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Abstract. In this report we consider the parameterization of low-dimensional manifolds that are
specified (approximately) by a set of points very close to the manifold in the original high-dimensional
space. Our objective is to obtain a parameterization that is (1-1) and non singular (in the sense that the
Jacobian of the map between the manifold and the parameter space is bounded and non singular).
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1. Introduction. When it is known that the high-dimensional solutions of a compu-
tational problem lie on a lower-dimensional manifold we may wish to operate only on that
manifold. By repeatedly solving the problem numerically, we can compute points that are
approximately on the manifold and we will assume that we are able to compute a set of
such points over the manifold so that they are “reasonably distributed” (i.e., the average
density of the points does not vary too greatly from region to region. We also assume that
we can approximate any point on the manifold sufficiently accurately by interpolation from
these pre-computed points and we would like to find a convenient parameterization of the
manifold that can be used for the interpolation.

For example, if the solutions of a differential equation in the high-dimensional space
rapidly approach a low-dimensional manifold it may be desirable to integrate a reduced
system on the manifold to avoid stiffness. In this case, it might be even more convenient
to integrate in the parameter space. Note that in this example it is important that the
parameterization be non singular: otherwise the differential equations in the parameter
space would have a singularity.

We suppose that we are given a set of N points Xi, i = 1, · · · , N in s-dimensional
Euclidean space, S, with coordinates xi = {xq,i}, q = 1, · · · , s that are on (or close to, due
to noise or computational error) a low-dimensional manifold, M. Our ultimate objective is
to find, computationally, a parameterization of any manifold that can be simply param-
eterized. For now we rule out manifolds such as tori that can only be parameterized by
using periodicity in some of the parameters. A desiderata is to be able to parameterize any
manifold that can be formed by “twisting” (without any stretching) a linear manifold in the
high dimensional space (such as the well-known “Swiss roll” example in Figure 1.1(b)) so
that the parameterization is a good approximation to a Cartesian coordinate system for the
original linear manifold. (In that figure the X-axis is foreshortened and has a range of about
2.5 times that of the other two axes so as to show the structure. Consequently it appears
to be rolled from a fairly narrow rectangle but it is actually rolled from the square shown
in Figure 1.1(a). The randomness of these points was constrained to get a “reasonable”
distribution - the 1 by 1 square was divided into 40 by 40 equal smaller squares, a point was
placed in the middle of each and then subject to a random uniform perturbation in each
coordinate in the range [-0.4, 0.4]/40, thus ensuring that no points were closer than 0.2/40.)

The learning and statistical communities have long been interested in manifold learning
and representation so there is a large body of literature. In those cases the typical task
is to start with the data set {Xi} and produce a “representation” in a lower-dimensional
space such that the differences in the distances of pairs of points in the two spaces are
suitably small. This was achieved by minimizing a stress function in Sammon’s early paper[3]
and numerous modifications have been proposed, such as [5, 6]. If the low-dimensional
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Fig. 1.1. (a) 1,600 points “randomly” placed (see text) on a 1 by 1 square. (b) “Swiss Roll” formed

by rolling the square into a spiral. The yθ coordinate in (a) correspons to distance around the spiral in (b).

manifold is linear, the Principal Component Analysis (PCA) is the standard way to identify
and represent it - the principal components provide an orthogonal basis for the smallest
linear space containing the manifold. Many methods for non-linear manifolds start with
some modification of PCA. For example, [8] effectively uses PCA locally and then stitches
the tangent spaces together. Local Linear Embedding (LLE) [2] looks for a local linear
approximation which is related to PCA.

Another class of methods is based on the structure of the graph generated by focussing
attention primarily on nearby neighbors. Diffusion Maps [1] are one type of this method.
We have looked at the use of Diffusion Maps for the parameterization of slow manifolds
[4]. Diffusion Maps use a parameter, ϵ, that effectively specifies the distance of what is
considered a nearby neighbor. When a small ϵ is used, the parameterization is nearly
singular at the boundary. A much larger ϵ sometimes overcomes this difficulty, but can lead
to other difficulties.

In this report we show that that the limit of a particular case of diffusion maps for large
ϵ is PCA if we use the left eigenvectors rather than the right eigenvectors normally used in
diffusion maps. However, because, in diffusion maps, we work with distances in the graph
structure rather than with the coordinates {xi} that are the input to PCA, we can consider
modifications to the distances of pairs of points that are not nearby neighbors to improve
the parameterization.

