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ABSTRACT

This paper applies to interest rate models the theoretical method developed in
Aït-Sahalia ~1998! to generate accurate closed-form approximations to the transi-
tion function of an arbitrary diffusion. While the main focus of this paper is on the
maximum-likelihood estimation of interest rate models with otherwise unknown
transition functions, applications to the valuation of derivative securities are also
brief ly discussed.

CONTINUOUS-TIME MODELING IN FINANCE, though introduced by Louis Bachelier’s
1900 thesis on the theory of speculation, really started with Merton’s sem-
inal work in the 1970s. Since then, the continuous-time paradigm has proved
to be an immensely useful tool in finance and more generally economics.
Continuous-time models are widely used to study issues that include the
decision to optimally consume, save, and invest, portfolio choice under a
variety of constraints, contingent claim pricing, capital accumulation, re-
source extraction, game theory, and more recently contract theory. Many
refinements and extensions are possible, but the basic dynamic model for
the variable~s! of interest Xt is a stochastic differential equation,

dXt 5 m~Xt ;u!dt 1 s~Xt ;u!dWt , ~1!

where Wt is a standard Brownian motion and the drift m and diffusion s2

are known functions except for an unknown parameter1 vector u in a bounded
set Q , Rd.

One major impediment to both theoretical modeling and empirical work
with continuous-time models of this type is the fact that in most cases little
can be said about the implications of the dynamics in equation ~1! for longer
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1 Non- and semiparametric approaches, which do not constrain the functional form of the
functions m and0or s2 to be within a parametric class, have been developed ~see Aït-Sahalia
~1996a, 1996b! and Stanton ~1997!!.
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time intervals. Though equation ~1! fully describes the evolution of the vari-
able X over each infinitesimal instant, one cannot in general characterize in
closed form an object as simple ~and fundamental for everything from pre-
diction to estimation and derivative pricing! as the conditional density of
Xt1D given the current value Xt . For a list of the rare exceptions, see Wong
~1964!. In finance, the well-known models of Black and Scholes ~1973!, Va-
sicek ~1977!, and Cox, Ingersoll, and Ross ~1985! rely on these existing closed-
form expressions. In this paper, I describe and implement empirically a method
developed in a companion paper ~Aït-Sahalia ~1998!! which produces very
accurate approximations in closed form to the unknown transition function
pX~D, x 6x0;u!, the conditional density of Xt1D 5 x given Xt 5 x0 implied by
the model in equation ~1!.

These closed-form expressions can be useful for at least two purposes.
First, they let us estimate the parameter vector u by maximum-likelihood.2

In most cases, we observe the process at dates $t 5 iD6i 5 0, . . . , n% , where
D . 0 is generally small, but fixed as n increases. For instance, the series
could be weekly or monthly. Collecting more observations means lengthen-
ing the time period over which data are recorded, not shortening the time
interval between successive existing observations.3 Because a continuous-
time diffusion is a Markov process, and that property carries over to any
discrete subsample from the continuous-time path, the log-likelihood func-
tion has the simple form

,n~u! [ n21 (
i51

n

ln$ pX ~D, XiD 6X~i21!D ;u!%. ~2!

With a given D, two methods are available in the literature to compute pX
numerically. They involve either solving numerically the Kolmogorov partial
differential equation known to be satisfied by pX ~see, e.g., Lo ~1988!!, or
simulating a large number of sample paths along which the process is sam-
pled very finely ~see Pedersen ~1995!, Honoré ~1997!, and Santa-Clara ~1995!!.
Neither method however produces a closed-form expression to be maximized

2 A large number of new approaches have been developed in recent years. Some theoretical
estimation methods are based on the generalized method of moments ~Hansen and Scheinkman
~1995! and Bibby and Sørenson ~1995!! and on nonparametric density-matching ~Aït-Sahalia
~1996a, 1996b!!, others are based on nonparametric approximate moments ~Stanton ~1997!!,
simulations ~Duffie and Singleton ~1993!, Gouriéroux, Monfort, and Renault ~1993!, Gallant
and Tauchen ~1998!, and Pedersen ~1995!!, the spectral decomposition of the infinitesimal gen-
erator ~Hansen, Scheinkman, and Touzi ~1998! and Florens, Renault, and Touzi ~1995!!, random
sampling of the process to generate moment conditions ~Duffie and Glynn ~1997!!, or, finally,
Bayesian approaches ~Eraker ~1997!, Jones ~1997!, and Elerian, Chib, and Shephard ~1998!!.

3 Discrete approximations to the stochastic differential equation ~1! could be employed ~see
Kloeden and Platen ~1992!!: see Chan et al. ~1992! for an example. As discussed by Merton
~1980!, Lo ~1988!, and Melino ~1994!, ignoring the difference generally results in inconsistent
estimators, unless the discretization happens to be an exact one, which is tantamount to saying
that pX would have to be known in closed form.
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over u, and the calculations for all the pairs ~x, x0! must be repeated sepa-
rately every time the value of u changes. By contrast, the closed-form ex-
pressions in this paper make it possible to maximize the expression in equation
~2! with pX replaced by its closed-form approximation.

Derivative pricing provides a second natural outlet for applications of this
methodology. Suppose that we are interested in pricing at date zero a de-
rivative security written on an asset with price process $Xt 6t $ 0% , and with
payoff function C~XD! at some future date D. For simplicity, assume that the
underlying asset is traded, so that its risk-neutral dynamics have the form

dXt 0Xt 5 $r 2 d%dt 1 s~Xt ;u!dWt , ~3!

where r is the riskfree rate and d is the dividend rate paid by the asset—
both constant again for simplicity.

It is well known that when markets are dynamically complete, the only
price of the derivative security that is compatible with the absence of arbi-
trage opportunities is

P0 5 e2rDE @C~XD!6X0 5 x0# 5 e2rDE
0

1`

C~x!pX ~D, x 6x0;u! dx, ~4!

where pX is the transition function ~or risk-neutral density, or state-price
density! induced by the dynamics in equation ~3!.

The Black–Scholes option pricing formula is the prime example of equa-
tion ~4!, when s~Xt ;u! 5 s is constant. The corresponding pX is known in
closed-form ~as a lognormal density! and so the integral in equation ~4! can
be evaluated explicitly for specific payoff functions ~see also Cox and Ross
~1976!!. In general, of course, no known expression for pX is available and
one must rely on numerical methods such as solving numerically the PDE
satisfied by the derivative price, or Monte Carlo integration of equation ~3!.
These methods are the exact parallels to the two existing approaches to
maximum-likelihood estimation that I described earlier.

Here, given the sequence $ IpX
~K ! 6K $ 0% of approximations to pX , the valu-

ation of the derivative security would be based on the explicit formula

P0
~K !

5 e2rDE
0

1`

C~x! IpX
~K !

~D, x 6x0;u! dx. ~5!

Formulas of the type given in equation ~4! where the unknown pX is re-
placed by another density have been proposed in the finance literature ~see,
e.g., Jarrow and Rudd ~1982!!. There is an important difference, however,
between what I propose and the existing formulas: the latter are based on
calculating the integral in equation ~4! with an ad hoc density &pX—typically
adding free skewness and kurtosis parameters to the lognormal density, so
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as to allow for departures from the Black–Scholes formula. In doing so, these
formulas ignore the underlying dynamic model specified in equation ~3! for
the asset price, whereas my method gives in closed form the option pricing
formula ~of order of precision corresponding to that of the approximation
used! that corresponds to the given dynamic model in equation ~3!. Then one
can, for instance, explore how changes in the specification of the volatility
function s~x;u! affect the derivative price, which is obviously impossible when
the specification of the density &pX to be used in equation ~4! in lieu of pX is
unrelated to equation ~3!.

The paper is organized as follows. In Section I, I brief ly describe the ap-
proach used in Aït-Sahalia ~1998! to derive a closed-form sequence of ap-
proximations to pX , give the expressions for the approximation, and describe
its properties. In Section II, I study a number of interest rate models, some
with unknown transition functions, and give the closed-form expressions of
the corresponding approximations. Section III reports maximum-likelihood
estimates for these models using the Federal funds rate, sampled monthly
from 1963 through 1998. Section IV concludes, and a statement of the tech-
nical assumptions is in the Appendix.

