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ON-THE-FLY LOCAL ERROR ESTIMATION FOR PROJECTIVE INTEGRATORS

STEVEN L. LEE∗ AND C. WILLIAM GEAR†

Abstract. A novel and efficient technique is developed for estimating the local error per step when first- and second-order
accurate projective integrators are applied to stiff multiscale systems. The estimation can be done on-the-fly; that is, the
accumulated local error is readily estimated at the end and during the course of computing the solution at each outer time step.
We demonstrate the effectiveness of the new error estimation technique when using projective integrators to solve stiff ordinary
differential equation (ODE) initial-value problems.
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1. Introduction. In a sequence of recent papers [2, 3, 7], first- and second-order accurate projec-
tive integrators for stiff multiscale problems were introduced and developed. In the latter, we focused on
second-order accurate projective Runge-Kutta (PRK) and Adams-Bashforth (PAB) as outer integrators for
a telescopic projective forward Euler (PFE) inner integrator. At each outer step, the combined outer-inner
integrator parameters (outer step size, number of inner damping steps, number of telescoping layers, length
of outer projective step) may change, and it does not seem possible to derive a simple technique for esti-
mating the local error incurred at each outer step. In [7], we merely estimated the local error (per outer
step) via Richardson extrapolation—a general technique with an overhead expense that often increases the
amount of computation by at least a factor of two.

In this paper, we derive recurrence formulas that enable the calculation of local error coefficients as
the inner integrator steps proceed (i.e., on-the-fly). The local error at each outer integrator step can then
be calculated once the appropriate solution derivatives have been estimated. While it may appear that
these recurrences are complicated, it must be remembered that we will mainly be considering projective
integrators for stiff systems for which it may be problematic to use fully implicit integrators (e.g., backward
differentiation formulas (BDFs)). The latter is often used in concert with preconditioned Newton-Krylov
methods for solving the nonlinear systems that arise at each time step (e.g., CVODE [4]). Unfortunately,
for petascale systems, robust Jacobian preconditioning techniques may be difficult to devise or may not be
highly scalable on massively parallel machines. Alternatively, if the stiff differential equations are not directly
available, projective integrators can also be applied as a wrapper for accelerating a black-box time-stepper
code for the stiff system. Finally, projective integration is a cornerstone for enabling the equation-free (EF)
and heterogeneous multiscale method (HMM) approaches to solving multiscale problems [5, 1].

The remainder of this paper is organized as follows. In the next section, we briefly review projective
integration methods. In Section 3, we develop a novel local error estimation technique for first- and second-
order accurate projective integrators. In Section 4, we apply the adaptive projective integrators (with local
error estimation and simple step size control) to stiff ODE test problems. Finally, in Section 5, we state our
conclusions and give a perspective on the significance of these new results.

2. Projective integration methods. The key computational challenge for stiff multiscale systems
is the problem of trying to resolve efficiently the slow time scale behavior while incorporating the effects
from the fast and intermediate time scales. Projective integrators are explicit methods that can be tailored
to efficiently exploit the multiscale features that are characteristic of stiff systems. Furthermore, projective
integration is a process that can be applied to a legacy time-stepper code, the output from a microscopic
simulation of a more detailed model, or any type of step-by-step inner integrator. A projective integration
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Fig. 2.1. Projective forward Euler with L = 2 layers of telescoping.

for advancing the solution y by s = k + 1 +M inner integrator steps has the form: Starting from y0, take
k + 1 inner integrator steps (each of size h0) and then a chord slope-based step so that

ys = yk+1 +M(yk+1 − yk).

The combination of the k + 1 inner damping steps and the projective step constitutes one outer projective
forward Euler (PFE) step of size sh0. PFE can be applied efficiently to stiff systems that have a wide
separation between the fast and slow time scales. An analysis of PFE is provided in [2].

For stiff systems with no clear separation of time scales, telescopic projective integrators are needed so
that the system evolves stably for the fast and intermediate time scales. In brief, the teleprojective integration
process involves using one projective integrator (e.g., PFE) as an inner integrator within yet another outer
projective integrator [3]. This layering of projective integrators can be repeated as many times as desired.
Figure 2.1 shows an example of PFE using L = 2 layers of telescoping. A constant step size integrator (e.g.,
conventional forward Euler) is used at layer 0. PFE is used at layers 1 and 2, with the damping parameter
k = 3 and projective step multiplier M = 6 at each layer. The telescopic step advances by 100 forward Euler
steps at the cost of only 16 function evaluations. This improved efficiency, which increases as more layers
are added, stems from the use of chord slopes in taking projective steps of size 6 and 60 at layers 1 and 2,
respectively. The actual number of telescoping PFE layers to apply will depend on the accuracy requirements
for the stiff system. For the final layer, when the slow time scales need to be resolved for accuracy, we can
use an integrator that finishes that final outer step with second-order accuracy (e.g., projective Runge-Kutta
or projective Adams-Bashforth). The stability and accuracy of such combined outer-inner integrators partly
depends on a suitable choice of parameter values k, M and L for the stiff system; these matters are addressed
in [7]. By equipping the overall telescoping approach with better local error estimation capabilities, this new
class of fully explicit integrators will be able to take (with greater efficiency) outer steps commensurate with
the slow time scales and accuracy requirements for the stiff multiscale problem.