In Section 2 we discuss the problems of diffusion maps for the data set in Figure 1.1(b)
- for small ϵ the map has a nearly singular Jacobians, but breaks down for large ϵ because
points distant in the manifold are relatively close in the high-dimensional space. Then, in
Section 3, we consider the large ϵ limit for diffusion maps on linear manifolds and prove that
the left eigenvectors provide the PCA decomposition and show that this can be obtained
by working directly with the distance matrix. In Section 4 we consider ways to modify the
distance matrix to improve the parameterization.

2. Diffusion Map Issues. Define the (symmetric) distance matrix H to have the
entries

Hij = d(Xi, Xj)
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where d(., .) is the Euclidean distance between the points, that is

Hij =

√√√√ s∑
q=1

(xq,i − xq,j)2.

The diffusion map method [1] now forms the matrix W = {Wij} = {w(Hij)} where w is
a suitable non-negative function such that w(0) = 1 and w(h) is monotonic non-increasing
for h > 0 with w(∞) = 0. We will use

w(h) = exp(−
(
h

ϵ

)2

).

The diffusion map method continues by dividing each row of W by its corresponding row
sum to get a Markov matrix K whose largest eigenvalue is 1 with a corresponding eigenvec-
tor e = [1, 1, · · · , 1]T . Some of its next few eigenvectors serve to identify the low-dimensional
manifold and the i-th components of these eigenvectors provide a parameterization for the
points, Xi, on the manifold. It is well known that for small ϵ the parameterization is poor
near the boundaries - see, for example, [4] - but that a large ϵ can give a good parameteri-
zation under some circumstances.

In Figure 2.1 we show the results of applying a diffusion map to the data in Figure 1.1
(b). Here, ϵ was chosen as

√
2β where β was the smallest value such that if all edges in

the graph corresponding to the distance matrix H longer than β were removed, the graph
would still be connected. (For this particular data set, β is 0.0322.) Figure 2.1 (a) and (b)
plot the components of the second and third eigenvectors, ξ2 and ξ3, against the X and
yθ coordinates of the points in Figure 1.1(b). (X and yθ are the coordinates of the points
in Figure 1.1(a). After the square is “rolled” yθ is the arc length around the spiral from
its inner stating point while X is the coordinate along the length of the cylindrical spiral.)
We see that ξ2 and ξ3 come very close to providing direct parameterizations of X and yθ,
respectively, and this is shown more clearly in Figure 2.1 (c) and (d) (which are projections
of the previous two figures onto axial panes). However, we see that the parameterization is
very poor near the boundary where ∂ξ2/∂X and ∂ξ3/∂yθ are nearly zero (because the curve
is close to a cosine half cycle). For example, if one were trying to integrate a system on its
slow manifold using the parameterization as the dependent variables the sensitivity of the
derivative to the parameter values would be very large near the boundary.

In some cases, this can be overcome by using a large ϵ. In Figure 2.2 (a) and (b) we
show the equivalent of Figure 2.1 (c) and (d) for a diffusion map of the same data with ϵ = 1
- the distance along the cylinder. Note that ξ2 provides a very good parameterization of the
X direction - it is almost linear, but that ξ3 is no longer a (1-1) map. This occurs because
Wij for points on adjacent turns of the spiral is about 0.985 so the points are seen as close.
(The spiral started with radius 0.03 and increased radially by 0.12 on each full turn.)

We would like to get the benefits of a large ϵ - the linearity in Figure 2.2(a) without
the drawbacks illustrated in Figure 2.2(b). For that reason, we study the large ϵ limit of
diffusion maps in the next section.

3. Diffusion Maps in the Large ϵ Limit. We are really interested in non-linear
manifolds, but for expository purposes we start by assuming that the manifold is linear. Set
the (arbitrary) origin to be at the point mean. This implies that

n∑
i=1

xq,i = 0 (3.1)
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Fig. 2.1. Diffusion map applied to data in Figure 1.1(b) with ϵ = 0.0455. (a) Second eigenvector ξ2.
(b) Third eigenvector ξ3. (c) ξ2 versus X. (d) ξ3 versus yθ.
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Fig. 2.2. Diffusion map applied to data in Figure 1.1(b) with ϵ = 1. (a) ξ2 versus X. (b) ξ3 versus yθ.

for all q. Since the manifold is linear, it is now a linear subspace, D.
Define xq to be the vector whose i-th component is xq,i and e = [1, 1, · · · , 1]T so eq