I. Closed-Form Approximations to the Transition Function

A. Tail Standardization via Transformation to Unit Diffusion

The first step toward constructing the sequence of approximations to pX
consists of standardizing the diffusion function of X—that is, transforming X
into another diffusion Y defined as

Yt [ g~Xt ;u! 5EXt

du0s~u;u!, ~6!

where any primitive of the function 10s may be selected.
Let DX 5 ~ tx, Sx! denote the domain of the diffusion X. I will consider two

cases, where DX 5 ~2`,1`! or DX 5 ~0,1`!. The latter case is often relevant
in finance, when considering models for asset prices or nominal interest
rates. Moreover, the function s is often specified in financial models in such
a way that s~0;u! 5 0 and m and0or s violates the linear growth conditions
near the boundaries. The assumptions in the Appendix allow for this behavior.

Because s . 0 on the interior of the domain DX , the function g in equation
~6! is increasing and thus invertible. It maps DX into DY 5 ~ ry, Sy!, the domain
of Y. For a given model under consideration, I will assume that the param-
eter space Q is restricted in such a way that DY is independent of u in Q.
This restriction on Q is inessential, but it helps keep the notation simple.
Again, in finance, most, if not all cases, will have DX and DY be either the
whole real line ~2`,1`! or the half line ~0,1`!.
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By applying Itô’s Lemma, Y has unit diffusion as desired:

dYt 5 mY ~Yt ;u!dt 1 dWt , ~7!

where

mY ~ y;u! 5
m~g21~ y;u!;u!

s~g21~ y;u!;u!
2

1

2

?s

?x
~g21~ y;u!;u!. ~8!

Finally, note that it can be convenient to define Yt instead as minus the
integral in equation ~6! if that makes Yt . 0, for instance if s~x;u! 5 x r

and r . 1. For example, if DX 5 ~0,1`! and s~x;u! 5 x r, then Yt 5
~1 2 r!Xt

12r if 0 , r , 1 ~so DY 5 ~0,1`!!, Yt 5 ln~Xt! if r 5 1 ~so
DY 5 ~2`,1`!!, and Yt 5 ~ r 2 1!Xt

2~ r21! if r . 1 ~so DY 5 ~0,1`! again!.
In all cases, Y has unit diffusion; that is, sY

2~ y;u! 5 1. When the transfor-
mation Yt [ g~Xt ;u! 5 2*Xt du0s~u;u! is used, the drift mY~ y;u! in
dYt 5 mY~Yt ;u!dt 2 dWt is, instead of equation ~8!,

mY ~ y;u! 5 2
m~g21~ y;u!;u!

s~g21~ y;u!;u!
1

1

2

?s

?x
~g21~ y;u!;u!. ~9!

The point of making the transformation from X to Y is that it is possible
to construct an expansion for the transition density of Y. Of course, this
would be of little interest because we only observe X, not the artificially
introduced Y, and the transformation depends on the unknown parameter
vector u. However, the transformation is useful because one can obtain the
transition density pX from pY through the Jacobian formula

pX ~D, x 6x0;u! 5
?

?x
Prob~Xt1D # x 6Xt 5 x0;u!

5
?

?x
Prob~Yt1D # g~x;u!6Yt 5 g~x0;u!;u!

5
?

?x FEry
g~x;u!

pY ~D, y 6g~ y0;u!;u!dyG
5

pY ~D,g~x;u!6g~x0;u!;u!

s~g~x;u!;u!
. ~10!

Therefore, there is never any need to actually transform the data $XiD, i 5
0, . . . , n% into observations on Y ~which depends on u anyway!. Instead, the
transformation from X to Y is simply a device to obtain an approximation
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for pX from the approximation of pY . Practically speaking, when the ap-
proximation for pX has been derived once and for all as the Jacobian trans-
form of that of Y, the process Y no longer plays any role.

B. Explicit Expressions for the Approximation

As shown in Aït-Sahalia ~1998!, one can derive an explicit expansion for
the transition density of the variable Y based on a Hermite expansion of its
density y ° pY~D, y 6y0;u! around a Normal density function. The analytic
part of the expansion of pY up to order K is given by

IpY
~K !

~D, y 6y0;u! 5 D2102fS y 2 y0

D102 DexpSE
y0

y

mY ~w;u!dwD(
k50

K

ck~ y 6y0;u!
Dk

k!
,

~11!

where f~z! [ e2z2020%2p denotes the N~0,1! density function, c0~ y 6y0;u! 5 1,
and for all j $ 1,

cj ~ y 6y0;u! 5 j~ y 2 y0!2jE
y0

y

~w 2 y0! j21

3 $lY ~w!cj21~w 6y0;u! 1 ~?2cj21~w 6y0;u!0?w2 !02% dw, ~12!

where lY~ y;u! [ 2~mY
2 ~ y;u! 1 ?mY~ y;u!0?y!02.

Tables I through V give the explicit expression of these coefficients for
popular models in finance, which I discuss in detail in Section II. Before
turning to these examples, a few general remarks are in order. The general
structure of the expansion in equation ~11! is as follows: The leading term in
the expansion is Gaussian, D2102f~~ y 2 y0!0D102 !, followed by a correction for
the presence of the drift, exp~*y0

y mY ~w;u! dw! , and then additional correction
terms that depend on the specification of the function lY~ y;u! and its suc-
cessive derivatives. These correction terms play two roles: they account for
the nonnormality of pY and they correct for the discretization bias implicit in
starting the expansion with a Gaussian term with no mean adjustment and
variance D ~instead of Var@Yt1D6Yt# , which is equal to D only in the first
order!.

In general, the function pY is not analytic in time. Therefore equation ~11!
must be interpreted strictly as the analytic part, or Taylor series. In partic-
ular, for given ~ y, y0,u! it will generally have a finite convergence radius in
D. As we will see below, however, the series in equation ~11! with K 5 1 or 2
at most is very accurate for the values of D that one encounters in empirical
work in finance.
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The sequence of explicit functions IpY
~K ! in equation ~11! is designed to ap-

proximate pY . As discussed above, one can then approximate pX ~the object
of interest! by using the Jacobian formula for the inverted change of vari-
able Y r X:

IpX
~K !

~D, x 6x0;u! [ s~x;u!21 IpY
~K !

~D,g~x;u!6g~x0;u!;u!. ~13!

The main objective of the transformation X r Y was to provide a method
of controlling the size of the tails of the transition density. As shown in
Aït-Sahalia ~1998!, the fact that Y has unit diffusion makes the tails of the
density pY , in the limit where D goes to zero, similar in magnitude to those
of a Gaussian variable. That is, the tails of pY behave like exp@2y202D# as
is apparent from equation ~11!. However, the tails of the density pX are
proportional to exp@2g~x;u!202D# . So, for instance, if s~x;u! 5 2!x then
g~x;u! 5 !x and the right tail of pX becomes proportional to exp@2x 202D# ;
this is verified by equation ~13!. Not surprisingly, this is the tail behavior
for Feller’s transition density in the Cox, Ingersoll, and Ross ~1985! model.
If now s~x;u! 5 x, then g~x;u! 5 ln~x! and the tails of pX are proportional
to exp@2ln~x! 202D#: this is what happens in the log-Normal case ~see the
Black–Scholes model!. In other words, while the leading term of the expan-
sion in equation ~11! for pY is Gaussian, the expansion for pX will start
with a deformed or “stretched” Gaussian term, with the specific form of
the deformation given by the function g~x;u!.

The sequence of functions in equation ~11! solves the forward and back-
ward Kolmogorov equations up to order DK ; that is,

5
? IpY

~K !

?D
1
?

?y
$mY ~ y;u! IpY

~K !
% 2

1

2

?2 IpY
~K !

?y2 5 O~DK !

? IpY
~K !

?D
2 mY ~ y0;u!

? IpY
~K !