3. Local Error Estimation. The local error of an integration method is the error introduced in a
single step of the method starting from correct values. The global error can then be expressed as a sum of
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local errors, each amplified (or damped) by the effect of a combination of the differential equation and its
difference approximation. (This is somewhat of a simplified view, but will suffice for the discussion in this
paper.) Step size selection can then be used to control the local error—and typically one controls the local
error either on a per step basis or a per unit step basis, the former being more appropriate to stiff equations.

In the context of telescopic projective integration methods, this concept of step size control needs to be
refined. At the inner steps we are not controlling the step size for accuracy, we are using small steps to gain
stability. Only at the outermost layer do we control the step size for accuracy. Hence, we need to define
the local error for the outermost step. It will be defined as the error due to one outermost step, assuming
that we started with the correct value. The outermost step consists of a series of integration steps at the
next lower layer using an inner integrator (whose steps themselves may be projective steps built on top of
even lower layers), followed by the projective process which extrapolates forward. Hence, to find the local
error at the outermost layer, we need to find the errors in each of these inner steps and the error due to the
projective step. Thus, we will need to determine the local error in integration steps at every layer.

Let us start by considering a single projective forward Euler (PFE) step that starts from a correct
y0 = y(t0) and integrates through y1 and on up to yk+1 using step size h before taking a projective step to
ys where s = k + 1 +M . Let us also suppose that we know the local error in the inner integrator. Since we
are only going to discuss up through third-order error terms in this paper, we will ignore all terms of order
four and above from now on. Furthermore, all formulas are of order at least one, so the only terms we will
consider in the errors involve multiples of h2y

′′

, h3y
′′′

and h3Jy
′′

where J is the system Jacobian. In local
errors over a projective step, we are considering only a bounded number of steps (independent of h) so that
we are not concerned with the exact time at which y

′′′

and Jy
′′

are evaluated since changing it only adds a
fourth-order term that we are ignoring. We are, however, concerned where y

′′

is evaluated. Hence, we will
define

Υj(h) =

[

−
h2

2
y

′′

j , −
h3

6
y

′′′

, −
h3

2
Jy

′′

]T

and write the local error in the inner step in integrating from yj to yj+1 as

dj = yj+1 − y(tj+1)

where

dj(h) = [ξj , γj , ηj ] Υj+1(h) ≡ DjΥj+1(h).

Note that Dj (and Ej introduced below) are both row vectors consisting of the coefficients of the local

(global) error terms. Also, note that the index on y
′′

is j + 1. We are not, at the moment, specifying the
current layer of telescoping.

We are now interested in computing the local error in one step of the next higher layer of telescoping.
Thus we start with a correct y0 and compute the error in each succeeding step up to the projective step.
Let the global error in yj starting from a correct y0 be ej(h); that is,

ej(h) = yj − y(tj)

and e0 = 0. Let us express ej(h) as

ej(h) = [ψj , φj , θj ] Υj(h) ≡ Ej Υj(h).(3.1)

Now we wish to express ej+1(h) in terms of ej(h) and dj(h). We have

ej+1(h) = (I + hJ)ej(h) + dj(h) = (I + hJ)EjΥj(h) +DjΥj+1(h),(3.2)
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where (I + hJ) is a first-order approximation to ehJ—which itself is a first-order approximation to the
amplification of the error due to the differential equation. Since the error at the previous step is second-
order, multiplying it by a first-order approximation is correct to third-order terms. We would like to evaluate
the Υj(h) at tj+1, which can be done by using

Υi(h) = T (j − i)Υj(h)(3.3)

where the translation operator T is

T (q) =





1 −3q 0
0 1 0
0 0 1



 .

From eq. (3.1), eq. (3.2) and eq. (3.3), we immediately obtain

ψj+1 = ψj + ξj ,

φj+1 = φj + γj − 3ψj,

θj+1 = θj + ηj + ψj .

If ξj , γj and ηj are independent of j (which will normally be true for the innermost integrator and is true
for other inner layers if the parameters, k and s, of the projective step do not change), then we have

ψj = jξ, φj = jγ − 3j(j − 1)ξ/2, θj = jη + j(j − 1)ξ/2.

