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Abstract

Research on human and animal behavior has long emphasized its hierarchical structure,
according to which tasks are comprised of subtask sequences, which are themselves built
of simple actions. The hierarchical structure of behavior has also been of enduring
interest within neuroscience, where it has been widely considered to reflect prefrontal
cortical functions. In this paper, we reexamine behavioral hierarchy and its neural
substrates from the point of view of recent developments in computational reinforcement
learning. Specifically, we consider a set of approaches known collectively as
hierarchical reinforcement learning, which extend the reinforcement learning paradigm
by allowing the learning agent to aggregate actions into reusable subroutines or skills. A
close look at the components of hierarchical reinforcement learning suggests how they
might map onto neural structures, in particular regions within the dorsolateral and orbital
prefrontal cortex. It also suggests specific ways in which hierarchical reinforcement
learning might provide a complement to existing psychological models of hierarchically
structured behavior. A particularly important question that hierarchical reinforcement
learning brings to the fore is that of how learning identifies new action routines that are
likely to provide useful building blocks in solving a wide range of future problems. Here
and at many other points, hierarchical reinforcement learning offers an appealing
framework for investigating the computational and neural underpinnings of hierarchically

structured behavior.



Botvinick, Niv and Barto Hierarchical reinforcement learning

In recent years, it has become increasingly common within both psychology and
neuroscience to explore the applicability of ideas from machine learning. Indeed, one
can now cite numerous instances where this strategy has been fruitful. Arguably,
however, no area of machine learning has had as profound and sustained an impact on
psychology and neuroscience as that of computational reinforcement learning (RL). The
impact of RL was initially felt in research on classical and instrumental conditioning
(Barto & Sutton, 1981; Sutton & Barto, 1990; Wickens, Kotter, & Houk, 1995). Soon
thereafter, its impact extended to research on midbrain dopaminergic function, where the
temporal-difference learning paradigm provided a framework for interpreting temporal
profiles of dopaminergic activity (Barto, 1995; Houk, Adams, & Barto, 1995; Montague,
Dayan, & Sejnowski, 1996; Schultz, Dayan, & Montague, 1997). Subsequently, actor-
critic architectures for RL have inspired new interpretations of functional divisions of
labor within the basal ganglia and cerebral cortex (see Joel, Niv, & Ruppin, 2002 for a
review), and RL-based accounts have been advanced to address issues as diverse as
motor control (e.g., Miyamoto, Morimoto, Doya, & Kawato, 2004), working memory
(e.g., O'Reilly & Frank, 2005), performance monitoring (e.g. Holroyd & Coles, 2002),
and the distinction between habitual and goal-directed behavior (e.g. Daw, Niv, & Dayan,

2005).

As ideas from RL permeate the fields of psychology and neuroscience, it is interesting to
consider how RL research has continued to evolve within computer science. Here,
attention has turned increasingly to factors that limit the applicability of RL. Perhaps

foremost among these is the scaling problem: Unfortunately, basic RL methods do not
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cope well with large task domains, i.e., domains involving a large space of possible world
states or a large set of possible actions. This limitation of RL has been little discussed
within psychology and neuroscience, where RL has typically been applied to highly
simplified learning situations. However, the scaling problem has direct implications for
whether RL mechanisms can be plausibly applied to more complex behavioral contexts.
Because such contexts would naturally include most scenarios animals and human beings
face outside the laboratory, the scaling problem is clearly of relevance to students of

behavior and brain function.

A number of computational approaches have been developed to tackle the scaling
problem. One increasingly influential approach involves the use of temporal abstraction
(Barto & Mahadevan, 2003; Dietterich, 2000; Parr & Russell, 1998; Sutton, Precup, &
Singh, 1999). Here, the basic RL framework is expanded to include temporally abstract
actions, representations that group together a set of interrelated actions (for example,
grasping a spoon, using it to scoop up some sugar, moving the spoon into position over a
cup, and depositing the sugar), casting them as a single higher-level action or skill (‘add
sugar’). These new representations are described as temporal abstractions because they
abstract over temporally extended, and potentially variable, sequences of lower-level
steps. A number of other terms have been used, as well, including ‘skills,” ‘operators,’
and ‘macro-actions.” In what follows, we will often refer to temporally abstract actions

as options, following Sutton et al. (1999).
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In most versions of RL that use temporal abstraction, it is assumed that options can be
assembled into higher-level skills in a hierarchical arrangement. Thus, for example, an
option for adding sugar might form part of other options for making coffee and tea.
Given the importance of such hierarchical structures in work using temporal abstraction,

this area of RL is customarily referred to as hierarchical reinforcement learning (HRL).