?y0
2

1

2

?2 IpY
~K !

?y0
2 5 O~DK !

. ~14!

The boundary behavior of the transition density IpY
~K ! is similar to that of pY ;

under the assumptions made, limyr ry or Sy pY 5 0. The expansion is designed to
deliver an approximation of the density function y ° pY~D, y 6y0;u! for a fixed
value of conditioning variable y0. Therefore, except in the limit where D
becomes infinitely small, it is not designed to reproduce the limiting behav-
ior of pY in the limit where y0 tends to the boundaries.

Finally, note that the form of the expansion is compatible with the expres-
sion that arises out of Girsanov’s Theorem in the following sense. Under the
assumptions made, the process Y can be transformed by Girsanov’s Theorem
into a Brownian motion if DY 5 ~2`,1`!, or into a Bessel process in dimen-
sion 3 if DY 5 ~0,1`!. This gives rise to a formulation of pY in a form that
involves the conditional expectation of the exponential of the integral of func-
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tion of a Brownian Bridge ~see Gihman and Skorohod ~1972, Chap. 3! for the
case where DY 5 ~2`,1`!!, or a Bessel Bridge if DY 5 ~0,1`!. This condi-
tional expectation term can either be expressed in terms of the conditional
densities of the Brownian Bridge when DY 5 ~2`,1`! ~see Dacunha-
Castelle and Florens-Zmirou ~1986!!, or integrated by Monte Carlo simula-
tion. Further discussion of these and other theoretical properties of the
expansion is contained in Aït-Sahalia ~1998!.

II. Examples

A. Comparison of the Approximation to the Closed-Form Densities
for Specific Models

In this section, I study the size of the approximation made when replacing
pX by IpX

~K ! , in the case of typical examples in finance where pX is known in
closed form and sampling is at the monthly frequency. Since the perfor-
mance of the approximation improves as D gets smaller, monthly sampling is
taken to represent a worst-case scenario as the upper bound to the sampling
interval relevant for finance. In practice, most continuous-time models in
finance are estimated with monthly, weekly, daily, or higher frequency ob-
servations. The examples studied below reveal that including the term
c2~ y, y0;u! generally provides an approximation to pX which is better by a
factor of at least 10 than what one obtains when only the term c1~ y, y0;u! is
included. Further calculations show that each additional order produces ad-
ditional improvements by an additional factor of at least 10.

I will often compare the expansion in this paper to the Euler approxima-
tion; the latter corresponds to a simple discretization of the continuous-time
stochastic differential equation, where the differential equation ~1! is re-
placed by the difference equation

Xt1D 2 Xt 5 m~Xt ;u!D 1 s~Xt ;u!%Det1D ~15!

with et1D ; N~0,1!, so that

pX
Euler~D, x 6x0;u! 5 ~2pDs2~x0;u!!2102

3 exp $2~x 2 x0 2 m~x0;u!D!202Ds2~x0;u!%. ~16!

Example 1 (Vasicek’s Model): Consider the Ornstein–Uhlenbeck specifica-
tion proposed by Vasicek ~1977! for the short-term interest rate:

dXt 5 k~a 2 Xt !dt 1 sdWt . ~17!

X is distributed on DX 5 ~2`,1`! and has the Gaussian transition density

pX ~D, x 6x0;u! 5 ~pg20k!2102exp $2~x 2 a 2 ~x0 2 a!e2kD !2k0g2 %, ~18!
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where u [ ~a,k,s! and g2 [ s2~1 2 e22kD !. In this case, we have that Yt 5
g~Xt ;u! 5 s21Xt and mY ~ y;u! 5 kas21 2 ky, so that lY ~ y;u! 5 k02 2
k2~a 2 sy!202s2.

Table I reports the first two terms in the expansion for this model, ob-
tained from applying the general formula in equation ~11!. More terms can
be calculated in equation ~12! one after the other: once c2~ y 6y0;u! has been
obtained, calculate c3~ y 6y0;u!, etc. Starting from the closed-form expression,
one can show directly that these expressions indeed represent a Taylor se-
ries expansion for the closed-form density pX~D, x 6x0;u!.

Figure 1A plots the density pX as a function of the interest rate value x for
a monthly sampling frequency ~D 5 1012!, evaluated at x0 5 0.10 and for the
parameter values corresponding to the maximum-likelihood estimator from
the Federal funds data ~see Table VI in Section IV below!. Figure 1B plots

Table I

Explicit Sequence for the Vasicek Model
This table contains the coefficients of the density approximation for pY corresponding to the
Vasicek model in Example 1, dXt 5 k~a 2 Xt!dt 1 sdWt . The terms in the expansion are
evaluated by applying the formulas in equation ~12!. From equation ~11!, the K 5 0 term in this
expansion is IpY

~0!
~D, y 6y0;u!, the K 5 1 term is

IpY
~1!

~D, y 6y0;u! 5 IpY
~0!

~D, y 6y0;u!$1 1 c1~ y 6y0;u!D%,

and the K 5 2 term is

IpY
~2!

~D, y 6y0;u! 5 IpY
~0!

~D, y 6y0;u!$1 1 c1~ y 6y0;u!D 1 c2~ y 6y0;u!D202%.

Additional terms can be obtained in the same manner by applying equation ~12! further. These
computations and those of Tables II to V were all carried out in Mathematica.

IpY
~0!

~D, y 6y0,u! 5
1

%D%2p
expF2

~ y 2 y0!2

2D
2

y2k

2
1

y0
2 k

2
1

yak

s
2

y0 ak

s
G.

c1~ y 6y0,u! 5 2
1

6s2 ~k~3a2k 2 3~ y 1 y0!aks 1 ~23 1 y2k 1 y y0 k 1 y0
2 k!s2 !!.

c2~ y 6y0,u! 5
1

36s4 ~k2~9a4k2 2 18ya3k2s 1 3a2k~26 1 5y2k!s2

2 6yak~23 1 y2k!s3 1 ~3 2 6y2k 1 y4k2 !s4

1 2ks~23a 1 ys!~3a2k 2 3yaks 1 ~23 1 y2k!s2 !y0

1 3ks2~5a2k 2 4yaks 1 ~22 1 y2k!s2 !y0
2 1 2k2s3~23a 1 ys!y0

3

1 k2s4y0
4 !!.
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Panel A

Panel B

Figure 1. Exact conditional density and approximation errors for the Vasicek model.
Figure 1A plots for the Vasicek ~1977! model ~see Example 1 and Table I! the closed-form
conditional density x ° pX~D, x 6x0,u! as a function of x, with x0 5 10 percent, monthly sampling
~D 5 1012! and u replaced by the MLE reported in Table VI. Figure 1B plots the uniform
approximation error 6pX 2 IpX

~K !6 for K 5 1, 2, and 3, in log-scale, so that each unit on the y-axis
corresponds to a reduction of the error by a multiplicative factor of 10. The error is calcu-
lated as the maximum absolute deviation between pX and IpX

~K ! over the range 64 standard
deviations around the mean of the density. Both the value of the exact conditional density at its
peak and the uniform error for the Euler approximation pX

Euler are also reported for comparison
purposes. This figure illustrates the speed of convergence of the approximation. A lower sam-
pling interval than monthly would provide an even faster convergence of the density approxi-
mation sequence.
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the uniform approximation error 6pX 2 IpX
~K !6 for K 5 1, 2, and 3, in log-scale.

The error is calculated as the maximum absolute deviation between pX and
IpX
~K ! over the range 64 standard deviations around the mean of the density,

and is also compared to the uniform error for the Euler approximation. The
striking feature of the results is the speed of convergence to zero of the
approximation error as K goes from 1 to 2 and from 2 to 3. In effect, one can
approximate pX ~which is of order 1011 ! within 1023 with the first term
alone ~K 5 1! and within 1027 with K 5 3, even though the interest rate
process is only sampled once a month. Similar calculations for a weekly
sampling frequency ~D 51052! reveal that the approximation error gets smaller
even faster for this lower value of D.

