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1 INTRODUCTION

1. Introduction

� Thanks to Merton's seminal work in the 1970s, continuous-time mod-
elling has become one of the main tools of asset pricing.

� Di�usions and more generally continuous-time Markov processes are
generally speci�ed in economics and �nance by their evolution over

in�nitesimal instants

dXt = � (Xt; �) dt+ � (Xt; �) dWt

� The transition function of the Markov process X is the conditional

density pX (�; xjx0; �) for the values of the state variable x at a �xed
future time �, given the current level x0 of the state vector.
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1.1 Maximum-Likelihood Estimation 1 INTRODUCTION

1.1. Maximum-Likelihood Estimation

� Suppose that we observe the process at discrete dates t = i� for

i = 0; : : : ; n.

� Random times can be accommodated as long as they do not cause

the X process.

� The form of the likelihood function is particularly simple due to the

Markovian nature of the model.
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1.1 Maximum-Likelihood Estimation 1 INTRODUCTION

� Using Bayes' Rule and the Markov property, the probability of observ-
ing the data fX0; X�; : : : ; Xn�g given that the parameter vector is �
is

P
�
Xn�; X(n�1)�; : : : ; X0; �

�
= P

�
Xn�jX(n�1)�; : : : ; X0; �

�
� P

�
X(n�1)�; : : : ; X0; �

�
= P

�
Xn�jX(n�1)�; �

�
� P

�
X(n�1)�; : : : ; X0; �

�
= P

�
Xn�jX(n�1)�; �

�
� : : :� P (X�jX0; �)� P (X0; �) :
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1.1 Maximum-Likelihood Estimation 1 INTRODUCTION

� Ignoring the initial observation, one would like to maximize over values
of � the log of the corresponding density

`n (�) �
Xn

i=1
ln pX

�
�; Xi�jX(i�1)�; �

�
:

� So this would be rather easy, except that for most models of interest,
the function pX is not known in closed-form.
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1.1 Maximum-Likelihood Estimation 1 INTRODUCTION

� Rare exceptions:

{ Geometric Brownian motion, Black and Scholes (1973): dXt =

�Xtdt +�XtdWt

{ Ornstein-Uhlenbeck process, Vasicek (1977): dXt = � (��Xt) dt
+�dWt

{ Feller's square root process, Cox et al. (1985): dXt = � (��Xt) dt
+�X

1=2
t dWt.
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1.1 Maximum-Likelihood Estimation 1 INTRODUCTION

� In many cases that are relevant in �nance, however, the transition
function pX is unknown:

{ Courtadon (1982): dXt = � (��Xt) dt +�XtdWt

{ Marsh and Rosenfeld (1982): dXt = (�X
�(1��)
t +�)dt+�X

�=2
t dWt

{ Cox (1975), Chan et al. (1992): dXt = � (��Xt) dt+ �X
t dWt

{ Constantinides (1992): dXt =
�
�0 + �1Xt + �2X

2
t

�
dt

+ (�0 + �1Xt) dWt

{ Du�e and Kan (1996), Dai and Singleton (2000), a�ne models:
dXt = � (��Xt) dt + (�0 +�1Xt)

1=2 dWt

{ A��t-Sahalia (1996), nonlinear mean reversion: dXt = (�0 + �1Xt
+�2X

2
t + ��1=Xt)dt +(�0 + �1Xt +�2X

�3
t )dWt:
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1.1 Maximum-Likelihood Estimation 1 INTRODUCTION

� I will survey the development of closed form likelihood expansions

for models such as these, following in A��t-Sahalia (1999) (examples

and application to interest rate data), A��t-Sahalia (2002) (univariate

theory) and A��t-Sahalia (2008) (multivariate theory).

� Matlab code is available upon request to compute these expansions
for arbitrary models.
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1.1 Maximum-Likelihood Estimation 1 INTRODUCTION

� For a long time, continuous-time models in �nance have been pre-
dominently univariate

� Most models nowadays are multivariate

{ Asset pricing models with multiple explanatory factors

{ Term structure models with multiple yields or factors

{ Stochastic volatility or stochastic mean reversion models

� I will describe the construction of approximations to the transition
density of arbitrary multivariate di�usions.
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1.1 Maximum-Likelihood Estimation 1 INTRODUCTION

� Extensions:

{ To time-inhomogenous univariate di�usions: Egorov et al. (2003)

and Choi (2008)

{ To univariate models driven by L�evy processes other than Brownian

motion, including jumps: Schaumburg (2001) and Yu (2007)

{ To a Bayesian setting: DiPietro (2001), Stramer et al. (2009)

{ To damped di�usions: Li (2010)
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1.1 Maximum-Likelihood Estimation 1 INTRODUCTION

� This method is applicable also to other estimation strategies which
require an expression for pX , such as:

{ Bayesian methods where one needs a posterior distribution for �;

{ To generate simulated paths at the desired frequency from the

continuous-time model;

{ Or to serve as the instrumental or auxiliary model in indirect infer-

ence and simulated/e�cient methods of moments.