The emergence of HRL is an intriguing development from the points of view of
psychology and neuroscience, where the idea of hierarchical structure in behavior is
familiar. In psychology, hierarchy has played a pivotal role in research on organized,
goal-directed behavior, from the pioneering work in this area (e.g., Estes, 1972; Lashley,
1951; Miller, Galanter, & Pribram, 1960; Newell & Simon, 1963) through to the most
recent studies (e.g., Anderson, 2004; Botvinick & Plaut, 2004; Schneider & Logan, 2006;
Zacks, Speer, Swallow, Braver, & Reynolds, 2007). Behavioral hierarchy has also been
of longstanding interest within neuroscience, where it has been considered to relate
closely to prefrontal cortical function (Botvinick, in press; Courtney, Roth, & Sala, in

press; Fuster, 1997; Koechlin, Ody, & Kouneiher, 2003; Wood & Grafman, 2003).

Thus, although HRL was not originally developed to address questions about human and
animal behavior, it is potentially of twofold relevance to psychology and neuroscience.
First, HRL addresses a limitation of RL that would also be faced by any biological agent
learning through RL-like mechanisms. The question thus naturally arises whether the
brain might deal with this limitation in an analogous way. Second, the ideas at the heart

of HRL resonate strongly with existing themes in psychology and neuroscience. The
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formal framework provided by HRL thus might provide leverage in thinking about the
role of hierarchical structure in human and animal behavior, and in particular how such
structure might relate to behavioral and neuroscientific issues that have already been

treated in terms of RL.

Our objective in the present paper is to consider HRL from these two perspectives. We
begin, in the following section, by examining the scaling problem and considering how
the use of temporal abstraction can help to ameliorate it. We then turn to HRL itself,
detailing its representational and algorithmic assumptions. After establishing these, we
discuss the potential implications of HRL for behavioral research. Here, we emphasize
one fundamental computational issue that HRL brings into focus, which concerns the
question of how reusable sets of skills might develop through learning. Finally, we
consider the potential implications of HRL for interpreting neural function. To this end,
we introduce a new actor-critic implementation of HRL, which makes explicit the

computational requirements that HRL would pose for a neural implementation.

Temporal Abstraction and the Scaling Problem

A key source of the scaling problem is the fact that an RL agent can learn to behave
adaptively only by exploring its environment, trying out different courses of action and
sampling their consequences. As a result of this requirement, the time needed to arrive at
a stable behavioral policy increases with both the size of the environment (i.e., the

number of different states) and the number of available actions. In most contexts, the
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relationship between training time and the number of environmental states or actions is a
positively accelerating function. Thus, as problem size increases, standard RL eventually

becomes infeasible.

Numerous approaches have been adopted in machine learning to deal with the scaling
problem. These include reducing the size of the state space by suppressing behaviorally
irrelevant distinctions between states (state abstraction; see e.g., Li & Walsh, 2006), and
methods aimed at striking an optimal balance between exploration and exploitation of
established knowledge (e.g., Kearns & Singh, 2002). HRL methods target the scaling
problem by introducing temporally abstract actions (Barto & Mahadevan, 2003;
Dietterich, 2000; Parr & Russell, 1998; Sutton et al., 1999). The defining characteristic
of these abstract actions is that, rather than specifying a single ‘primitive’ action to
execute, each abstract action instead specifies a whole policy to be followed, that is, a
mapping from states to actions." Once a temporally abstract action is initiated, execution
of its policy continues until a specified termination state is reached.” Thus, the selection
of a temporally abstract action typically results in the execution of a sequence of

primitive actions.

Adding temporal abstraction to RL can ease the scaling problem in two ways. The first
way is through its impact on the exploration process. In order to see how this works, it is
useful to picture the agent (i.e., the simulated human or animal) as occupying a tree

structure (Figure 1A). At the apex is a node representing the state occupied by the agent
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at the outset of exploration. Branching out from this node are links representing
primitive actions, each leading to a node representing the state consequent on that action.