In other words, small values of K already produce extremely precise ap-
proximations to the true density, pX , and the approximation is even more
precise if D is smaller. Of course, the exact density being Gaussian, in this
case the expansion, whose leading term is Gaussian, has fairly little “work”
to do to approximate the true density. In the Ornstein–Uhlenbeck case, the
expansion involves no correction for nonnormality, which is normally achieved
through the change of variable X to Y; it reduces here to a linear transfor-
mation and therefore does not change the nature of the leading term in the
expansion. Comparing the performance of the expansion to that of the Euler
approximation in this model ~where both have the correct Gaussian form for
the density! reveals that the expansion is capable of correcting for the dis-
cretization bias involved in a discrete approximation, whereas the Euler ap-
proximation is limited to a first-order bias correction. In this case, the Euler
approximation can be refined by increasing the precision of the conditional
mean and variance approximations ~see Huggins ~1997!!. Of course, discrete
approximations to equation ~1! of an order higher than equation ~15! are
available, but they do not lead to explicit density approximations since, com-
pared to the Euler equation ~15!, they involve combinations of multiple pow-
ers of et1D ~see, e.g., Kloeden and Platen ~1992!!.

Example 2 (The CIR Model): Consider Feller’s ~1952! square-root specifi-
cation

dXt 5 k~a 2 Xt !dt 1 s%Xt dWt , ~19!

proposed as a model for the short-term interest rate by Cox et al. ~1985!. X
is distributed on DX 5 ~0,1`! provided that q [ 2ka0s2 2 1 $ 0. Its tran-
sition density is given by

pX ~D, x 6x0;u! 5 ce2u2v~v0u!q02Iq~2~uv!102 !, ~20!

with u [ ~a,k,s! all positive, c [ 2k0~s2$1 2 e2kD %!, u [ cx0e2kD, v [ cx, and
Iq is the modified Bessel function of the first kind of order q. Here Yt 5
g~Xt ;u! 5 2%Xt 0s and mY~ y;u! 5 ~q 1 102!0y 2 ky02.
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The first two terms in the explicit expansion are given in Table II. When
evaluated at the maximum-likelihood estimates from Fed funds data, the
results reported in Figure 2 are very similar to those of Figure 1, again with
an extremely fast convergence even for a monthly sampling frequency. The
uniform approximation error is reduced to 1025 with the first two terms,
and 1028 with the first three terms included.

Example 3 (Inverse of Feller’s Square Root Model): In this example, I gen-
erate densities for Ahn and Gao’s ~1998! specification of the interest rate
process as one over an auxiliary process that follows a Cox–Ingersoll–Ross
specification. As a result of Itô’s Lemma, the model’s specification is

dXt 5 Xt ~k 2 ~s2 2 ka!Xt !dt 1 sXt
302 dWt , ~21!

Table II

Explicit Sequence for the Cox–Ingersoll–Ross Model
This table contains the coefficients of the density approximation for pY corresponding to the
Cox, Ingersoll, and Ross model in Example 2, dXt 5 k~a 2 Xt!dt 1 s%Xt dWt . The expansion for
pY in this table applies also to the model proposed by Ahn and Gao ~1988! ~see Example 3!. The
terms in the expansion are evaluated by applying the formulas in equation ~12!. From equa-
tion ~11!, the K 5 0 term in this expansion is IpY

~0!
~D, y 6y0;u!, the K 5 1 term is

IpY
~1!

~D, y 6y0;u! 5 IpY
~0!

~D, y 6y0;u!$1 1 c1~ y 6y0;u!D%,

and the K 5 2 term is

IpY
~2!

~D, y 6y0;u! 5 IpY
~0!

~D, y 6y0;u!$1 1 c1~ y 6y0;u!D 1 c2~ y 6y0;u!D202%.

Additional terms can be obtained in the same manner by applying equation ~12! further.

IpX
~0!

~D, y 6y0,u! 5
1

%D%2p
expF2

~ y 2 y0!2

2D
2

y2k

4
1

ky0
2

4 G y2~102!1~2ak0s 2 !y0
~102!2~2ak0s2 ! .

c1~ y 6y0 u! 5 2
1

24yy0 s4 ~48a2k2 2 48aks2 1 9s4 1 yk2s2~224a 1 y2s2 !y0

1 y2k2s4y0
2 1 yk2s4y0

3 !.

c2~ y 6y0 u! 5
1

576y2y0
2 s8 ~9~256a4k4 2 512a3k3s2 1 224a2k2s4 1 32aks6 2 15s8 !

1 6yk2s2~224a 1 y2s2 !~16a2k2 2 16aks2 1 3s4 !y0

1 y2k2s4~672a2k2 2 48ak~2 1 y2k!s2 1 ~26 1 y4k2 !s4 !y0
2

1 2yk2s4~48a2k2 2 24ak~2 1 y2k!s2 1 ~9 1 y4k2 !s4 !y0
3

1 3y2k4s6~216a 1 y2s2 !y0
4 1 2y3k4s8y0

5 1 y2k4s8y0
6 !.
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Panel A

Panel B

Figure 2. Exact conditional density and approximation errors for the Cox–Ingersoll–
Ross model. Figure 2A plots for the CIR ~1985! model ~see Example 2 and Table II! the closed-
form conditional density x ° pX~D, x 6x0,u! as a function of x, with x0 5 6 percent, monthly
sampling ~D 5 1012! and u replaced by the MLE reported in Table VI. Figure 2B plots the
uniform approximation error 6pX 2 IpX

~K !6 for K 5 1, 2, and 3, in log-scale, so that each unit on the
y-axis corresponds to a reduction of the error by a multiplicative factor of 10. The error is
calculated as the maximum absolute deviation between pX and IpX

~K ! over the range 64 standard
deviations around the mean of the density. Both the value of the exact conditional density at its
peak and the uniform error for the Euler approximation pX

Euler are also reported for comparison
purposes. This figure illustrates the speed of convergence of the approximation.
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Panel A

Panel B

Figure 3. Drift, densities, and approximation errors for the inverse of Feller’s pro-
cess. Results for the model proposed by Ahn and Gao ~1998! ~see Example 3 and Table II! are
reported: the drift m~Xt ,u! 5 Xt~k 2 ~s2 2 ka!Xt! in Figure 3A, the marginal density p~Xt ,u!
in Figure 3B, the exact and conditional density approximations, pX , pX

Euler , and IpX
~1! as functions

of the forward variable x, for x0 5 0.10 in Figure 3C. The sampling frequency is monthly ~D 5
1012! and the parameter vector u is evaluated at the MLE reported in Table VI. Figure 3D
reports the uniform approximation error 6pX 2 IpX

~K !6 for K 5 1, 2, and 3, in log-scale, as in
Figures 1B and 2B.
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with closed-form transition density given by

pX ~D, x 6x0;u! 5 ~10x 2 !pX
CIR~D,10x 610x0;u!, ~22!

where pX
CIR is the density function given in equation ~20!. The expansion in

equation ~11! for pY is identical to that for the CIR model given in Table II ~be-
cause the Y process is the same with the same transformed drift mY and unit

Panel C

Panel D

Figure 3. Continued

Transition Densities for Interest Rate and Other Diffusions 1375



diffusion!. To get back to an expansion for X, the change of variable Y r X how-
ever is different, and is now given by Yt 5 g~Xt ;u! 5 20~s%Xt!; hence the ex-
pansion for pX will naturally be different from that for the CIR model ~it will
now approximate the left-hand side of equation ~22! rather than equation ~20!!.

Figure 3A reports the drift for this model, evaluated at the maximum-
likelihood estimates from Table VI below. This model generates, in an envi-
ronment where closed-form solutions are available, some of the effects
documented empirically by Aït-Sahalia ~1996b!: almost no drift while the
interest rate is in the middle of its range, strong mean-reversion when the
interest rate gets large. Figure 3B plots the unconditional or marginal den-
sity, which is also the stationary density p~x,u! for this process when the
initial data point X0 has p as its distribution. p is given by

p~ y;u! [ expH2Ey

mY ~u;u! duJYE
ry

Sy

expH2EvmY ~u;u! duJ dv. ~23!