When we make the projective step from {tk, tk+1} to ts using

ys = (M + 1)yk+1 −Myk,

we will get

es(h) = (M + 1)ek+1(h) −Mek(h) + dPFE
k (h)(3.4)

where dPFE
k is the local error in the linear extrapolation from {tk, tk+1}, and is given by

dPFE
k (h) = [M(M + 1), M(M2 − 1), 0] Υk+1(h).(3.5)

Substituting eq. (3.1) and eq. (3.5) into eq. (3.4), we get

es(h) = EsΥs(h)

= (M + 1)Ek+1Υk+1(h) −MEkΥk(h) + [M(M + 1), M(M2 − 1), 0] Υk+1(h)

=
[
((M + 1)Ek+1 + [M(M + 1), M(M2 − 1), 0])T (M)−MEkT (M + 1)

]
Υs(h)

or

Es =
(
(M + 1)Ek+1 + [M(M + 1), M(M2 − 1), 0]

)
T (M) −MEk T (M + 1).

This enables us to compute the ψs, φs, and θs error coefficients of the global error at the end of the projective
step starting from a correct y0. This is precisely the local error in one PFE step, which is also an inner step
at the next higher telescoping layer.

Let the superscript q ≥ 0 refer to the current telescoping layer, with q = 0 indicating the innermost
integrator. Thus

E0
sΥ0

s(h) = [ψ0
s , φ

0
s, θ

0
s ] Υ0

s(h)
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is the error at the end of the first PFE step. Since

Υq+1
1 (sh) = R(s)Υq

s(h)

where the scaling operator R is

R(s) =





s2 0 0
0 s3 0
0 0 s3



 ,

we have

[
ξq+1, γq+1, ηq+1

]
= Eq

sR
−1(s).

Finally, if the innermost integrator is forward Euler, then ξ0j = 1, γ0
j = −2 and η0

j = 0.
Now the above provides us with formula for computing the error coefficients at each layer; namely, for

q = 0, 1, · · ·:

ψq
0 = φq

0 = θq
0 = 0;

ψq
j+1 = ψq

j + ξq,

φq
j+1 = φq

j + γq − 3ψq
j ,

θq
j+1 = θq

j + ηq + ψq
j ;

ψq
s = (M + 1)ψq

k+1 −Mψq
k +M(M + 1),

φq
s = (M + 1)φq

k+1 −Mφq
k − 3M(M + 1)(ψq

k+1 − ψq
k) −M(M + 1)(2M + 1),

θq
s = (M + 1)θq

k+1 −Mθq
k;

ξq+1 =
ψq

s

s2
, γq+1 =

φq
s

s3
, ηq+1 =

θq
s

s3
.

Thus we can compute the second-order and third-order error terms in each of the inner layers, and then
finally combine them to obtain the scaled local error coefficients for the outer projective integrator step.

3.1. Projective Runge-Kutta (PRK). Let us suppose a PRK step is taken at the outermost layer q.
Let H denote its step size, and h = H/s denote the inner damping step size at layer q − 1. As described
in [7, §4.1], one PRK step size H has the form

ys = yk+1 +M(α[yk+1 − yk] + (1 − α)[ys+k1+1 − ys+k1
]).(3.6)

The values k+1 and k1 +1 are the number of inner damping steps taken at the step starting from t0 and ts,
respectively. The projective step multiplier is M , and the scalar α is used for computing a weighted average
of the chord slopes. We want to find the local error in the PRK step, so we assume that we are starting from
a correct y(t0). The predictor phase of PRK starts with a PFE step to compute the predicted value, pq−1

s ,
which has an error of

Dq
P (H) = Eq−1

s Υs(h).

Next we take k1 steps of size H/s from pq−1
s at layer q − 1. From the above analysis, the additional local

error introduced is

eq−1
k1

(h) = Eq−1
k1

Υs+k1
(h).
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Thus the total error after these k1 lower layer steps to order three is

ys+k1
− y(ts+k1

) = (I + hk1J)Dq
P (H) + eq−1

k1
(h).

We then take one more step and, after this step, the total error is

ys+k1+1 − y(ts+k1+1) = (I + h(k1 + 1)J)Dq
P (H) + eq−1

k1+1(h).

Noting that

y(ts) = y(tk+1) +M(α[y(tk+1) − y(tk)] + (1 − α)[y(ts+k1+1) − y(ts+k1
)]) − dPRK

s (h, α),(3.7)

where the PRK discretization error, dPRK
s (h, α), is given by

dPRK
s (h, α) = −

h2

2
y

′′

s [2Mα(M + 1 + k1) −M(M + 1 + 2k1)](3.8)

−
h3

6
y

′′′

[3Mα(k1 −M)(M + 1 + k1) +M(M2 − 3k1(1 + k1) − 1)],

we can subtract eq. (3.7) from eq. (3.6) to get the PRK local error we are looking for:

eq−1
s (h) = ys − y(ts)(3.9)

= eq−1
k+1(h) +M(α[eq−1

k+1(h) − eq−1
k (h)] + (1 − α)[eq−1

s+k1+1(h) − eq−1
s+k1

(h)]) + dPRK
s (h, α).