Further action links project from each of these nodes, leading to their consequent states,
and so forth. The agent’s objective is to discover paths through the decision tree that
maximize reward. However, the set of possible paths increases with the set of actions
available to the agent, and with the number of reachable states. With increasing numbers
of either it becomes progressively more difficult to discover, through exploration, the

specific traversals of the tree that would maximize reward.

Temporally abstract actions can alleviate this problem by introducing structure into the
exploration process. Specifically, the policies associated with temporally abstract actions
can guide exploration down specific partial paths through the search tree, potentially
allowing earlier discovery of high-value traversals. The principle is illustrated in Figure
1A-B. Discovering the pathway illustrated in Figure 1A using only primitive, one-step
actions, would require a specific sequence of seven independent choices. This changes if
the agent has acquired — say, through prior experience with related problems — two
options corresponding to the red and blue subsequences in Figure 1B. Equipped with
these, the agent would only need to make two independent decisions to discover the
overall trajectory, namely, selection of the two options. Here, options reduce the
effective size of the search space, making it easier for the agent to discover an optimal

trajectory.

Figure 1 around here
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The second, and closely related, way in which temporally abstract actions can ease the
scaling problem is by allowing the agent to learn more efficiently from its experiences.
Without temporal abstraction, learning to follow the trajectory illustrated in Figure 1A
would involve adjusting parameters at seven separate decision-points. With predefined
options (Figure 1B), policy learning is only required at two decision points, the points at
which the two options are to be selected. Thus, temporally abstract actions not only

allow the agent to explore more efficiently, but also to make better use its experiences.

Along with these advantages, there also comes a new computational burden. For in
order to enjoy the benefits of temporal abstraction, the agent must have some way of
acquiring a set of useful options. As we shall discuss, this requirement raises some of the

most interesting issues in HRL, issues that also apply to human learning.

Hierarchical Reinforcement Learning

Having briefly discussed the motivation for incorporating temporal abstraction into RL,
we now turn to a more direct description of how HRL operates. For simplicity, we focus
on one specific implementation of HRL, the options framework described by Sutton et al.
(1999). However, the points we shall emphasize are consistent with other versions of
HRL, as well (e.g. Dietterich, 2000; Parr & Russell, 1998; for an overview, see Barto &

Mahadevan, 2003). Since one of our objectives is to explore potential neuroscientific
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correlates of HRL, we have implemented the options framework within an actor-critic
architecture (defined below), allowing direct parallels to be drawn with previous work
relating RL to functional neuroanatomy through the actor-critic framework.” In what
follows, we provide an informal, tutorial-style overview of this implementation. Full

technical details are presented in the Appendix.

Fundamentals of RL: Temporal Difference Learning in Actor-Critic Models

RL problems comprise four elements: a set of world states; a set of actions available to
the agent in each state; a tranmsition function, which specifies the probability of
transitioning from one state to another when performing each action; and a reward
function, which indicates the amount of reward (or cost) associated with each such
transition. Given these elements, the objective for learning is to discover a policy, that is,

a mapping from states to actions, that maximizes cumulative long-term reward.*

In actor-critic implementations of RL, the learning agent comprises two parts, an actor
and a critic, as illustrated in Figure 2A (see, e.g., Barto, Sutton, & Anderson, 1983; Houk
et al., 1995; Joel et al., 2002; Suri, Bargas, & Arbib, 2001). The actor selects actions

according to a modifiable policy (7(s) in the figure), which is based on a set of weighted

associations from states to actions, often called action strengths. The critic maintains a
value function (V(s)), associating each state with an estimate of the cumulative, long-term
reward that can be expected subsequent to visiting that state. Importantly, both the action

strengths and the value function must be learned (estimated) based on experience with the
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environment. At the outset of learning, the value function and the actor’s action strengths
are initialized (say, uniformly or randomly), and the agent is placed in some initial state.
The actor then selects an action, following a rule that favors high-strength actions but
also allows for exploration (see Appendix, Eq. 1). Once the resulting state is reached and
its associated reward is collected, the critic computes a temporal-difference prediction

error (denoted 9 in the figure; see also Eq. 2). Here, the value that was attached to the

previous state is treated as a prediction of (1) the reward that would be received in the
successor state (R(s)), plus (2) the value attached to that successor state. A positive
prediction error indicates that this prediction was too low, meaning that things turned out
better than expected. Of course, things can also turn out worse than expected, yielding a

negative prediction error.