(3.1) can be written as

eTxq = 0 (3.2)

for all q. (Bold face lower-case roman letters will always refer to N -dimensional column
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vectors while non-bold face roman letters will refer to s-dimensional column vectors.)
Suppose ϵ is large enough that (max(Hij)/ϵ)

4 can be ignored. In that case,

Wij ≈ 1−
(
Hij

ϵ

)2

The row sums of this matrix are

N∑
j=1

Wij ≈ N − 1

ϵ2

N∑
j=1

H2
ij

so

Kij ≈
1

N
(1− 1

ϵ2
[H2

ij −
1

N

N∑
k=1

H2
ik])

In other words,

K ≈ 1

N
(E− F

ϵ2
) (3.3)

where E is the matrix of all ones and

Fij = H2
ij −

1

N

N∑
k=1

H2
ik

=
s∑

q=1

[(xq,i − xq,j)
2 −

N∑
k=1

(xq,i − xq,k)
2/N ]

=
s∑

q=1

[x2
q,j − 2xq,ixq,j −

N∑
k=1

x2
q,k/N ]. (3.4)

Writing cq for
∑N

k=1 x
2
q,k and defining vector vq to have i-th entries x2

q,i, eq (3.4) can
be written as

F =

s∑
q=1

[
e(vq − cqe)

T

N
− 2xqx

T
q ]. (3.5)

The points Xi lie in the linear subspace D. Chose a coordinate system for S such that
the first d coordinates span D. Hence, for q > d xq = vq = 0 and cq = 0 so we can rewrite
eq (3.5) as

F =
d∑

q=1

[
e(vq − cqe)

T

N
− 2xqx

T
q ]. (3.6)

Note that if a left or right eigenvector, v of K given by eq (3.3) satisfies eTv = 0 then
it is also an eigenvector of Fand vice versa.
Observation

If the points {Xi} are regularly placed in the linear subspace - that is is they lie on the
points of a regular rectangular grid or its extension to higher dimensions - if the coordinate
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system is aligned with this grid and the origin is at the center of the rectangle, then xq, q =
1, · · · , d are eigenvectors of F and hence K.

This follows by construction. In this case the vector xq takes the form

xq = e1 ⊗ e2 ⊗ · · · ⊗ eq−1 ⊗ zq ⊗ eq+1 ⊗ · · · ⊗ ed (3.7)

where ei is a column vector of ones of length equal to the number of grid points in the i-th
dimension and zq is the set of coordinate points in the q-th dimension. Note that eTq zq = 0
for all q so that the xq are mutually orthogonal and all orthogonal to e. Hence

Fxq =
d∑

p=1

[
e(vp − cpe)

T

N
− 2xpx

T
p ]xq

=
d∑

p=1

evT
p

N
xq − 2(xT

q xq)xq. (3.8)

If p ̸= q then vT
p xq = 0 directly from eq (3.7) so it only remains to show that for this

data,

vT
q xq =

N∑
i=1

x3
q,i = 0

which is true by virtue of the regular spacing and eTxq = 0.
If the points are “reasonably” distributed, then this property is approximately true. In

Figure 3.1(a) we show the points plotted via their entries, ξ2,i and ξ3,i of the eigenvectors
of K evaluated with ϵ = 1 for the planar data in Figure 1.1(a). Because the eigenvalue
computation finds the dominant axis as second leading eigenvector (after the eigenvector
e) and that tends towards one of the diagonals when the data is random, the square has
been rotated. To demonstrate that these are close to linearly dependent on the original
coordinates, we computed the affine translation of this representation that was closest to
the original data in Figure 1.1(a) (that is, the transformation that minimized the sum of
the squares of the distances between associated points) and then plotted the components of
the eigenvectors ξ2 and ξ3 against the original coordinates, as shown in Figure 3.1(b). (ξ3
is offset by 0.1 for clarity.) As can be seen, the dependence is almost linear. The average
distance error was 0.0023.