Figure 3C compares the exact conditional density in equation ~22!, its Euler
approximation, and the expansion with K 5 1 for the conditioning interest
rate x0 5 0.10. It is apparent from the figure that including the first term
alone is sufficient to make the exact and approximate densities fall on top of
one another, whereas the Euler approximation is distinct. Finally, Figure 3D
reports the uniform approximation error between the Euler approximation
and the exact density on the one hand, and between the first three terms in
the expansion and the exact density on the other. As can be seen from these
figures, the expansion in equation ~11! provides again a very accurate ap-
proximation to the exact density.

B. Density Approximation for Models with No Closed-Form Density

Of course, the usefulness of the method introduced in Aït-Sahalia ~1998! lies
largely in its ability to deliver explicit density approximations for models that
do not have closed-form transition densities. The next two examples corre-
spond to models recently proposed in the literature to describe the time series
properties of the short-term interest rate, and the final example illustrates the
applicability of the method to a double-well model where the stationary den-
sity is bimodal.

Example 4 (Linear Drift, CEV Diffusion): Chan et al. ~1992! have pro-
posed the specification

dXt 5 k~a 2 Xt ! dt 1 sXt
r dWt , ~24!

with u [ ~a,k,s,r!. X is distributed on ~0,1`! when a . 0, k . 0, and r .
102 ~if r 5 102; see Example 2 for an additional constraint!. This model
does not admit a closed-form density unless a 5 0 ~see Cox ~1996!!, which
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Table III

Explicit Sequence for the Linear Drift, CEV Diffusion Model
This table contains the coefficients of the density approximation for pY correspond-
ing to the Chan et al. ~1992! model in Example 4, dXt 5 k~a 2 Xt !dt 1 sXt

p dWt . The
terms in the expansion are evaluated by applying the formulas in equation ~12!.
From equation ~11!, the K 5 0 term in this expansion is IpY

~0!
~D, y 6y0;u!, the K 5 1

term is

IpY
~1!

~D, y 6y0;u! 5 IpY
~0!

~D, y 6y0;u!$1 1 c1~ y 6y0;u!D%.

Additional terms can be obtained by applying equation ~12! further.

IpY
~0!

~D, y 6y0,u! 5
1

%D%2p
expF2

~ y 2 y0!2

2D
1 k~ r 2 1!

3 ~ y2~2r 2 1! 2 2y11~ r0~ r21!!a~ r 2 1!r0~ r21!s10~ r21!

1 y0~ y0 2 2ry0 1 2a~ r 2 1!r0~ r21!s10~ r21!y0
r0~r21!

!!0~4r 2 2!G
3 yr0~2212r!y0

r0~222r! .

c1~ y 6y0,u! for y Þ y0 5 ~24y4k2~ r 2 1!4~2 2 9r 1 9r2 !y0 1 3r~4 1 20r 1 27r2 2 9r3 !

3 y0 2 12y2k~ r 2 1!2~13r 2 27r2 1 18r3 2 2!

3 y0 1 24y31~r0~ r21!!ak2~ r 2 1!41~r0~ r21!! ~3r 2 1!s10~ r21!

3 y0 1 24y11~r0~ r21!!ak~ r 2 1!31~10~ r21!! ~2 2 9r 1 9r2 !s10~ r21!

3 y0 2 12y212~r0~ r21!!a2k2~ r 2 1!51~20~ r21!! ~3r 2 2!s20~ r21!

3 y0 1 y~3r~20r 2 27r2 1 9r3 2 4!

1 12k~ r 2 1!2~13r 2 27r2 1 18r3 2 2!y0
2

1 4k2~ r 2 1!4~2 2 9r 1 9r2 !y0
4

2 24ak~ r 2 1!31~10~ r21!! ~2 2 9r 1 9r2 !s10~ r21!y0
11~ r0~ r21!!

2 24ak2~ r 2 1!41~ r0~ r21!! ~3r 2 1!s10~ r21!y0
31~ r0~ r21!!

1 12a2k2~ r 2 1!51~20~ r21!! ~3r 2 2!s20~ r21!

3 y0
21~2r0~ r21!!!!0~24y~ r 2 1!2~3r 2 2!~3r 2 1!~ y 2 y0!y0!.

c1~ y 6y0,u! for y 5 y0 5
1

8~ r 2 1!2y0
2 ~~ r 2 2!r 2 4k~ r 2 1!2~2r 2 1!y0

2 2 4k2~ r 2 1!4y0
4

1 8ak~ r 2 1!21~10~ r21!!rs10~211r!y0
11~ r0~ r21!!

1 8ak2~ r 2 1!31~ r0~ r21!!s10~ r21!y0
31~ r0~ r21!!

2 4a2k2~ r 2 1!41~20~ r21!!s20~ r21!y0
21~2r0~ r21!! !.
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then makes it unrealistic for interest rates. I will concentrate on the case
where r . 1, which corresponds to the empirically plausible estimate for
U.S. interest rate data. The transformation from X to Y is given by Yt 5
g~Xt ;u! 5 Xt

12r 0$s~ r 2 1!% and

Panel A

Panel B

Figure 4. Conditional density approximations for the linear drift, CEV diffusion model.
These figures plot for the linear drift, CEV diffusion model of Chan et al. ~1992! ~see Example
4 and Table III! the drift function, m~Xt ,u! 5 k~a 2 Xt! ~Figure 4A!, the marginal density
p~Xt ,u! ~Figure 4B!, and the conditional density approximations pX

Euler and IpX
~1! as functions of

the forward variable x, for two values of the conditioning variable x0 in Figures 4C and 4D
respectively. The sampling frequency is monthly ~D 5 1012! and the parameter vector u is
evaluated at the MLE reported in Table VI.
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mY ~ y;u! 5
r

2~ r 2 1!y
2 k~ r 2 1!y 1 aks10~ r21! ~ r 2 1!r0~ r21!yr0~ r21!. ~25!

The first term in the expansion is given in Table III. The corresponding
formulas can be derived analogously for the transformation Yt 5 g~Xt ;u! 5
Xt

12r 0$s~1 2 r!% , which is appropriate if 102 , r , 1. I plot in Figure 4A the

Panel C

Panel D

Figure 4. Continued.
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drift function corresponding to maximum-likelihood estimates ~based on the
expansion with K 5 1, see Table VI below!, in Figure 4B I plot the uncondi-
tional density, and in Figures 4C and 4D the conditional density approxima-
tions for monthly sampling at x0 5 0.05 and 0.20, respectively.

Example 5 (Nonlinear Mean Reversion): The following model was de-
signed to produce very little mean reversion while interest rate values re-
main in the middle part of their domain, and strong nonlinear mean reversion
at either end of the domain ~see Aït-Sahalia ~1996b!!:

dXt 5 ~a21 Xt
21 1 a0 1 a1 Xt 1 a2 Xt

2 ! dt 1 sXt
r dWt , ~26!

with u [ ~a21,a0,a1,a2,s,r!. This model has been estimated empirically by
Aït-Sahalia ~1996b!, Conley et al. ~1997!, and Gallant and Tauchen ~1998!
using a variety of empirical techniques. The new method in this paper makes
it possible to estimate it using maximum likelihood. I again concentrate on
the case where r . 1, and to save space I evaluate the formulas in Table IV
for r 5 302. This process has DX 5 ~0,1`!, Yt 5 g~Xt ;u! 5 20~s%Xt!, and

mY ~ y;u! 5
302 2 2a2 0s2

y
2

a1 y

2
2

a0 s2y3

8
2

a21 s4y5

32
. ~27!

Figure 5A plots the drift evaluated at the maximum-likelihood parameter
estimates ~corresponding to K 5 1!. Figure 5B plots the unconditional or
marginal density of the process: in the specification test in Aït-Sahalia ~1996b!,
this density is matched against a nonparametric kernel estimator. Fig-
ures 5C and 5D contain the conditional density approximations for K 5 1,
compared with the Euler approximation, for the two values x0 5 0.025 and
0.20, respectively. As before, sampling is at the monthly frequency.