Figure 2 around here

The prediction error is used to update both the value attached to the previous state and the
strength of the action that was selected in that state (see Eqs. 3 and 4). A positive
prediction error leads to an increase in the value of the previous state and the propensity
to perform the chosen action at that state. A negative error leads to a reduction in these.
After the appropriate adjustments, the agent selects a new action, a new state is reached, a
new prediction error is computed, and so forth. As the agent explores its environment
and this procedure is repeated, the critic’s value function becomes progressively more
accurate, and the actor’s action strengths change so as to yield progressive improvements

in behavior, in terms of the amount of reward obtained.

10
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Incorporating Temporally Abstract Actions

The options framework supplements the set of single-step, primitive actions with a set of
temporally abstract actions or options. An option is defined by an initiation set,
indicating the states in which the option can be selected; a termination function, which
specifies a set of states that will trigger termination of the option;” and an option-specific

policy, mapping from states to actions (which now include other options).

Like primitive actions, options are associated with strengths, and on any time-step the
actor may select either a primitive action or an option. Once an option is selected, actions
are selected based on that option’s policy until the option terminates. At that point, a
prediction error is computed. In this case, the prediction error is defined as the difference
between the value of the state where the option terminated and the value of the state
where the option was initiated, plus whatever rewards were accrued during execution of
the option (see Eq. 6). A positive prediction error indicates that things went better than
expected since leaving the initiation state, and a negative prediction error means that
things went worse. The prediction error is used to update the value associated with the
initiation state, as well as the action strength associating the option with that state (see

Egs. 8-9; Figure 3).°

Figure 3 around here

11
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Implementing this new functionality requires several extensions to the actor-critic
architecture, as illustrated in Figure 2B. First, because the agent’s policy now varies
depending on which option is in control of behavior, the actor must maintain a separate

set of action strengths for each option (7,(s) in the figure). To select among these, the

actor must also maintain a representation of which option is currently in control (o).’
Important changes are also required in the critic. Because prediction errors are computed
when options terminate, the critic must now receive input from the actor, telling it when

such terminations occur (the arrow from o to 0). In order to be able to compute the

prediction error at these points, the critic must also store information about the amount of
reward accumulated during each option’s execution and the identity of the state in which

the option was initiated (see Egs. 6-9).

Learning option policies

The description provided so far explains how the agent learns a top- or root-level policy,
which determines what action or option to select when no option is currently in control of

behavior. We turn now to the question of how option-specific policies are learned.

In versions of the options framework that address such learning, it is often assumed that
options are initially defined in terms of specific subgoal states. (The question of where
these subgoals come from is an important one, which we address later.) It is further

assumed that when an active option reaches its subgoal, the actions leading up to the

12
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subgoal are reinforced. To distinguish this reinforcing effect from the one associated

with external rewards, subgoal attainment is said to yield pseudo-reward.

In order for subgoals and pseudo-reward to shape option policies, the critic in HRL must
maintain not only its usual value function, but also a set of option-specific value
functions (V,(s) in Figure 2B). As in ordinary RL, these value functions predict the
cumulative long-term reward that will be received subsequent to occupation of a
particular state. However, they are option-specific in the sense that they take into
account the pseudo-reward that is associated with each option’s subgoal state. A second
reason these option-specific value functions are needed is that the reward (and pseudo-
reward) the agent will receive following any given state depends on the actions it will
select. These depend, by definition, on the agent’s policy, and under HRL the policy
depends on which option is currently in control of behavior. Thus, when an option is in
control of behavior, only an option-specific value function can accurately predict future

rewards.