� Other methods require an expression for pX : for instance, derivative

pricing relies on expectations taken with respect to the risk-neutral

density which is the pX corresponding to the risk-neutral dynamics

from the model.
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1.1 Maximum-Likelihood Estimation 1 INTRODUCTION

� Computations using a closed-form pX are straightforward and fast
because everything is in closed form, compared to other methods,
such as:

{ Solving numerically the FPK partial di�erential equation: Lo (1988)

{ Simulating the process to determine pX by Monte Carlo integra-
tion: Pedersen (1995) and Brandt and Santa-Clara (2002)

{ Using binomial or other trees: Jensen and Poulsen (2002)

� The computation of the closed-form expression for pX corresponding
to a given model is only done once and for all.

� A Matlab library for existing models is now available, with models
added as they are requested.
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2 THE UNIVARIATE CASE

2. The Univariate Case

� The intuition is to transform the data into something that is amenable

to an explicit correction around a leading term.

� As in the Central Limit Theorem, if we could get \close enough" to
a Normal variable, then corrections are possible for the fact that the

sample size is never quite in�nity.

� Still not an Edgeworth expansion: we want convergence as the number
of terms increase, not the sample size

14



2 THE UNIVARIATE CASE

� In general, pX cannot be approximated for a �xed sampling interval

� around a Normal density by standard series

{ because the distribution of X is too far from that of a Normal

{ for instance, if X follows a geometric Brownian motion, the right

tail is too thick, and the Edgeworth expansion diverges
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2.1 Main Idea 2 THE UNIVARIATE CASE

2.1. Main Idea

1. Make two successive transformations X 7! Y 7! Z such that Z that

is su�ciently close to a Normal

2. Construct a sequence for pZ around a Normal

3. Revert the transformation Z 7! Y 7! X

) Expansion for pX around a deformed Normal.
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2.2 First Transformation: X 7! Y 2 THE UNIVARIATE CASE

2.2. First Transformation: X 7! Y

� De�ne

Yt � 
 (Xt; �) =
Z Xt

du=� (u; �)

� By Itô's Lemma:

dYt = �Y (Yt; �) dt+ dWt

where

�Y (y; �) =
�
�

�1 (y; �) ; �

�
�
�

�1 (y; �) ; �

� � 1
2

@�

@x

�

�1 (y; �) ; �

�

� Despite its local unit variance, Y is still not close enough to a Normal...
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2.3 Second Transformation: Y 7! Z 2 THE UNIVARIATE CASE

2.3. Second Transformation: Y 7! Z

� Z is a \standardized" version of Y :

Zt � ��1=2 (Yt � y0)

� Since �! 0 is not required:

{ No claim regarding the degree of accuracy of this standardization

device

{ Rather, it will turn out that this Zt is \close enough" to a Normal

for this to work.
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2.4 The Approximation Sequence for pZ 2 THE UNIVARIATE CASE

2.4. The Approximation Sequence for pZ

� Hermite polynomials:

Hj (z) � ez
2=2 d

j

dzj

�
e�z

2=2
�

� N(0; 1) density: � (z) � e�z2=2=(2�)1=2

� Hermite expansion for the density function of Z; pZ; at order J :

p
(J)
Z (�; zjy0; �) � � (z)

XJ

j=0
�j (�; y0; �) Hj (z)

� This is an expansion in z, for �xed �, y0 and �.
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2.4 The Approximation Sequence for pZ 2 THE UNIVARIATE CASE

� The unknowns are the coe�cients �j:

� By orthogonality of the Hermite polynomials, we have

�j (�; y0; �) �
1

j!

Z +1
�1

Hj (z) pZ (�; zjy0; �) dz

� This means that �j is in the form of an expected value over the

density pZ:

� This makes it possible to compute these coe�cients explicitly, which
will be done below.
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2.5 Revert the Transformations Z 7! Y 7! X 2 THE UNIVARIATE CASE

2.5. Revert the Transformations Z 7! Y 7! X

� Assume for now that p(J)Z has been obtained.