However, it is more important to note that the left eigenvectors of F always have this
property, regardless of the distribution of points, so we propose to use the left eigensystem
of F but to avoid having to repeat “left eigenvector” we will instead work with G = FT

whose eigenvectors u are the left eigenvectors of F.
We are dealing with vectors in two different spaces: the s-dimensional original Euclidean

space containing the points whose coordinates are xi = [x1,i, x2,i, · · · , xs,i]
T and the N -

dimensional space, P, containing the vectors xq = [xq,1, xq,2, · · · , xq,N ]T . If we pick any basis
for the Euclidean space (which has to be orthogonal so that eq (3.4) is based on the distance)
it determines the entries in the N -dimensional vectors xq. For each orthogonal set of vectors
in the Euclidean space (which we will call geometric vectors) there is a corresponding set
of vectors of the point coordinates (which we will call point vectors). In particular, if we
pick an (orthogonal) basis set for S such that the first d basis vectors span D, then the xq,i

satisfy xq,i = 0, q > d. Hence, the remaining s− d basis vectors do not affect the d vectors
xq, 1 ≤ q ≤ d. In this sense, to every orthogonal basis for D there is a corresponding set of
d linearly-independent point vectors in P.
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Fig. 3.1. (a) Points plotted by right eigenvectors of K with ϵ = 1. (b) Plot of eigenvector components
in (a) after optimal affine transformation against coordinates in Figure 1.1(a).

To avoid verbal complexity, we will refer to “non-zero eigenvectors” to mean “eigenvec-
tors corresponding to non-zero eigenvalues” and its obvious extensions.

We find that G has the interesting properties summarized in
Theorem

If the components of G are given by

G =

d∑
q=1

[
(vq − cqe)e

T

N
− 2xqx

T
q ] (3.9)

then
1. G has exactly d non-zero eigenvalues.
2. The zero eigenvalue has algebraic multiplicity N − d and geometric multiplicity at

least N − d− 1 although there are special cases where the geometric multiplicity is
also N − d.

3. There exists a geometrically orthogonal basis for D such that the d corresponding
non-null point vectors xq are the non-zero eigenvectors of G.

4. These eigenvectors are orthogonal.
5. The corresponding eigenvalues are −2xT

q xq so that all non-zero eigenvalues are
negative.

Proof
We restrict ourselves to coordinate systems in S such that the first d cordinates span

M. From eq (3.9) we see that if b is any vector orthogonal to e and xq, q = 1, · · · , d then
Gb = 0 so b is a zero eigenvector. Hence any s− d− 1 (linearly independent) vectors that
span the space orthogonal to e and xq, q = 1, · · · , d are independent zero eigenvectors and
are orthogonal to e. Note that eT is a zero left eigenvector of K. Since it is orthogonal to
the s−d−1 zero right eigenvectors just enumerated, there must be one more zero eigenvalue.
(Usually its right eigenvector is a generalized eigenvector but there are special cases when
this is not so, for example, when N − 1 = d = s.)

We complete the proof by showing that there are d independent non-zero eigenvectors.
Let X be the matrix whose columns are xq, q = 1, · · · , d, and let y = Xα be a linear

combination of those vectors where α is a d-dimensional vector. Hence from eq (3.9) and
eTX = 0 we have

Gy = −2XXTXα (3.10)
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Define

Y = XXT . (3.11)

It is a d by d symmetric matrix so has real eigenvalues and mutually orthogonal eigenvectors.
Because the points are in the d-dimensional subspace D and no lower dimensional subspace,
Y is positive definite so all of its eigenvalues are strictly positive. Let α be one of the
eigenvectors with corresponding eigenvalue µ. Hence

Gy = −2µXα = −2µy

so y = Xα is an eigenvector of G with eigenvalue −2µ. This provides a complete set of
d non-zero eigenvectors. If Q is an orthonormal matrix whose columns are the (scaled)
eigenvectors, {α}, of Y then Q can be applied to the initially selected Cartesian coordinate
system for D to get a new Cartesian coordinate system with property 3.

Property 4 follows because the action of G defined by eq (3.9) on the subspace spanned
by {xq} is exactly the same as the action of

Ĝ = −2
d∑

q=1

xqx
T
q (3.12)

Ĝ is a symmetric matrix so its eigenvectors are orthogonal. Property 5 follows from eq (3.9)
when we choose a basis for D such that the eigenvectors are {xq} (we have demonstrated
how to do above). Then Y is diagonal with entries xT

q xq which are its d eigenvalues µq.
As a footnote to this proof we observe that the number of non-zero eigenvalues follows

quickly from a paper of nearly 75 years ago by Young and Householder[7]. They show that
the matrix [

H e
eT 0

]
has rank d + 2 (see eq. (2) in their paper). If we subtract the average of the first N rows
from the last and then add the new last row to each of the first N rows (not changing the
matrix rank) we get the matrix [

E+G 0
zT −1

]
where z is some N -dimensional vector whose value does not affect the rank. Hence, E+G
has rank d+1. Since eT is a left eigenvector ofG and E with eigenvalues 0 and 1 respectively
and E has rank 1, the rank of G is d.