With the addition of pseudo-reward and option-specific value functions, option policies
can be learned through a procedure directly paralleling the one used at the root level.
On each step of an option’s execution, a prediction error is computed based on the
option-specific values of the states visited and the pseudo-reward received. That
prediction error is then used to update the option’s action strengths and the values

attached to each state visited during the option (see Eqs. 6-9; Figure 3). With repeated

13
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cycles through this procedure, the option’s policy evolves so as to guide behavior, with

increasing directness, toward the option’s subgoals.

lllustrations of performance

To provide an illustration of HRL in action, we applied the preceding learning procedures
to a toy ‘rooms’ problem introduced by Sutton et al. (1999). Here, the agent’s task is to
navigate through a set of rooms interconnected by doorways, in order to reach a goal state
(Figure 4A). In each state, the agent can select any of eight deterministic primitive
actions, each of which moves the agent to one of the adjacent squares (unless a wall
prevents this movement). Additionally, within each room the agent can also select either

of two options, each having one of the room’s doors as its subgoal.

Figure 4 around here

To illustrate the process of learning option-specific policies, the model was initially
trained with only pseudo-rewards at the option subgoal states, i.e., without external
reward. Figure 4B tracks the number of primitive actions each option required to reach
its subgoal, showing that, through learning, this fell to a minimum over successive
executions of the option. Figure 4C illustrates the policy learned by one of the doorway

options, as well its option-specific value function.

14
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A more fundamental point is illustrated in Figure 4D, which tracks the model’s
performance after external rewards were introduced. The model learns more rapidly to
reach the goal state when both the doorway options and the eight primitive actions are
included than when only the primitive actions are available. This savings in training time
reflects the impact of temporal abstraction on exploration and learning, as described in

the previous section.

Behavioral Implications

Having introduced the fundamentals of HRL, we turn now to a consideration of what
their implications might be for behavioral and neuroscientific research. We begin with
implications for psychology. As noted earlier, HRL treats a set of issues that have also
been of longstanding interest to students of human and animal behavior. HRL suggests a
different way of framing some of these issues, and also brings to the fore some important

questions that have so far received relatively little attention in behavioral research.

Relation to Previous Work in Psychology

Lashley (1951) is typically credited with first asserting that the sequencing of low-level
actions requires higher-level representations of task context. Since this point was
introduced, there has been extensive research into the nature and dynamics of such
representations, much of which resonates with the idea of temporally abstract actions as

found in HRL. Indeed, the concept of ‘task representation,” as it arises in much

15
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contemporary psychological work (e.g. Cohen, Dunbar, & McClelland, 1990; Cooper &
Shallice, 2000; Monsell, 2003), shares key features with the option construct. Both
postulate a unitary representation that (1) can be selected or activated; (2) remains active
for some period of time following its initial selection; (3) leads to the imposition of a
specific stimulus-response mapping or policy; and (4) can participate in hierarchical

relations with other representations of the same kind.

Despite this parallel, most psychological research on task representation has focused on
issues different from those central to HRL. In recent work, the emphasis has often been
on the dynamics of shifts from one task to another (e.g., Allport & Wylie, 2000; Logan,
2003; Monsell, 2003), or on competition between task sets (e.g., Monsell, Yeung, &
Azuma, 2000; Pashler, 1994). Other studies have concentrated on cases where task
representations function primarily to preserve information conveyed by transient cues
(e.g., Cohen, Braver, & O'Reilly, 1996; MacDonald, Cohen, Stenger, & Carter, 2000), a

function not usually performed by options.

Among studies focusing on the issue of hierarchy, many have aimed at obtaining
empirical evidence that human behavior and its accompanying mental representations are
in fact organized in a hierarchical fashion (e.g. Newtson, 1976; Zacks & Tversky, 2001).
However, there have also been a series of theoretical proposals concerning the control
structures underlying hierarchically organized behavior (e.g., Arbib, 1985; Botvinick &
Plaut, 2004; Cooper & Shallice, 2000; Dehaene & Changeux, 1997; Dell, Berger, &

Svec, 1997; Estes, 1972; Grossberg, 1986; MacKay, 1987; Miller et al., 1960; Rumelhart

16
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& Norman, 1982). The resemblance between these proposals and HRL mechanisms is
variable. In most cases, for example, high-level task representations have been
understood to send top-down activation directly to action representations, rather than to
favor specific links from stimuli to responses, as in HRL (however, see Botvinick &
Plaut, 2004; Ruh, 2007). Furthermore, in the vast majority of cases the focus has been on
aspects of steady-state performance, such as reaction times and error patterns, rather than

on the role of temporal abstraction in learning, the focus in HRL.