� From p
(J)
Z , we get a sequence of approximations to pY :

p
(J)
Y (�; yjy0; �) � ��1=2p

(J)
Z

�
�; ��1=2 (y � y0) jy0; �

�

� And then to pX :

p
(J)
X (�; xjx0; �) � � (x; �)�1 p

(J)
Y (�; 
 (x; �) j
 (x0; �) ; �)
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2.5 Revert the Transformations Z 7! Y 7! X 2 THE UNIVARIATE CASE

� Recall that Yt � 
 (Xt; �) =
RXt du=� (u; �)

� So Y is a nonlinear transformation of X unless � is a constant para-

meter, in which case Yt = Xt=�:

� As a result, the leading term of p
(J)
X will in general not be Gaussian

since it is a Gaussian term evaluated at a nonlinear function of X:
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2.6 Convergence of the Density Sequence 2 THE UNIVARIATE CASE

2.6. Convergence of the Density Sequence

� Theorem : There exists �� > 0 such that for every � 2
�
0; ��

�
, � 2 �

and (x; x0) 2 D2X :

p
(J)
X (�; xjx0; �) ! pX (�; xjx0; �) as J !1

� In addition:

{ the convergence is uniform in � over �

{ in x over DX

{ and in x0 over compact subsets of DX .
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2.7 A Sequence of Approximations to the MLE 2 THE UNIVARIATE CASE

2.7. A Sequence of Approximations to the MLE

� Theorem: Maximizing

`
(J)
n (�) �

Xn

i=1
ln p

(J)
X

�
�; Xi�jX(i�1)�; �

�
results in an estimator �̂

(J)
n :

{ which converges to the exact (but uncomputable) MLE �̂n as J !
1

{ and inherits all its asymptotic properties.
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2.7 A Sequence of Approximations to the MLE 2 THE UNIVARIATE CASE

� Methods to do small sample bias corrections for these maximum-
likelihood estimates are provided by Phillips and Yu (2009) and Tang

and Chen (2009).

� They are relevant in particular for the speed of mean reversion para-
meter when near a unit root.

� This is the case for US interest rate data for instance.
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2.7 A Sequence of Approximations to the MLE 2 THE UNIVARIATE CASE

� Latest results on the asymptotics of the approximate MLE

{ Chang and Chen (2011): Consistency and rate of convergence of

the approximate MLE as a function of the number of terms used

in the density approximation (J) and �

{ Jeong and Park (2011): Optimal rates of convergence achieved by

the approximate MLE di�erentiated by type of parameter to be

estimated as a function of both the horizon of estimation (T ) and

the sampling interval (�)
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2.8 Explicit Expressions for the Expansion 2 THE UNIVARIATE CASE

2.8. Explicit Expressions for the Expansion

� Limit as the number of Hermite polynomials J !1 :

p
(1)
Z (�; zjy0; �) = � (z)

X1
j=0

�j (�; y0; �) Hj (z)

� To compute the coe�cients �j (�; y0; �):

{ Taylor expand �j in � up to order �K

{ This gives rise to the expansion denoted ~p
(K)
Z
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2.8 Explicit Expressions for the Expansion 2 THE UNIVARIATE CASE

� Theorem:

~p
(K)
Y (�; yjy0; �) = ��1=2�

�
y � y0
�1=2

�
exp

 Z y
y0
�Y (w; �) dw

!

�
XK

k=0
ck (yjy0; �)

�k

k !

� The coe�cients are obtained in closed form:

c0 (yjy0; �) = 1

cj (yjy0; �) = j (y � y0)�j
Z y

y0

(w � y0)j�1
�
�Y (w) cj�1 (wjy0; �) +

1

2

@2cj�1 (wjy0; �)
@w2

�
dw

�Y (y; �) � �
1

2

�
�2Y (y; �) +

@�Y (y; �)

@y

�
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2.9 Comparisons with Other Methods 2 THE UNIVARIATE CASE

2.9. Comparisons with Other Methods

Comparison studies include:

� Jensen and Poulsen (2002)

� Hurn et al. (2007)

� Stramer and Yan (2007)
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2.9 Comparisons with Other Methods 2 THE UNIVARIATE CASE
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2.10 Examples 2 THE UNIVARIATE CASE

2.10. Examples

� Vasicek Model: dXt = � (��Xt) dt+ �dWt

� Uniform approximation errors in log-scale

Panel B
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2.10 Examples 2 THE UNIVARIATE CASE

� CIR Model: dXt = � (��Xt) dt+ �X
1=2
t dWt

� Uniform approximation errors in log-scale

Panel B
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2.10 Examples 2 THE UNIVARIATE CASE

� CEV Model: dXt = � (��Xt) dt+ �X
t dWt

� Density from this method compared to Euler approximation

Panel C
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2.10 Examples 2 THE UNIVARIATE CASE

� Nonlinear Drift Model in A��t-Sahalia (1996b):

dXt =
�
��1X

�1
t + �0 + �1Xt + �2X

2
t

�
dt+ �X



t dWt

� Drift

Panel A
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2.10 Examples 2 THE UNIVARIATE CASE

