damp complex eigen-
value pairs. This can be done with a two-stage Runge-Kutta-like process. The
following integrator:

k1= f(y)
ky = f(y + hk1)
(42) Ynew = Y + h(kZ - kl)

has a stability polynomial for the test equation ¥’ = Ay of 1 + (hA)%. This
vanishes for hA = =+i as desired. (Also, it does not advance time!) The tests
mentioned below used two iterations of this process in the inner integration and
then evaluated a derivative for return to ode113. Two problems were run for
the tests reported below.

Problem 1 This was a simple pendulum of length 1 started from a position
at 30 degrees from the vertical with zero velocity. For comparison the “true”
solution was computed for the reduced equation for the angular displacement,
also using ode113.

Problem 2 This consisted of a set of M pendula hanging from equally spaced
points on a horizontal circle of radius 1. Each pendulum weight was connected to
its neighbor by a rod such that, when at rest, the pendula weights were equally
spaced around a circle of radius 0.5. The lower circle was 2 units below the
upper circle.

In problem 2 we did not specify a consistent initial state (it is not easy to
find other than the rest state!) Instead, M — 1 pendula were placed in their rest
position with identical initial velocities (these violate g’ = 0), while the last was
placed in the center of the lower circle (which violates g = 0 for all rods to which
it is attached). The first inner integration steps moved the pendula to consistent
positions and velocities.

The first problem was integrated by five methods. Method S1 used the reg-
ularization of eq. (3.5) using eq. (3.6) and was integrated using a stiff solver
from Matlab (ode15s) with E = 8%, F = 23 and 8 = 100. (Larger 3 leads to
failure of the integrator.) Method S2 used the regularization in eq. (3.10). It
was also integrated with ode15s with 3 = 10*. (Again, larger values lead to
integrator failure.) Projective method P1 used the regularization (3.10) and was
integrated with the modified ode113 using projective integration and various
values of 3 from 107 to 10'° while projective method P2 used the regularization
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in eq. (3.11) with projective integration and the two-stage RK inner integrator
described above with 3 ranging from 10° to 107. The different values of 3 in the
projective integration tests had insignificant impact on the running time or the
max error so we only report the results for the larger 3 values. The fifth method,
labelled B, was Baumgarte’s stabilization with a; = 200 and as = 10,000 in eq.
(3.4).

The second problem was run with seven pendula using the first three methods
described above. (The fourth method does not currently look as promising.)
Since we do not have the “true” solution, all that was done was to compute the
energy loss over a time interval of 100 and the Matlab execution time.

In making these tests, the default values for all parameters in the Matlab codes
were used (except for the computation of the “true” solution of Problem 1 for
comparison purposes which used AbsTol = 1072 and RelTol = 10~8). While the
default values may not be a sensible choice, this work is still in its early stages,
and there seems to be little reason to be fine tuning codes at this point (and
answers obtained after endless tweaking of parameters are suspect as tests of
an idea). The integration was run for 100 time units which covered almost 15
periods of problem 1. The max error (compared to the computed solution) for
each of the cases and the computation time is shown in Table 4.1. It should be
noted that the bulk of the run time for small problems like these is overhead,
so that these results only indicate that the methods have potential, not that
they are faster. The larger errors of the stiff methods are also more indicative
that the stiff methods are not good methods for these problems rather than the
merits of the proposed schemes.

Table 4.1: Run time and Errors for Problem 1.

Method R1 R2 P1 P2 B
Max Error | 0.0678 | 0.0203 | 0.00026 | 0.0063 | 0.00080
Run Time | 2.156 | 3.453 0.516 0.532 3.797

The results are shown in Table 4.2 for problem 2.

Table 4.2: Run time and energy change for Problem 2.

Method R1 R2 P1
Energy change | -0.0032 | 0.0055 | -0.00022
Run Time 432.1 1079 31.5
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