The various eq−1(h) errors can be expressed in terms of Υs(h) (omitting the common q − 1 superscripts) as

ek(h) = [ψk, φk − 3(M + 1)ψk, θk ] Υs(h),

ek+1(h) = [ψk+1, φk+1 − 3Mψk+1, θk+1 ] Υs(h),

es+k1
(h) = [ψs + ψk1

, φs + φk1
+ 3k1ψk1

, θs + θk1
+ k1ψs ] Υs(h),

es+k1+1(h) = [ψs + ψk1+1, φs + φk1+1 + 3(k1 + 1)ψk1+1, θs + θk1+1 + (k1 + 1)ψs] Υs(h).

Now, all we have to do is express eq−1
s (h) in the form

eq−1
s (h) =

[
ξPRK(α), γPRK(α), ηPRK(α)

]
Υ1(H)

and we have the local error for one PRK outer step size H . In this expression, α must be chosen to
make ξPRK(α) = 0 to get a second-order accurate method and consequently determine the third-order error
coefficients γPRK and ηPRK.

Computationally, one step of PRK with local error estimation can be accomplished as follows. After one
outer PFE step size H yields the prediction

yPFE
s = (M + 1)yk+1 −Myk,

the corrector step is

yPRK
s = yPFE

s + (Mα−M)[(yk+1 − yk) − (ys+k1+1 − ys+k1
)].

Note that α appears linearly in eq. (3.9) and eq. (3.8). It will be computationally convenient to work with
Mα and express eq. (3.8) as dPRK

s (h, α) = [Mα, 1] DPRKΥs(H) where

DPRK =





2(M + 1 + k1) 3(k1 −M)(M + 1 + k1) 0

−M(M + 1 + 2k1) M(M2 − 3k1(1 + k1) − 1) 0



 ,
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and similarly express the e(h) errors in eq. (3.9) by

[Mα, 1] EPRKΥs(h) = [Mα, 1]





eq−1
k+1(h) − eq−1

k (h) − (eq−1
s+k1+1(h) − eq−1

s+k1
(h))

eq−1
k+1(h) +M(eq−1

s+k1+1(h) − eq−1
s+k1

(h))



 .

The PRK local error can be compactly expressed as

eq−1
s (h) = [Mα, 1] (EPRK +DPRK)Υs(h).

Now we can determine the value of Mα that gives second-order accuracy from the linear system

[Mα, 1]

[
C11 C12 C13

C21 C22 C23

]

︸ ︷︷ ︸

C=EPRK+DPRK





−(H/s)2 y
′′

s /2

−(H/s)3 y
′′′

/6

−(H/s)3 Jy
′′

/2





︸ ︷︷ ︸

Υs(h)

= −ξPRKH
2

2
y

′′

s − γPRKH
3

6
y′′′ − ηPRKH

3

2
Jy

′′

︸ ︷︷ ︸

eq−1

s (h)=eq

1
(H)

.(3.10)

Second-order accuracy is achieved by setting C = EPRK+DPRK, and then zeroing the ξPRK term in eq. (3.10)
by satisfying MαC11 + C21 = 0. The result is

Mα = −C21/C11

and that the third-order error coefficients are:

γPRK =
(−C21/C11) C12 + C22

s3
, ηPRK =

(−C21/C11) C13 + C23

s3
.

3.2. Projective Adams-Bashforth (PAB). As with PRK, the current outer PAB step size is H and
the inner damping steps are each of size h = H/s. Let us denote the previous PAB outer and inner step
sizes as H−1 and h−1, respectively. The projective step multiplier at the current and previous step are M
and M−1. Starting from t0, the number of inner damping steps is k + 1. One step of PAB [7, §4.2] has the
form

ys = yk+1 +M
(
α [yk+1 − yk] + (1 − α)r

[
y−M−1

− y−(1+M−1)

])
,(3.11)

where

r = h/h−1.

The last term in eq. (3.11) is the chord slope used in the previous outer step, multiplied by (1 − α)h. The
scalar α is used for computing a weighted average of the current and previous chord slopes. As a two-step
method, we note in general that h (and possibly the number of inner layers, q − 1) will vary for each outer
PAB step. In computing the local error committed in the PAB step, we assume that the y values are correct
at the start of the current and previous outer steps.