Example 6 (Double-Well Potential): In this example, I generate a bimodal
stationary density through the specification

dXt 5 ~Xt 2 Xt
3 ! dt 1 dWt . ~28!

This model is distributed on DX 5 ~2`,1`!. Since the model is already set
in unit diffusion, no transformation is needed ~Y 5 X !.

Table V contains the first two terms of the expansion; Figure 6A plots its
drift, Figure 6B its marginal density, and Figures 6C and 6D the transition
density for K 5 2, monthly sampling, and x0 5 0.0 and 0.5, respectively, with
D 5 102. As is apparent from the figures, the densities in this model exhibit
strong nonnormality, which obviously cannot be captured by the Euler ap-
proximation of equation ~16!.
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Table IV

Explicit Sequence for the Nonlinear Drift Model
This table contains the coefficients of the density approximation for pY corresponding to the
model in Aït-Sahalia ~1996b!, Conley et al. ~1997!, and Tauchen ~1997! given in Example 5,
dXt 5 ~a21 Xt

21 1 a0 1 a1 Xt 1 a2 Xt
2 ! dt 1 sXt

r dWt with r 5 302. The terms in the expansion are
evaluated by applying the formulas in equation ~12!. From equation ~11!, the K 5 0 term in this
expansion is IpY

~0!
~D, y 6y0;u! and the K 5 1 term is

IpY
~1!

~D, y 6y0;u! 5 IpY
~0!

~D, y 6y0;u!$1 1 c1~ y 6y0;u!D%.

Additional terms can be obtained by applying equation ~12! further.

IpX
~0!

~D,y 6y0,u! 5
1

%D%2p
expF2

~ y 2 y0!2

2D
1

1

192
~s4~2y6 1 y0

6 !a21

2 6~ y2 2 y0
2 !~s2~ y2 1 y0

2 !a0 1 8a1!!G
3 y ~302!2~2a20s2 !y0

2~302!1~2a20s2 !.

c1~ y 6y0 u! 5 2
1

7096320ys4y0
~315ys12y0~ y10 1 y9y0 1 y8y0

2 1 y7y0
3 1 y6y0

4 1 y5y0
5 1 y4y0

6

1 y3y0
7 1 y2y0

8 1 yy0
9 1 y0

10 !a21
2 1 88ys6y0 a21

3 ~35s4~ y8 1 y7y0 1 y6y0
2 1 y5y0

3 1 y4y0
4 1 y3y0

5

1 y2y0
6 1 yy0

7 1 y0
8 !

3 a0 1 36~256y4s2 2 56y3s2y0 2 56y2s2y0
2 2 56ys2y0

3

2 56s2y0
4 1 5y6s2a1 1 5y5s2y0 a1 1 5y4s2y0

2 a1

1 5y3s2y0
3 a1 1 5y2s2y0

4 a1 1 5ys2y0
5 a1

1 5s2y0
6 a1 1 28y4a2 1 28y3y0 a2 1 28y2y0

2 a2

1 28yy0
3 a2 1 28y0

4 a2!!

1 528~15ys8y0~ y6 1 y5y0 1 y4y0
2 1 y3y0

3 1 y2y0
4 1 yy0

5 1 y0
6 !

3 a0
2 1 56ys4y0 a0~230y2s2 2 30ys2y0 2 30s2y0

2

1 3y4s2a1 1 3y3s2y0 a1

1 3y2s2y0
2 a1 1 3ys2y0

3 a1 1 3s2y0
4 a1

1 20y2a2 1 20yy0 a2 1 20y0
2 a2!

1 560~9s4 2 24ys4y0 a1 1 y3s4y0 a1
2 1 y2s4y0

2 a1
2

1 ys4y0
3 a1

2 2 48s2a2 1 24ys2y0 a1 a2 1 48a2
2 !!!.
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Panel A

Panel B

Figure 5. Drift and density approximations for the nonlinear drift model. These figures
report results for the nonlinear drift model of Aït-Sahalia ~1996b! ~also estimated by Conley et al.
~1997! and Gallant and Tauchen ~1998!! described in Example 5 and Table IV. Figure 5A plots the
drift function, m~Xt ,u! 5 a21 Xt

21 1 a0 1 a1 Xt 1 a2 Xt
2 and Figure 5B the marginal density p~Xt ,u!.

This model does not have a closed-form solution for pX . Figures 5C and 5D plot the conditional
density approximations pX

Euler and IpX
~1! as functions of the forward variable x, for two different val-

ues of the conditioning variable x0. The sampling frequency is monthly ~D 5 1012! and the pa-
rameter vector u is evaluated at the MLE reported in Table VI.
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III. The Estimation of Interest Rate Diffusions

A. The Data and Maximum-Likelihood Estimates

To calculate approximate maximum-likelihood estimates, I maximize the
approximate log-likelihood function

Panel C

Panel D

Figure 5. Continued
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,n
~K ! ~u! [ n21 (

i51

n

ln$ IpX
~K !

~D, XiD 6X~i21!D ;u!% ~29!

~with the convention that ln~a! 5 2` if a , 0! over u in Q. This results in
an estimator Zun

~K ! , which, as shown in Aït-Sahalia ~1998!, is close to the exact
~but uncomputable in practice! maximum-likelihood estimator Zun.

The data consist of monthly sampling of the Fed funds rate between Jan-
uary 1963 and December 1998 ~see Figure 7!. The source for the data is the
H-15 Federal Reserve Statistical Release ~Selected Interest Rate Series!.

Table V

Explicit Sequence for the Double-Well Model
This table contains the coefficients of the density approximation for pY corresponding to the
model in Example 6, dXt 5 ~Xt 2 Xt

3 ! dt 1 dWt . The terms in the expansion are evaluated by
applying the formulas in equation ~12!. From equation ~11!, the K 5 0 term in this expansion is
IpY
~0!

~D, y 6y0;u!, the K 5 1 term is

IpY
~1!

~D, y 6y0;u! 5 IpY
~0!

~D, y 6y0;u!$1 1 c1~ y 6y0;u!D%,

and the K 5 2 term is

IpY
~2!

~D, y 6y0;u! 5 IpY
~0!

~D, y 6y0;u!$1 1 c1~ y 6y0;u!D 1 c2~ y 6y0;u!D202%.

Additional terms can be obtained in the same manner by applying equation ~12! further.

IpX
~0!

~D, y 6y0,u! 5
1

%D%2p
expF2

~ y 2 y0!2

2D
1

y2

2
2

y4

4
2

y0
2

2
1

y0
4

4 G.

c1~ y 6y0,u! 5
1

210
~2105 1 70y2 1 42y4 2 15y6 1 ~70y 1 42y3 2 15y5 !y0 1 ~70 1 42y2 2 15y4 !y0

2

1 ~42y 2 15y3 !y0
3 1 ~42 2 15y2 !y0

4 2 15yy0
5 2 15y0

6 !.

c2~ y 6y0,u! 5
1

44100
~25725 1 11760y2 2 19670y4 1 9030y6 2 336y8 2 1260y10 1 225y12

1 2y~10290 2 12110y2 1 7455y4 2 336y6 2 1260y8 1 225y10 !y0

1 3~3920 2 7490y2 1 6930y4 2 336y6 2 1260y8 1 225y10 !y0
2

1 2y~212110 1 10395y2 1 378y4 2 2520y6 1 450y8 !y0
3

1 5~23934 1 4158y2 1 504y4 2 1260y6 1 225y8 !y0
4

1 6y~2485 1 126y2 2 1050y4 1 225y6 !y0
5

1 21~430 2 48y2 2 300y4 1 75y6 !y0
6 1 6y~2112 2 840y2 1 225y4 !y0

7

1 3~2112 2 1260y2 1 375y4 !y0
8 1 180y~214 1 5y2 !y0

9

1 45~228 1 15y2 !y0
10 1 450yy0

11 1 225y0
12 !.
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Panel A

Panel B

Figure 6. Drift and densities for the double-well model. Results for the double-well model
of Example 6 and Table V are reported. The drift function m~x! 5 x 2 x 3 ~Figure 6A! is such that
the process avoids staying near 0 and is attracted to either 21 or 11, a fact ref lected by the
bimodality of the marginal density p~x! in Figure 6B. This model does not have closed-form
solutions for pX . Figures 6C and 6D plot the conditional density approximations pX