� Nonlinear Drift Model: Density from this method compared to Euler

approximation

Panel C

35



2.10 Examples 2 THE UNIVARIATE CASE

� Double-Well Model: dXt =
�
�1Xt � �3X3t

�
dt+ dWt

� Drift

Panel A
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2.10 Examples 2 THE UNIVARIATE CASE

� Double-Well Model: Marginal Density

Panel B
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2.10 Examples 2 THE UNIVARIATE CASE

� Double-Well Model: Density from this method compared to Euler ap-

proximation, conditioned on center value (x0 = 0:0)

Panel C
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2.10 Examples 2 THE UNIVARIATE CASE

� Double-Well Model: Density from this method compared to Euler ap-

proximation, conditioned on high value (x0 = 0:5)

Panel D
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3 MULTIVARIATE EXPANSIONS

3. Multivariate Expansions

� Every univariate di�usion can be transformed into one with unit dif-
fusion, whose density can then be approximated around a standard

Normal.

� This is no longer the case for multivariate di�usions.

� I therefore introduce the concept of reducibility for multivariate di�u-
sions, which characterizes di�usions for which such a transformation

exists.

40



3 MULTIVARIATE EXPANSIONS

� For reducible multivariate di�usions, I will construct an expansion for
the log-likelihood function in the form of a single Taylor series in the

time variable �.

� For irreducible di�usions, however, one must proceed di�erently, in the
form of a double Taylor expansion in the time variable � and the state

vector change x� x0.
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3.1 Reducible Di�usions 3 MULTIVARIATE EXPANSIONS

3.1. Reducible Di�usions

� De�nition: The di�usion X is reducible to unit di�usion if and if only

if there exists a one-to-one transformation of the di�usion X into a

di�usion Y whose di�usion matrix �Y is the identity matrix:

dYt = �Y (Yt; �) dt+ dWt

� Whether or not a given multivariate di�usion is reducible depends on
the speci�cation of its � matrix.
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3.1 Reducible Di�usions 3 MULTIVARIATE EXPANSIONS

� Proposition: (Necessary and Su�cient Condition for Reducibility) The
di�usionX is reducible if and only if the inverse di�usion matrix ��1 =h
��1i;j

i
i;j=1;:::;m

satis�es the condition that

@��1ij (x; �)

@xk
=
@��1ik (x; �)

@xj

for each triplet (i; j; k) = 1; :::;m such that k > j:

� Each model corresponds to a particular � (x; �) and so this can be
checked for the model of interest.
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3.1 Reducible Di�usions 3 MULTIVARIATE EXPANSIONS

Example 1: Diagonal Systems

� Since ��1ii = 1=�ii in the diagonal case, reducibility is equivalent to

the fact that �ii depends only on xi (and �) for each i.

� Note that this is not the case if o�-diagonal elements are present.
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3.1 Reducible Di�usions 3 MULTIVARIATE EXPANSIONS

Example 2: Stochastic Volatility

� If

� (x; �) =

 
�11(x2; �) 0

0 �22(x2; �)

!
then the process is not reducible, as this is a diagonal system where

�11 depends on x2.

� However, if

� (x; �) =

 
a(x1; �) a(x1; �)b(x2; �)
0 c(x2; �)

!
then the process is reducible.
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3.2 Reducible Expansion 3 MULTIVARIATE EXPANSIONS

3.2. Reducible Expansion

� One particularly convenient way of gathering the terms of the expan-
sion consists in grouping them in powers of � :

l
(K)
Y (�; yjy0; �) = �

m

2
ln (2��) +

C
(�1)
Y (yjy0; �)

�
+
XK

k=0
C
(k)
Y (yjy0; �)

�k

k!

� Leaving us with the computation of the coe�cients C(k)Y ; k = �1; 0; 1; :::
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3.2 Reducible Expansion 3 MULTIVARIATE EXPANSIONS

Theorem (Reducible Di�usions): The coe�cients of the log-density Taylor

expansion l
(K)
Y (�; yjy0; �) are given explicitly by:

C
(�1)
Y (yjy0; �) = �

1

2

Xm

i=1
(yi � y0i)2

C
(0)
Y (yjy0; �) =

Xm

i=1
(yi � y0i)

Z 1

0

�Y i (y0 + u (y � y0) ; �) du

and, for k � 1;

C
(k)
Y (yjy0; �) = k

Z 1

0

G
(k)
Y (y0 + u (y � y0) jy0; �)uk�1du

where

G
(k)
Y (yjy0; �) = �

Xm

i=1
�Y i (y; �)

@C
(k�1)
Y (yjy0; �)