Noting that

y(ts) = y(tk+1) +M
(
α [y(tk+1) − y(tk)] + (1 − α)r

[
y(t−M−1

) − y(t−(1+M−1))
])

− dPAB
s (h, α),(3.12)

we can subtract eq. (3.12) from eq. (3.11) to obtain the PAB local error

es(h) = ek+1(h) +M(α[ek+1(h)− ek(h)] + (1 − α)r[e−M−1
(h−1) − e−(1+M−1)(h−1)]) + dPAB

s (h, α).(3.13)
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By expansion, we find that the PAB discretization error is dPAB
s (h, α) = [Mα, 1] DPABΥs(h) with

D11 = 1 + 2M − (1 + 2M−1)r
−1 − 2s,(3.14)

D12 = −1 − 3M(M + 1) + (1 + 3M−1(1 +M−1))r
−2 + 3(1 + 2M−1)r

−1s+ 3s2,(3.15)

D13 = 0,(3.16)

D21 = M(−M + (1 + 2M−1)r
−1 + 2s),(3.17)

D22 = M(M2 − (1 + 3M−1(1 +M−1))r
−2 − 3(1 + 2M−1)r

−1s− 3s2),(3.18)

D23 = 0.(3.19)

From eq. (3.13), the current e(h) errors can be expressed in terms of Υs(h) as

ek(h) = [ψk(h), φk(h) − 3(M + 1)ψk(h), θk(h)] Υs(h),(3.20)

ek+1(h) = [ψk+1(h), φk+1(h) − 3Mψk+1(h), θk+1(h)] Υs(h).(3.21)

The previous errors, computed with inner step size h−1, need to be translated forward in time to ts and then
scaled so that the low-order terms are based on the current inner step size h; thus, we have

e−M−1
(h−1) =

[
ψ−M−1

(h−1), φ−M−1
(h−1), θ−M−1

(h−1)
]

T (q1)R(1/r)Υs(h),(3.22)

e−(1+M−1)(h−1) =
[
ψ−(1+M−1)(h−1), φ−(1+M−1)(h−1), θ−(1+M−1)(h−1)

]
T (q2)R(1/r)Υs(h)(3.23)

where

q1 = M−1 + rs and q2 = 1 +M−1 + rs.

The ψ, φ, θ values used in eqs. (3.22)–(3.23) are actually the ψk+1, φk+1, θk+1 and ψk, φk, θk values calculated
in the previous outer step (for the value of k used in the previous outer step).

The PAB step with local error estimation proceeds by taking one outer PFE step so that

yPAB
s = yPFE

s + (Mα−M)
[
(yk+1 − yk) − r

(
y−M−1

− y−(1+M−1)

)]
.

The PAB coefficient Mα that gives second-order accuracy is determined from the linear system

es(h) = [Mα, 1] C Υs(h) =
[
ξPAB, γPAB, ηPAB

]
Υ1(H),

where C = EPAB +DPAB is a 2×3 matrix. The entries for DPAB are given in eqs. (3.14)–(3.19). The matrix
EPAB comes from eqs. (3.13) and (3.20)–(3.23) for the expansion of the e(h) and e(h−1) errors:

[Mα, 1] EPAB Υs(h) = [Mα, 1]





ek+1(h) − ek(h) − r
(
e−M−1

(h−1) − e−(1+M−1)(h−1)
)

ek+1(h) +Mr
(
e−M−1

(h−1) − e−(1+M−1)(h−1)
)



 .

Finally, the PAB local error is made second-order accurate by using C = EPAB + DPAB to get Mα =
−C21/C11 and the result that

ξPAB = 0, γPAB =
(−C21/C11) C12 + C22

s3
, ηPAB =

(−C21/C11) C13 + C23

s3
.

3.3. Multistep State Extrapolation Methods. In [8], Sommeijer describes a simple technique for
increasing the real stability interval of explicit integrators (i.e., one-step explicit Runge-Kutta methods of
first- through fourth-order accuracy). In the context of projective integrators, we can apply the technique in
taking an outer step of size H = (k +M)h = sh for integer k ≥ 1. The general idea is first to compute yM
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by extrapolating the solutions y obtained from a few previously computed outer steps (including the current
one). Then, ys is obtained from yM after performing k projective integrator steps of size h = H/s. For the
latter integrator, PFE or PRK are obvious candidates since they are the first- and second-order accurate
projective counterparts of one-step explicit Runge-Kutta methods. For the extrapolation to yM , a variety
of linear, quadratic or higher-order schemes can be applied. An extensive stability and accuracy analysis
for such Multistep State Extrapolation Methods (MSEMs) is provided in [10, 9]. The potential advantage
of a relatively large extrapolation step is the reduced cost in computing the solution at the next outer step.
However, if M/k is too large, k explicit (and stable) integrator steps may not be sufficient to regain stability
and/or recover enough of the accuracy lost via the extrapolation.

We will now briefly consider local error estimation for the simplest MSEM for projective integrators,
which we shall call extrapolated projective forward Euler (XPFE). For the first part of the XPFE step, we
have

yM = y0 + r (y0 − y−1)(3.24)

where

r = (Mh)/H−1.