4. Modifying Distances to get a Good Parameterization. We see from eq (3.9)
that the non-zero eigenvectors of G are the eigenvectors of XXT and these are precisely the
principal components from PCA so the method proposed in Section 3 provides exactly the
PCA representation of the data set, which raises the question “What is the advantage of
this method over PCA?” PCA starts with the coordinates of the data whereas this method
starts with the distances of each point pair (and incidentally provides the coordinates in an
orthogonal coordinate system from the calculation). A potential application of this method
is to a set of objects that are not given in a Euclidean space but for which a similarity
distance can be defined (e.g., a set of graphs). In this report, we focus only on sets that can
be represented as points in a Euclidean space.
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The problems with the diffusion map parameterization (using large ϵ as discussed in
Section 2) arose when distances that were large in the manifold were small in the original
space. Because the algorithm only uses distances we can consider modifying the distances
of more distant objects to be approximately compatible with those in the manifold.

A procedure for doing this is as follows:

1. Remove all edges from the graph representation of the distance matrix H longer
than some value.

2. Compute the new shortest path to all edges to get a modified distance matrix
3. Use this modified matrix to generate a parameterization using the technique of

Section 3

In Figure 4.1(a) we show the points plotted in the (ξ1, ξ2)-plane using the modified
distance matrix approach for the Swiss roll data in Figure 1.1(b). Edges were removed from
the graph that were longer than 2β where β was the minimum value that did not lead to
a disconnected graph when all larger edges were cut (β is 0.0322). As happened in Figure
3.1, the square is twisted. As before, we found the best affine transformation of these points
to match the data in Figure 1.1(a). The new coordinate systems is called ϕ1 and ϕ2. In
Figure 4.1 (b) and (c) we show the plots of X versus ϕ1 and yθ versus ϕ2. As can be seen,
the relationship is almost linear.
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Fig. 4.1. Modified distance methods applied to Swiss roll data. (a) Points plotted by right eigenvectors
of G. (b) and (c) Plot of rotated coordinates of (a) against coordinates in original plane data.

The distance modification scheme gives good results for the Swiss roll data because it
was obtained by twisting a linear manifold without stretching. However, if it is necessary to
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stretch the data to “unfold” it into a linear manifold, the scheme will not work unless some
of the nearest neighbor distances are also modified. This can be seen with the example in
Figure 4.2(a) which consists of a set of points somewhat uniformly placed on the majority
of a surface of a sphere. In this example, the surface of the sphere is included from the
“North pole” to to Southern latitude 67.5o. A point was placed at the North pole and then
points were place on each of 15 circles of constant latitude at constant separations of 10.5o.
The points were equi-spaced on each circle. 40 points were placed on the equator and the
number on each of the other circles was chosen to make the spacing on each circle as similar
as possible except that a minimum of 6 points were placed on each circle. The location of
one of the points was chosen from a uniform random distribution. In Figure 4.2(a) all points
are plotted as dots except for the points on the southern-most latitude which are circles.
Clearly this 2D surface can be parameterized easily. The southern-most latitude circle is
the boundary of the finite, non-linear manifold.

The results of the standard diffusion map and the modified distance scheme are shown
in Figure 4.2 (b) and (c), respectively. The plots shown the circles of constant latitude in
the eigenvalue coordinates. The southern-most circle is shown as a thicker line.
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Fig. 4.2. (a) Original data on most of the surface of a sphere. (b) Diffusion Map applied to this data.
(c) Modified distance scheme applied to same data.

As can be seen from the figure, the modified distance scheme has the boundary of the
manifold in the interior of parameterization it produces (as does the diffusion map process,
although not as badly). This arise because the scheme places a great emphasis preserving
the length of nearby neighbors, and in this case there is a circle of nearby neighbors with a
perimeter that is much smaller than the perimeter of other circles that are in the interior of
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the 2D manifold. Clearly it is necessary to modify the lengths of some nearby neighbors to
get a good parameterization. A clue to the need for this can be obtained from the size of
additional eigenvalues of G and local changes in the components of their eigenvectors. Since
the method is equivalent to a PCA decomposition1, other eigenvalues must be large when
we find that points significantly separated in the original space are close in the parameter
space. How to systematically modify nearby neighbors distances in this case is a subject of
ongoing research.
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