@yi
+
1

2

Xm

i=1

@2C
(k�1)
Y (yjy0; �)
@y2i

+
1

2

Xm

i=1

Xk�1

h=0

�k � 1
h

�@C(h)Y (yjy0; �)
@yi

@C
(k�1�h)
Y (yjy0; �)

@yi
:
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3.3 Irreducible Expansion 3 MULTIVARIATE EXPANSIONS

3.3. Irreducible Expansion

� Mimicking the form of the Taylor expansion in � obtained in the

reducible case:

l
(K)
X (�; xjx0; �) = �

m

2
ln (2��)�Dv (x; �) +

C
(�1)
X (xjx0; �)

�

+
XK

k=0
C
(k)
X (xjx0; �)

�k

k!
:

� The idea now is to derive an explicit Taylor expansion in (x � x0) of
the coe�cients C

(k)
X (xjx0; �) ; at order jk.
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3.3 Irreducible Expansion 3 MULTIVARIATE EXPANSIONS

� For a balanced expansion:

jk = 2(K � k)

for k = �1; 0; :::;K; will provide an aproximation error due to the
Taylor expansion in (x � x0) of the same order �K for each one of

the terms in the series.

� This means in particular that the highest order term (k = �1) is
Taylor-expanded to a higher degree of precision than the successive

terms.
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3.3 Irreducible Expansion 3 MULTIVARIATE EXPANSIONS

3.3.1. Coe�cients in the Irreducible Case

� The coe�cients are determined one by one, starting with the leading
term C

(j�1;�1)
X :

� Given C(j�1;�1)X ; the next term C
(j0;0)
X is calculated explicitly, and so

on.
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3.4 Examples 3 MULTIVARIATE EXPANSIONS

3.4. Examples

3.4.1. A univariate example where X 7! Y is not available in closed

form

� Model proposed for the short term interest rate in Ait-Sahalia (1996)

dXt =
�
��1X

�1
t + �0 + �1Xt + �2X

2
t

�
dt

+ (�0 + �1Xt + �2X
�3
t )dWt

� For this model, 1=� cannot be integrated in closed-form in the general

case.
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3.4 Examples 3 MULTIVARIATE EXPANSIONS

� Bakshi and Ju (2005) proposed a method to circumvent the integra-
bility of 1=�.

� An alternative is to use the irreducible method in that case, thereby
bypassing the need for the X 7! Y transformation.

� For instance, at order K = 1 in �; the irreducible expansion for the

generic model dXt = �(Xt)dt +�(Xt)dWt is

~l
(1)
X (�; xjx0; �) = �

1

2
ln (2��)� ln(� (x; �)) +

C
(4;�1)
X (xjx0; �)

�

+ C
(2;0)
X (xjx0; �) + C

(0;1)
X (xjx0; �)�:
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3.4 Examples 3 MULTIVARIATE EXPANSIONS

� The coe�cients C(jk;k)X ; k = �1; 0; 1 are given by

C
(4;�1)
X (xjx0; �) =

�
4�(x0; �)�00(x0; �)� 11�0(x0; �)2

�
24�(x0; �)4

(x� x0)4

+
�0(x0; �)

2�(x0; �)3
(x� x0)3 �

1

2�(x0; �)2
(x� x0)2

C
(2;0)
X (xjx0; �) =

��
�0(x0; �)2 + 2�0(x0; �)

�
�(x0; �)� 4�(x0; �)�0(x0; �)� �00(x0; �)�(x0; �)2

�
4�(x0; �)3

� (x� x0)2

+
(2�(x0; �)� �(x0; �)�0(x0; �))

2�(x0; �)2
(x� x0)

C
(0;1)
X (xjx0; �) =

1

8

�
2�(x0; �)�

00(x0; �)�
4�(x0; �)2

�(x0; �)2
+
8�0(x0; �)�(x0; �)

�(x0; �)
� �0(x0; �)2 � 4�0(x0; �)

�

� Bakshi et al. (2006) use these expansions to estimate models for

volatility.
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3.4 Examples 3 MULTIVARIATE EXPANSIONS

3.4.2. The Bivariate Ornstein-Uhlenbeck Model

�
dX1t

dX2t

�
=

�
�11 (�1 �X1t) + �12 (�2 �X2t)
�21 (�1 �X1t) + �22 (�2 �X2t)

�
dt+

�
�11 �12
�21 �22

��
dW1t

dW2t

�

� This model has Gaussian transitions.