The last term in eq. (3.24) is the chord slope across the previous outer step, multiplied by Mh. The local
error for this extrapolation, eM (h), comes from

eM (h) = e0(h) + r
(
e0(h) − e−M/r(h)

)
+ dM (h),

where the discretization error is

dM (h) = −
h2

2
y′′M

[
M2(1 + 1/r)

]
−
h3

6
y

′′′ [
−M3(1 + r)(1 + 2r)r−2

]
.

In this case, eM (h) = dM (h) because the standard local error analysis assumes no errors are present in y at
the current and previous outer steps. For the full XPFE step, additional local error ePFE

k (h) is introduced
in taking k PFE steps of size h from tM out to ts. Local error is also incurred from error propagation due
to the differential equation. Thus, an intermediate approximation for the XPFE local error is

eXPFE
s (h) = (I + hkJ) eM (h) + ePFE

k (h).(3.25)

Finally, eM (h) in eq. (3.25) needs to be translated forward for evaluation at time ts so that the XPFE error
coefficients in EXPFE

s satisfy

eXPFE
s (h) = EXPFE

s Υs(h)

for the low-order error terms. The XPFE scaled error coefficients are

[
ξXPFE, γXPFE, ηXPFE

]
= EXPFE

s R−1(s).

MSEMs of greater sophistication than eq. (3.24) have been developed for computing yM , and are de-
scribed in [9]. For example, such MSEMs include: linear (or quadratic) schemes with improved accuracy
from using more than two (or three) previously computed solutions for the extrapolation; or, a linear extrap-
olation scheme with an adjustable scalar parameter α ∈ [0, 1] for balancing better stability against increased
accuracy. Now, if we continue in a slightly more general way, ys is obtained from yM after performing k
steps with a time-stepper code Φ with constant step size h:

ys = Φk
h(yM ).
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The time-stepper code can be a projective integrator (possibly with, say, an inner telescopic PFE integrator),
or some type of black-box code. After determining the local error for the extrapolation eMSEM

M (h) and the
additional local errors introduced (and propagated) by k iterations of the time-stepper Φ, the error coefficients
in Es for the MSEM-Φ integrator follows from

es(h) = (I + hkJ) eMSEM
M (h) + eΦk (h) = EsΥs(h).

The MSEM-Φ scaled error coefficients are then given by EsR
−1(s).

3.4. Summary. Before concluding this section, we find it important to note the close resemblances
between second-order accurate projective Runge-Kutta and Adams-Bashforth integrators and their well-
known conventional counterparts. In fact, the conventional integrators are obtained when we use a forward
Euler inner integrator with zero layers of telescoping (L = 0) and zero inner damping steps (e.g., k = k1 = 0)
for the outer integrator.

At the outermost layer, PRK is a one (outer) step method and that step is mainly based on a weighted
average of slopes estimated near the current and next time step (t and ts). If ξ is the second-order scaled
error coefficient for each constant inner damping step size h, the linear system eq. (3.10) yields

Mα =
M(M + 1 + 2k1) −

(
∑k

i=0 ξi +Mξs+k1

)

2(M + 1 + k1) + ξk − ξs+k1

,(3.26)

which is equivalent to the PRK weighting coefficient α as derived in [7]. A similar, simplified expression
occurs when the two-step method PAB uses a constant outermost step size H , and a constant inner damping
step size within each outermost step:

Mα = M +
M(M + 1) +

(
∑k

i=0 ξi +Mξ−(1+M−1)

)

2(M + 1 + k) − ξk + ξ−(1+M−1)
.(3.27)

Note: Our PAB α coefficient in [7] is incorrect due to errors in sign and subscripts, and should instead
be equivalent to eq. (3.27). The PRK and PAB coefficients from eq. (3.26) and eq. (3.27) asymptotically
approach the conventional Runge-Kutta (α → 1/2) and Adams-Bashforth (α → 3/2) coefficients as the
projective step size interval (Mh) becomes larger relative to the interval covered by the inner damping steps
(e.g., M ≫ max(k, k1) for PRK). Finally, the PAB analysis in Section 3.2 is important because the Mα for
second-order accuracy is valid even if the outermost step H changes (though we continue to assume that the
inner damping step sizes are constant within each outermost step).

From Sections 3.1–3.3, recurrence formulas for the on-the-fly calculation of local error coefficents have
now been derived for: first-order accurate projective forward Euler (with telescoping); second-order accurate
projective Runge-Kutta and Adams-Bashforth; and, Multistep State Extrapolation Methods. The technique
is obviously more complicated than Richardson extrapolation, but it is fairly straightforward and cheap to
implement (with careful programming). Furthermore, on-the-fly error estimation can be applied even if the
inner integrator is not telescopic PFE—but rather some black-box time-stepper code (whose scaled error
coefficients per step can be estimated). In this paper, however, we mainly focus on using projective integra-
tors as stiff ODE initial-value problem solvers. As demonstrated in Section 4, the new local error estimation
techniques enable us to estimate the second- and third-order error coefficients, and leads to adaptive projec-
tive integrators that can solve increasingly stiff time-dependent systems with improved efficiency (relative
to using Richardson extrapolation for error estimation).