Euler and IpX
~2!

as functions of the forward variable x, for two different values of the conditioning variable x0

with D 5 102. As is clear from these figures, the Euler approximation cannot ref lect the sub-
stantial nonnormality captured by the density approximation of this paper. Figure 6E plots the
conditional density surface, ~x, x0! ° IpX

~2!
~D, x 6x0, u! for D 5 102, and u replaced by the MLE.
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Though the Fed funds rate series exhibits strong microstructure effects at
the daily frequency ~due for instance to the second Wednesday settlement
effect; see Hamilton ~1996!!, these effects are largely mitigated at the monthly
frequency. On the other hand, this rate represents one of the closest possible
proxies for what is meant by an “instantaneous” short rate in theoretical
models. Since the method in this paper does not rely on the sampling inter-

Panel C

Panel D

Figure 6. Continued.
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val being small, the trade-off between a larger sampling interval and the
virtual absence of microstructure effects seems worthwhile. Of course, the
implicit ~unrealistic! assumption is made that a single diffusion specifica-
tion can represent the evolution of the short rate for the entire period. Nat-
urally, nothing prevents the estimation from being conducted on a shorter
time period at the expense of reducing the sample size. One advantage of the
long time series used here is that it contains different episodes of U.S. in-
terest rate history, such as the Volcker period, as well as the low interest
rate environments that preceded it and followed it. It is therefore interesting
to see how different models would accommodate these different regimes.

The results for the five models of Examples 1 to 5 compared to the Euler
approximation and, when available ~Examples 1 to 3!, the true log-likelihood,
are reported in Table VI. The last column of the table reports the asymptotic
standard deviations for the estimated parameters, derived as explained below.

The results in Table VI confirm those of Section II: the expansion used
with K 5 1 or 2 produces estimates Zun

~K ! that are very close to Zun. It is inter-
esting to note that because the models evaluated at the true parameter val-
ues often display very little drift ~hence their near unit root behavior!, and
because interest rates are not particularly volatile, the fitted densities over
a one-month interval are often fairly close to a Gaussian density. In other
words, for these data, D 5 one month is a “small” time interval. Hence, the
Euler approximation performs relatively well in this specific context ~except

Panel E

Figure 6. Continued
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in the nonlinear drift model of Example 5, where the estimated parameters
can be off by as much as 30 percent ~although the standard deviation in this
case is large!, in the inverse Feller process of Example 3 where they are off
by 5 to 10 percent, and in the Chan et al. ~1992! specification of Example 4
where the drift parameters are off by 10 percent!.

B. Estimation of the Asymptotic Variance and How Many Terms to Include

I consider here only the situation where the process admits a stationary
distribution. For the more general case, see Aït-Sahalia ~1998!. The asymp-
totic variance of the maximum-likelihood estimator is given by the inverse of
Fisher’s Information Matrix, which is the lowest possible achievable vari-
ance among the competing estimators discussed in the Introduction.

Define L~u! [ ln~ pX~D, XD6X0;u!!, the d 3 1 vector L̂~u! [ ?L~u!0?u, and
the d 3 d matrix ^L̂~u! [ ?2L~u!0?u?uT, where T denotes transposition. We
have that

n102~ Zun 2 u0!
d
&& N~0, i ~u0!21 !, ~30!

where Fisher’s Information Matrix is

i ~u! [ E @L̂~u!L̂~u!T # 5 2E @ ^L̂~u!# . ~31!

Figure 7. Federal funds rate, monthly frequency, 1963–1998. This figure plots the time
series of the Federal funds data used for the estimation of the parameters in Table VI.
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Table VI

Maximum-Likelihood Estimates for the Monthly Federal Funds Data, 1963–1998
This table reports the MLE for the parameters of five interest rate models estimated using the Fed funds data, monthly from January 1963 through December 1998.
The estimates are calculated using the Euler approximation, the density approximation of this paper with K 5 1, and, when the transition density is available in
closed-form ~Examples 1, 2 and 3!, the expansion with K 5 2 and the true density. In the table, “ln L” refers to the maximized value of the log-likelihood. The formulas
for the density expansion can be found in the respective tables indicated in the third column. The asymptotic standard errors in the last column are computed from
equation ~30!, with Fisher’s Information Matrix in equation ~31! replaced by the sample averages evaluated at the second derivative of the log-likelihood expansion
with K 5 1, and confirmed with the average of the first derivative squared.

Model
Example
Number

Density
Expansion

Table Figure

Parameter
Estimates:

Euler

Parameter
Estimates:
Expansion

K 5 1

Parameter
Estimates:
Expansion

K 5 2

Parameter
Estimates:

True Density

Asymptotic
Standard

Error

dXt 5 k~a 2 Xt ! dt 1 sdWt 1 I 1 a 5 0.0717 a 5 0.0719 a 5 0.0717 a 5 0.0717 a: 0.014
k 5 0.258 k 5 0.257 k 5 0.261 k 5 0.261 k: 0.12
s 5 0.02213 s 5 0.02237 s 5 0.02237 s 5 0.02237 s: 0.00078
ln L 5 3.634 ln L 5 3.634 ln L 5 3.634 ln L 5 3.634

dXt 5 k~a 2 Xt ! dt 1 s%Xt dWt 2 II 2 a 5 0.0732 a 5 0.0742 a 5 0.0742 a 5 0.0721 a: 0.016
k 5 0.145 k 5 0.189 k 5 0.189 k 5 0.219 k: 0.10
s 5 0.06521 s 5 0.06658 s 5 0.06658 s 5 0.06665 s: 0.0023
ln L 5 3.917 ln L 5 3.918 ln L 5 3.918 ln L 5 3.918

dXt 5 Xt~k 2 ~s2 2 ka!Xt ! dt 1 sXt
302 dWt 3 II 3 a 5 15.019 a 5 15.157 a 5 15.150 a 5 15.141 a: 2.9

k 5 0.177 k 5 0.181 k 5 0.182 k 5 0.182 k: 0.1
s 5 0.8059 s 5 0.8211 s 5 0.8211 s 5 0.8211 s: 0.03
ln L 5 4.171 ln L 5 4.158 ln L 5 4.158 ln L 5 4.158

dXt 5 k~a 2 Xt ! dt 1 sXt
r dWt 4 III 4 a 5 0.0808 a 5 0.0844 a: 0.05

k 5 0.0972 k 5 0.0876 k: 0.11
s 5 0.7224 s 5 0.7791 s: 0.16
r 5 1.46 r 5 1.48 r: 0.08
ln L 5 4.172 ln L 5 4.159

dXt 5 ~a21 Xt
21 1 a0 1 a1 Xt 1 a2 Xt

2 ! dt 5 IV 5 a21 5 0.00107 a21 5 0.000693 a21: 0.002
1 sXt

302 dWt a0 5 20.0517 a0 5 20.0347 a0: 0.09
a1 5 0.877 a1 5 0.676 a1: 1.3
a2 5 24.604 a2 5 24.059 a2: 6.4
s 5 0.8047 s 5 0.8214 s: 0.03
ln L 5 4.173 ln L 5 4.160
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Note that it is necessary that the transition function pX not be uniformly
f lat in the direction of any one of the parameters um, m 5 1, . . . ,d, otherwise
?pX~D, x 6x0;u!0?um [ 0 for all ~x, x0! and the model cannot be identified. In
other words, no parameter entering the likelihood function can be redun-
dant. The asymptotic standard deviations from equation ~30! are reported in
the last column of Table VI for the interest rate models estimated above,
with the expected values in equation ~31! replaced by the sample averages
evaluated at the MLE.