� X is reducible, and

dYt = (
 � �Yt) dt+ dWt
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3.4 Examples 3 MULTIVARIATE EXPANSIONS

� The coe�cients of the expansion are:

C
(�1)
Y (yjy0; �) = �1

2
(y1 � y01)2 � 1

2
(y2 � y02)2

C
(0)
Y (yjy0; �) = �1

2
(y1 � y01) ((y1 + y01)�11 + (y2 + y02)�12 � 2
1)
� 1

2
(y2 � y02) ((y1 + y01)�21 + (y2 + y02)�22 � 2
2)
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3.4 Examples 3 MULTIVARIATE EXPANSIONS

C
(1)
Y (yjy0; �) = �1

2

�
(
1 � y02�12 � y01�11)2 + (
2 � y01�21 � y02�22)2 � �11 � �22

�
+ 1

2
(y1 � y01)

�

1�11 + 
2�21 � y01

�
�211 + �

2
21

�
� y02 (�11�12 + �21�22)

�
+ 1

24
(y1 � y01)2

�
�4�112 + �122 � 2�12�21 � 3�221

�
+ 1

2
(y2 � y02)

�

1�12 + 
2�22 � y01 (�11�12 + �21�22)� y02

�
�212 + �

2
22

��
+ 1

24
(y2 � y02)2

�
�3�212 � 2�12�21 + �221 � 4�222

�
� 1

3
(y1 � y01) (y2 � y02) (�11�12 + �21�22)

and

C
(2)
Y (yjy0; �) = � 1

12

�
2�211 + 2�

2
22 + (�12 + �21)

2
�

+1
6
(y1 � y01) (�12 � �21)

�
�
1�12 � 
2�22 + y01 (�11�12 + �21�22) + y02

�
�212 + �

2
22

��
+ 1
12
(y1 � y01)2 (�12 � �21) (�11�12 + �21�22)

+1
6
(y2 � y02) (�21 � �12)

�
�
1�11 � 
2�21 + y02 (�11�12 + �21�22) + y01

�
�211 + �

2
21

��
+ 1
12
(y2 � y02)2 (�21 � �12) (�11�12 + �21�22)

+ 1
12
(y1 � y01) (y2 � y02) (�12 � �21)

�
�222 + �

2
12 � �211 + �221

�
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3.4 Examples 3 MULTIVARIATE EXPANSIONS

3.4.3. A Stochastic Volatility Model

� Consider as a second example a typical stochastic volatility model

�
dX1t

dX2t

�
=

�
�

� (��X2t)

�
dt+

�

11 exp(X2t) 0

0 
22

��
dW1t

dW2t

�

where X1t plays the role of the log of an asset price and exp(X2t) is

the stochastic volatility variable.

� This model has no closed-form density.

� And is not reducible.
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4 EXPANSIONS FOR MODELS WITH JUMPS

4. Expansions for Models with Jumps

� Consider jumps of �nite activity with intensity � (x; �) and jump mea-
sure � (y � x; �).

� By Bayes' Rule, we have

p(yjx; �) =
+1X
n=0

p(yjx;N� = n; �) Pr (N� = njx; �)

� With Pr (N� = 0jx; �) = O(1); Pr (N� = 1jx; �) = O(�) and Pr (N� > 1jx; �) =
o(�); and the fact that when at least one jump occurs the dominant

e�ect is due to the jump (vs. the increment due to the Brownian

increment), an expansion at order K in � of p obtained by extending
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4 EXPANSIONS FOR MODELS WITH JUMPS

the pure di�usive result to jump-di�usions is shown by Yu (2007) to
be

~p(K) (yjx; �) = exp
 
�1
2
ln
�
2���2(y; �)

�
+
c�1 (yjx; �)

�

!

�
XK

k=0
ck (yjx; �)

�k

k!

+
XK

k=1
dk (yjx; �)

�k

k!
:

� The unknowns are the coe�cients ck and dk of the series.

� Relative to the pure di�usive case, the coe�cients dk are the new
terms needed to capture the presence of the jumps in the transition
function and will capture the di�erent behavior of the tails of the
transition density when jumps are present.
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4 EXPANSIONS FOR MODELS WITH JUMPS

� These tails are not exponential in y; hence the absence of a the factor
exp(c�1��1) in front of the summation of dk coe�cients.

� The coe�cients ck and dk can be computed analogously to the pure
di�usive case, resulting in a system of equations that can be solved in

closed form, starting with c�1 and c0:

� Coe�cients of higher order of the di�usive part of the expansion (i.e.,
ck; k � 1) are no longer functions of the di�usive characteristics of

the process only; instead, they also involve the characteristics of the

jump part:

60



4 EXPANSIONS FOR MODELS WITH JUMPS

� In particular, for k = 1;

c1 (yjx; �) = �
 Z yt
x

du

� (u; �)

!�1

�
Z y
x

(
du

� (u; �)
exp

 Z s
x

�(u; �)

�2 (u; �)
du�

Z yt
x

@�(u; �)=@u

2� (u; �)
du

!