4. Numerical results. We will now compare the performance of local error estimation techniques
for the PFE, XPFE, PRK and PAB integrators as applied to a stiff ODE initial-value system. The local
error estimation techniques are Richardson extrapolation, and the new one developed in Section 3. The
main purpose is to demonstrate that the new local error estimation technique works well on a standard stiff
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ODE test problem, and that it roughly gives a factor of three reduction in cost relative to using Richardson
extrapolation.

For Richardson extrapolation (RE), a solution y1 is computed for the outer step size Hn; then, the
solution y2 is computed using two outer steps of size Hn/2. The local error is estimated as

errorn =
y2 − y1
2p − 1

,

where p is the order of accuracy of the outer integrator. Outer step size selection or rejection is then based
on the estimated local error, current step size, and user-specified error tolerances (absolute and/or relative)
so that

Hn+1 = Hn

(
Cn

‖errorn‖

)1/(p+1)

(4.1)

for a positive method-dependent constant Cn and a weighted, tolerance-dependent norm. Typically, a step
Hn is rejected if ‖errorn‖ > 1. Note that RE has the overhead expense of the two additional integrations
required to compute y2. The desire to eliminate this additional expense was one of the primary motivations
for the development of the new local error estimation technique, in order to reduce the cost (i.e., total number
of function evaluations f(t, y)) for the time integration.

The test problem is the two-dimensional diffusion equation

ut = uxx + uyy + g(x, y, t).

The space and time intervals are x, y ∈ [0, 1] and t ∈ [0, 1.5]. The source term g(x, y, t) is chosen so that the
exact PDE solution is

u(x, y, t) = 1/ [1 + exp(8(x+ y − t))] ,

which is used for properly specifying the initial condition and Dirichlet boundary conditions. The spatial
discretization uses second-order centered finite differences with a mesh width of ∆ = 1/(n+1) in each spatial
direction, which provides N = n2 interior gridpoints and unknowns within the unit square. The Jacobian
spectral radius is ρ(J) = 8(n+1)2, and the eigenvalues are strictly real (because the Jacobian is symmetric)
and spread across the interval (0,−ρ(J)].

For the outer projective integrator step size H , we apply K + 1 = 3 damping steps of size h = H/S
with S specified as follows: PFE (S = 7), PRK (S = 14), PAB (S = 7). For the XPFE integrator, we
use K = 3 and S = 7 so that the cost for one outer step size H is the same as for PFE. For the inner
integrator, we use telescopic PFE (k = 1, s = 3.95) with innermost step size h0 ≈ 1/ρ(J) and with enough
inner telescoping layers L so that the telescopic step is of size h = sLh0. Under these conditions for the
test problems, the combined outer-inner projective integrators are [0, 1]-stable—which means the outer step
size H can be adaptively chosen based on accuracy (not stability) considerations. A full discussion on the
stability of combined outer-inner projective integrators can be found in [7].

The absolute and relative error tolerances are both set to 10−3. After estimating the weighted-norm of
the local error, step size selection is based on eq. (4.1) with Cn = 1. For the numerical experiments with
on-the-fly local error estimation, we do not implement a step size rejection strategy. Instead, a step that
incurs a large local error is naturally followed by a reduction in the next step size as dictated by eq. (4.1).
Given that the local error has the general form

error = −ξ
H2

2
y

′′

− γ
H3

6
y

′′′

− η
H3

2
Jy

′′

,(4.2)

derivative terms at tn+1 can be estimated using

H2y
′′

n+1 = H [f(tn+1, yn+1) − f(tn, yn)]
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A B
PFE: Richardson extrapolation On-the-fly
N f-evals steps error f-evals steps error

100 1,198 56 (0) 4.2e-4 253 20 (0) 3.7e-3
400 2,136 55 (0) 4.3e-4 409 17 (0) 9.3e-3

1600 4,138 56 (0) 4.1e-4 800 18 (0) 3.4e-3
6400 8,146 56 (0) 4.7e-4 1,628 18 (0) 1.1e-2

Table 4.1

Solver statistics for projective forward Euler (PFE): 2D diffusion PDE.

A B
XPFE: Richardson extrapolation On-the-fly

N f-evals steps error f-evals steps error
100 736 23 (1) 6.1e-3 228 18 (0) 8.7e-3
400 1,721 35 (1) 4.7e-3 451 21 (0) 6.9e-3

1600 3,761 49 (1) 3.4e-3 855 21 (0) 6.8e-3
6400 8,165 56 (1) 3.2e-3 1,832 22 (0) 7.1e-3

Table 4.2

Solver statistics for extrapolated projective forward Euler (XPFE): 2D diffusion PDE.

and

H3y
′′′

n+1 = −12(yn+1 − yn) + 6H [f(tn+1, yn+1) + f(tn, yn)] .