Test statistics can be derived. Suppose that the model is given by equa-
tion ~1! and that we wish to test H0 : u 5 u0 against the two-sided alternative
Ha : u Þ u0. The likelihood ratio test statistic evaluated behaves under H0 as:

2$,n~ Zun! 2 ,n~u0!%
d
&&xd

2 . ~32!

Distributional results can also be obtained for tests of a nested model that
only allows for Nd free parameters from the d parameters in u, and one can
also consider Rao’s efficient score statistic, which depends only on the re-
stricted estimator Nun, and Wald’s test statistic, which depends only on the
unrestricted estimator Zun.

In all the results above, one can then replace Zun ~respectively Nun! by Zun
~K !

~respectively Nun
~K ! !. As the examples above have shown, it is not necessary to

go much beyond K 5 2 in the relevant financial examples to estimate the
true density with a high degree of precision. More generally, to select an
appropriate K at which to stop adding terms to the expansion, the following
approach can be adopted: take K large enough so that the approximation
error made in replacing pX by IpX

~K ! is smaller than the sampling error due to
the random character of the data, by a predetermined factor.

That is, in

66 Zun
~K ! 2 u0 66 # 66 Zun

~K ! 2 Zun 661 66 Zun 2 u0 66 ~33!

we can estimate the asymptotic standard variance of Zun about u0 by equation
~30!. By Chebyshev’s Inequality, one can then bound the second term on the
right-hand-side of equation ~33!. We can then stop considering higher order
approximations at an order K such that the distance between the two suc-
cessive estimates Zun

~K ! and Zun
~K21! is an order of magnitude smaller than the

distance between Zun and u0. In practice, this is unlikely to make much of a
difference and in most cases one can safely restrict attention to the first two
terms, K 5 1 and K 5 2.

IV. Conclusion

This paper has demonstrated how to obtain very accurate closed-form ap-
proximations to the respective transition densities of a variety of models
commonly used to represent the dynamics of the short-term interest rate.
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Applications to derivative pricing, consisting of obtaining pricing formulas
for any underlying price process, have been brief ly outlined and will be
developed in future work. Finally, an extension of these results to multivar-
iate diffusions will be investigated.

Appendix: Regularity Conditions

ASSUMPTION 1 ~Smoothness of the coefficients!: The functions m~x;u! and s~x;u!
are infinitely differentiable in x in DX, and twice continuously differentiable
in u in the parameter space Q , Rd.

ASSUMPTION 2 ~Nondegeneracy of the diffusion!:

1. If DX 5 ~2`,1`!, there exists a constant c such that s~x;u! . c . 0 for
all x [ DX and u [ Q.

2. If DX 5 ~0,1`!, I allow for the possible local degeneracy of s at x 5 0:
If s~0;u! 5 0, then there exist constants j0 , v $ 0, r $ 0 such that
s~x;u! $ vxr for all 0 , x , j0 and u [ Q. Away from 0, s is nonde-
generate; that is, for each j . 0, there exists a constant cj such that
s~x;u! $ cj . 0 for all x [ @j 1`! and u [ Q.

Assumption 3 below restricts the behavior of the function mY and its de-
rivatives near the boundaries of DY . It is formulated in terms of the function
mY for reasons of convenience, but the equivalent formulation directly in
terms of the original functions m and s can be obtained from equation ~8!.
Recall that lY~ y;u! [ 2~mY

2 ~ y;u! 1 ?mY~ y;u!0?y!02.

ASSUMPTION 3 ~Boundary behavior!: For all u [ Q, mY~ y;u!, ?mY~ y;u!0?y, and
?2mY ~ y;u!0?y2 have at most exponential growth near the infinity boundaries
and limyr ry or Sy lY ~ y;u! , 1`.

1. Left Boundary:
i. If ry 5 01, there exist constants e0 , k, a such that for all 0 , y # e0

and u [ Q,mY~ y;u! $ ky2a where either a . 1 and k . 0, or a 5 1
and k $ 1.

ii. If ry 5 2`, there exist constants E0 . 0 and K . 0 such that for all
y # 2E0 and u [ Q,mY~ y;u! $ Ky.

2. Right Boundary: If Sy 5 1`, there exist constants E0 . 0 and K . 0
such that for all y $ E0 and u [ Q,mY~ y;u! # Ky.

The following remarks can help demonstrate the generality of these as-
sumptions:

1. The upper bound limyr ry or Sy lY ~ y;u! , 1` does not restrict lY from
going to 2` near the boundaries.

2. Similarly, Assumption 3 does not preclude mY from going to 2` very
fast near Sy, and similarly, from going to 1` very fast near ry. Assump-
tion 3 only restricts how large mY can grow if it has the “wrong” sign;
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that is, if it is positive near Sy and negative near ry then linear growth
is at the maximum possible growth rate. If mY has the “right” sign
then the process is being pulled back away from the boundary and I do
not restrict how fast mean reversion occurs ~up to an exponential rate
for technical reasons!. The admissible behavior of the drift function mY
under these assumptions is summarized in Figure A1.

Figure A1. Growth conditions for the drift µY(Y ;u). This figure translates graphically the
assumptions made in the Appendix regarding the shape of the function mY . The admissible
shape of the function is substantially less restricted than under the standard growth condi-
tions. In particular, I only restrict the growth of mY when it has the “wrong” sign ~positive near
1`, negative near 2`!.
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3. The constraints on the behavior of the function mY are essentially the
best possible. For example, if mY has the “wrong” sign near an infinity
boundary, and grows faster than linearly, then Y explodes in finite
time. Near a zero boundary at 01, if there exist k . 0 and a , 1 such
that mY~ y;u! # ky2a in a neighborhood of 01 then 0 and negative val-
ues become attainable.

4. I can now fully characterize the boundary behavior of the diffusion Y
implied by the assumptions made: if 1` is a boundary then it is nat-
ural if, near 1`, 6mY~ y;u!6 # Ky and entrance if mY~ y;u! # 2Ky b for
some b . 1. If 2` is a boundary then it is natural if, near 2`,
6mY~ y;u!6 # K 6y 6 and entrance if mY~ y;0! $ K 6y 6b for some b . 1. If 01

is a boundary, then it is entrance.
Both entrance and natural boundaries are unattainable ~see Feller

~1952! or Karlin and Taylor ~1981, Sec. 15.6! for the definition of bound-
aries!. Natural boundaries can neither be reached in finite time, nor
can the diffusion be started from there. Entrance boundaries, such as
01, cannot be reached starting from an interior point in DY 5 ~0,1`!,
but it is possible for Y to begin there. In that case, the process moves
quickly away from 0 and never returns there. Typically, economic in-
tuition says little about how the process would behave if it were to
start at the boundary, or whether that is even possible, and hence it is
sensible to allow both types of boundary behavior.

5. Assumption 3 neither requires nor implies that the process is station-
ary. When both boundaries of the domain DY are entrance boundaries
then the process is necessarily stationary with unconditional ~margin-
al! density,

p~ y;u! [ expH2Ey

mY ~u;u! duJYE
ry

Sy

expH2EvmY ~u;u! duJ dv,

~A.1!

provided that the initial random variable Y0 is itself distributed with
the same density p. When at least one of the boundaries is natural,
stationarity is neither precluded nor implied. For instance, both an
Ornstein–Uhlenbeck process, where mY~ y;u! 5 k~a 2 y!, and a stan-
dard Brownian motion, where mY~ y;u! 5 0, satisfy the assumptions
made, and both have natural boundaries at 2` and 1`. Yet the for-
mer process is stationary, due to mean reversion, while the latter ~null
recurrent! is not.

Finally, the following assumption is needed for the purpose of maximizing
the log-likelihood function only, not for the purpose of constructing the den-
sity expansion in equation ~11!.
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ASSUMPTION 4 ~Strengthening of Assumption 2 in the limiting case where
a 5 1 and the diffusion is degenerate at 0!: Recall the constant r in As-
sumption 2(2), and the constants a and k in Assumption 3(1.i). If a 5 1,
then either r $ 1 with no restriction on k, or k $ 2r0~1 2 r! if 0 , r , 1.
If a . 1, no restriction is required.
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