�
 Z y
s

du

� (u; �)

!
(� (s; �)�A � c0 (yjs; �))

)
ds

� (s; �)

where the operator A is the generator of the di�usive part of the

process only, de�ned by its action

A � f = �@f
@x

+
1

2
�2
@2f

@x2

on functions in its domain.
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4 EXPANSIONS FOR MODELS WITH JUMPS

� As for the leading term in the jump part of the expansion (i.e., d1), it

is given by

d1 (yjx; �) = � (x; �) � (y � x; �) :

� As in the pure di�usive case, higher order terms dk, k � 2, are obtained
recursively from the preceding ones.
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5 CONNECTION TO SADDLEPOINT APPROXIMATIONS

5. Connection to Saddlepoint Approximations

� A��t-Sahalia and Yu (2006) developed an alternative strategy for con-
structing closed form approximations.

� Instead of expanding the transition function in orthogonal polynomials
around a leading term, they rely on the saddlepoint method.

{ They replace the characteristic function by an expansion in �.

{ The expansion is then computed from the in�nitesimal generator

A of the Markov process.
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6 INFERENCE WHEN THE STATE IS PARTIALLY OBSERVED

6. Inference When the State is Partially Observed

� In many cases, the state vector is of the form Xt = [St;Vt]
0, where

the (m�q)�dimensional vector St is observed but the q�dimensional
Vt is not.

� Two typical examples:

{ Stochastic Volatility Models: St is an asset price, Vt is its volatility;

{ Term Structure Models: Vt is a vector of latent state variables (say,

macro factors) but observations are yields of bonds of di�erent

maturities.
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6 INFERENCE WHEN THE STATE IS PARTIALLY OBSERVED

� Inference Strategy:

{ Write down in closed form an expansion for the log-likelihood of

the state vector X; including its unobservable components.

{ Then enlarge the observation state by adding variables that are

observed and functions of X:

� For example, in the stochastic volatility case, an option price or
an option-implied volatility.

� In term structure models, as many bonds as there are factors.
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6 INFERENCE WHEN THE STATE IS PARTIALLY OBSERVED

{ Then, using the Jacobian formula, write down the likelihood func-

tion of the pair consisting of the observed components of X and

the additional observed variables:

� Let the observed state be Gt = [St;Ct]0 = f (Xt; �) :

� The log-likelihood of G is

ln pG (gjg0;�; �) = � ln Jt (gjg0;�; �)
+ ln pX(f

�1 (g; �) jf�1 (g0; �) ;�; �)

{ And conduct inference using the augmented data Gt = [St;Ct]
0

and the above likelihood function.
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6.1 Stochastic Volatility Models 6 INFERENCE WHEN THE STATE IS PARTIALLY OBSERVED

6.1. Stochastic Volatility Models

� We can estimate the model using observations on asset price St and an
option Ct; or an implied volatility: see A��t-Sahalia and Kimmel (2007).

� Let V (t; T ) =
R T
t Vudu:

� If Vt is instantaneously uncorrelated with St, then we can calculate
option prices by taking the expected value of the Black-Scholes option

price over the probability distribution of V (t; T ).

� If not, then the price of the option is a weighted average of Black-
Scholes prices evaluated at di�erent stock prices and volatilities.
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6.2 Term Structure Models 6 INFERENCE WHEN THE STATE IS PARTIALLY OBSERVED

6.2. Term Structure Models

� Another example of practical interest in �nance consists of term struc-

ture models.

� A multivariate term structure model speci�es that the instantaneous

riskless rate rt is a deterministic function of an m�dimensional vector
of state variables, Xt:

rt = r (Xt; �) :

� An a�ne yield model is any model where the short rate is an a�ne
function of the state vector and the risk-neutral dynamics are a�ne:

dXt =
�
~A+ eBXt� dt+� S (Xt;�; �)1=2 dWt
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6.2 Term Structure Models 6 INFERENCE WHEN THE STATE IS PARTIALLY OBSERVED

where ~A is anm{element column vector, eB and � arem�m matrices,
and S (Xt;�; �) is the diagonal matrix with elements Sii = �i+X

0
t�i,

with each �i a scalar and each �i an m � 1 vector, 1 � i � m (see
Dai and Singleton (2000)).

� It can then be shown that, in a�ne models, bond prices have the
exponential a�ne form exp

�
�
0 (� ; �)� 
 (� ; �)0 x

�
where � = T � t

is the bond's time to maturity.

� A��t-Sahalia and Kimmel (2010) derive the likelihood expansions for
the nine canonical models of Dai and Singleton (2000).