In contrast with Section 3, note that the subscripts for yn and yn+1 now refer to computed solutions at the
current and next outer step. Finally, in this study, the local error estimate used for each projective integrator
is simply—

PFE : −ξ
H2

2
y

′′

n+1, XPFE : −ξ
H2

2
y

′′

n+1; PRK : −γ
H3

6
y

′′′

n+1, PAB : −γ
H3

6
y

′′′

n+1.

For first-order accurate PFE and XPFE, only the ξ term is needed for estimating the O(H2) error. For
second-order accurate PRK and PAB, the ξ term in eq. (4.2) is eliminated by the proper choice of Mα
as derived in Sections 3.1–3.2, respectively. Of the two O(H3) error terms in eq. (4.2), we focus on the
effectiveness of using only the γ term in approximating the local error. The η term can also be included, but
there is the additional expense of obtaining Jy

′′

via finite-differences or with a user-supplied routine. The
relative merits of including the η term is certainly a topic worthy of further investigation.

For problems of different sizes N , Tables 4.1–4.4 show the number of function evaluations, number of
accepted and (rejected) time steps, and the maximum absolute error in a solution component. The error is
the time integration error, which is the difference between the spatially-discretized numerical solution and a
reference solution of the ODEs as computed with a stringent tolerance.

The numerical results can be summarized as follows. For first-order accurate PFE and XPFE, Tables 4.1–
4.2 show that solving the test problems with the new local error estimation technique (instead of RE) yields
about a factor of four reduction in the total number of function evaluations. For second-order accurate
PRK and PAB, Tables 4.3–4.4 show the reduction in cost is about a factor of three and two, respectively.
Evidently, the higher expense of using RE is partly due to its more conservative step size selection; that
is, the integrators end up taking more time steps with RE (for PFE, XPFE and PRK). Fortunately, for a
given test problem, the increased expense of using RE is somewhat offset by the higher accuracy obtained
relative to using on-the-fly error estimation. At this point, we remark that a more extensive investigation



ON-THE-FLY LOCAL ERROR ESTIMATION FOR PROJECTIVE INTEGRATORS 13

A B
PRK: Richardson extrapolation On-the-fly

N f-evals steps error f-evals steps error
100 1,344 40 (0) 2.4e-4 397 29 (0) 4.6e-3
400 2,194 41 (0) 1.8e-4 640 26 (0) 3.8e-3

1600 4,202 42 (0) 3.1e-4 1,374 28 (0) 3.5e-3
6400 8,334 43 (0) 2.1e-4 2,912 30 (0) 5.8e-3

Table 4.3

Solver statistics for projective Runge-Kutta (PRK): 2D diffusion PDE.

A B
PAB: Richardson extrapolation On-the-fly
N f-evals steps error f-evals steps error

100 702 25 (0) 1.6e-4 341 27 (0) 6.8e-4
400 1,302 25 (0) 1.9e-4 602 24 (0) 2.1e-3

1600 2,550 25 (0) 1.8e-4 1,129 23 (0) 2.2e-3
6400 4,998 25 (0) 2.0e-4 2,331 25 (0) 9.0e-4

Table 4.4

Solver statistics for projective Adams-Bashforth (PAB): 2D diffusion PDE.

would require additional test runs that involve, for example: a range of tighter absolute and/or relative error
tolerances; including a Jy

′′

estimate and the η term for the PRK and PAB local error formula in eq. (4.2);
a robust step size control strategy; and, a small set of other test problems (with varied degrees of stiffness,
nonlinearity, and so on). The current results are a first proof-of-principle demonstration that the derivation
and implementation of the techniques in Section 3 are the basis for a cost-effective local error estimation
technique for solving stiff systems with a new class of explicit, multiscale integrators.

5. Conclusions and perspective. Adaptive projective integrator codes for solving stiff multiscale
systems are still in their early stages of development. We have described a novel local error estimation tech-
nique for first- and second-order accurate projective integrators. This capability is an important component
in the overall design of an adaptive step size stiff initial-value problem solver, or for enabling the adaptive
time integration of coarse-grained multiscale systems [5, 6].

A comprehensive evaluation of on-the-fly error estimation techniques will involve the development and
fine-tuning of a more advanced step size control strategy for when the outer step is accepted (or rejected). A
robust step size control strategy also allows for fair comparisons between adaptive projective integrators and
existing stiff initial-value problems solvers (e.g., implicit, exponential, and stabilized explicit integrators).
With regard to local error estimation alone, we view these on-the-fly techniques as a cheap and not-too-
complicated alternative that are likely to be more efficient than Richardson extrapolation.
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