� The method is implemented in various contexts and with various
datasets by Bakshi et al. (2006), Cheridito et al. (2007), Mosburger
and Schneider (2005), Thompson (2008) and Egorov et al. (2011).
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7 APPLICATION TO SPECIFICATION TESTING

7. Application to Speci�cation Testing

� When attempting to select a model among many possible choices, a
natural idea is to try to pick the model that produces the functions �

and � that are closest to those that are inferred from the data.

� Without high frequency observations, however, it is not possible to
infer those in�nitesimal functions from the data.

� A��t-Sahalia (1996) used the mapping between the drift and di�usion
on the one hand, and the marginal density �X and transition density

pX on the other, to test the model's speci�cation using densities at

the observed discrete frequency (�X ; pX) instead of the in�nitesimal

characteristics of the process (�; �2):
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7 APPLICATION TO SPECIFICATION TESTING

{ Any parametrization of � and �2 corresponds to a parametrization

of the marginal and transitional densities.

{ For example, the Ornstein-Uhlenbeck process dXt = � (��Xt) dt+

dWt generates Gaussian marginal and transitional densities. The

square-root process dXt = � (��Xt) dt + 
X
1=2
t dWt yields a

Gamma marginal and non-central chi-squared transitional densi-

ties.

� Chen and Gao (2004) and Thompson (2008) proposed tests based on
the empirical likelihood method.

� Hong and Li (2005) use the fact that under the null hypothesis, the
random variables fPX(Xi�jX(i�1)�;�; �)g are a sequence of i.i.d.
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7 APPLICATION TO SPECIFICATION TESTING

uniform random variables; see also Chen et al. (2008) and Corradi and

Swanson (2005).

{ Using for PX the closed form approximations described above,

they detect the departure from the null hypothesis by compar-

ing the kernel-estimated bivariate density of f(Zi; Zi+�)g with
that of the uniform distribution on the unit square, where Zi =

PX(Xi�jX(i�1)�;�; �).

{ Other test statistics can be constructed, including some that are

more powerful for detecting local departures from the null model,

or more powerful for detecting global departures.

� An alternative speci�cation test for the transition density of the process
is proposed by A��t-Sahalia et al. (2009), based on a direct comparison
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7 APPLICATION TO SPECIFICATION TESTING

of a nonparametric estimate of the transition function to the assumed

parametric transition function

H0 : pX(yjx;�) = pX(yjx;�; �)
vs. H1 : pX(yjx;�) 6= pX(yjx;�; �):

{ To estimate the transition density nonparametrically, they use the
method of Fan et al. (1996), yielding an estimator p̂X(yjx;�)
which is then compared to pX(yjx;�; �̂) using the likelihood ratio
under the null and the alternative hypotheses.

{ This leads to the test statistic, where w is a weight function,

T =
nX
i=1

ln
�
p̂X(X(i+1)�jXi�;�)=pX(X(i+1)�jXi;�; �̂)

�
� w(Xi�; X(i+1)�):
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8 CLOSED-FORM DERIVATIVE PRICING

8. Closed-Form Derivative Pricing

� As long as � is not too large, one can use the expression for the

transition density p�X corresponding to the SDE:

{ Say a call option with payo� function g (�;K) for a strike K and

maturity � when the underlying asset is worth St

{ Get a closed form approximation of the derivative price Call in the

form

Call(Xt;�;K) = e
�r�

Z +1
0

g (y;K) p�X(yjx;�; �)dy
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8 CLOSED-FORM DERIVATIVE PRICING

� The formula obtained with is a closed-form expansion of p�X of a

di�erent nature than the corrections to the Black-Scholes formula as

in for example Jarrow and Rudd (1982).

� These corrections are based on assuming an arbitrary parametric den-
sity family that nests the Black-Scholes models.

� As a result, these corrections break the link between the derivative
price and the dynamic model for the underlying asset price by assuming

directly a functional form for pX .
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8 CLOSED-FORM DERIVATIVE PRICING

� By contrast, if we use p�X obtained using the method above, then this

is the option pricing formula (of �nite order in �) that matches the

assumed risk-neutral dynamics of the underlying asset.

� Being in closed form, comparative statics, etc. are possible.

� Being an expansion in small time, accuracy will be limited to rela-
tively small values of �, of the order of up to 3 months in practical

applications.

� The equation can also be implemented with payo� functions other
than those of a call or put options.
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9 CONCLUSIONS

9. Conclusions

� These methods make it possible to estimate and test continuous-time
models using �nancial data, consisting of either observations on the

underlying asset or factor, or on derivatives' prices.

� In either case, the transition density of the process is the key object
to move from the in�nitesimal speci�cation of the model in the form

of a stochastic di�erential equation to its implications at the discrete

frequency of observation.

� Closed-form expansions for pX that are now available for arbitrary

models remove a basic constraint that had previously limited the range

of applications for which this was possible.
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