Having made this latter generalization, it is also important to note several cases in which
the role of task representations and hierarchical structure during learning have been
directly considered. On the empirical side, there have been a number of studies
examining the development of hierarchical structure in the behavior of children (e.g.
Bruner, 1973; Fischer, 1980; Greenfield, Nelson, & Saltzman, 1972; Greenfield &
Schneider, 1977). The general conclusion of such studies is that, over the course of
childhood, behavior shows a hierarchical development, according to which simple
operations are gradually incorporated into larger wholes. The fit between this

observation and the basic premises of HRL is, of course, clear.

The strongest parallels to HRL within psychology, however, are found in production-
system based theories of cognition, in particular Soar (Lehman, Laird, & Rosenbloom,
1996) and ACT-R (Anderson, 2004). A key idea in both of these frameworks is that
planning or problem solving can leverage chunks, ‘if-then’ rules that can trigger the

execution of extended action sequences (Laird, Rosenbloom, & Newell, 1986; Lee &

17
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Taatgen, 2003; see also Hayes-Roth & Hayes-Roth, 1979; Ward & Allport, 1987). Like
temporally abstract actions in HRL, chunks can facilitate problem solving, increasing the
speed and efficiency with which solutions are found. This function allows chunking to
provide a natural account for the behavioral phenomenon of positive transfer, where
improvements in problem-solving efficiency are observed on target problems, when these

are presented after prior exposure to structurally similar problems.

One factor that differentiates HRL from the Soar and ACT-R frameworks is its
organization around the single objective of reward maximization. This aspect of HRL
allows it to specify precisely what it means for hierarchically structured behavior to be
optimal, and this optimality criterion gives coherence to the learning and performance
algorithms involved in HRL. In contrast, neither ACT-R nor Soar take reward
maximization as a central organizing principle. ACT-R does include ‘production
utilities,” which represent the probability that a given production will lead to achievement
of the currently held goal (Anderson, 2004), a feature that resonates with the impact of
pseudo-reward in HRL. And there have been recent efforts to integrate RL methods into
the Soar framework (Nason & Laird, 2005). Notwithstanding these caveats, the
centrality of reward maximization in HRL remains distinctive. A countervailing strength
of Soar, ACT-R and related models is that they address a wide range of psychological
issues — in particular, limitations in processing capacity — that are not addressed in
existing formulations of HRL. The strengths of the two approaches thus appear to be
complementary, and it is exciting to consider ways in which they might be integrated (see

Nason & Laird, 2005, for some preliminary discussion along these lines).

18
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Negative Transfer

The previous section touched on the phenomenon of positive transfer, where established
procedural knowledge facilitates the discovery of solutions to new problems. This
phenomenon provides a direct point of contact between human behavior and HRL,
where, as demonstrated earlier, options arising from earlier experience can have the same
facilitatory effect. However, the literature on transfer effects also highlights a contrary
point that pertains equally to HRL, which is that in some circumstances pre-existing
knowledge can hinder problem solving. Such negative transfer was most famously
demonstrated by Luchins (1942), who found that human subjects were less successful at
solving word problems when the subjects were first exposed to problems demanding a

different solution strategy (see also Landrum, 2005; Rayman, 1982).

A direct analogue to negative transfer occurs in HRL when the temporally abstract
actions available to the agent are not well suited to the learning problem. For illustration,
consider the four-rooms problem described above (see Figure 4A). However, instead of
the doorway options included in the earlier simulation, assume that the agent has a set of
options whose subgoals are the states adjacent to the ‘windows’ marked in Figure 5A.
Those options, which are not helpful in solving the overall problem of reaching the goal
state G, cause the agent to spend time exploring suboptimal trajectories, with the effect
that learning is slowed overall (Figure 5B). A subtler but equally informative case is

illustrated in Figure 5C. Here, the original doorway options are used, but now a new

19
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passageway has been opened up, providing a shortcut between the upper right and lower
left rooms. When trained with primitive actions only, the agent learns to use this
passage, finding the shortest path to the reward on 75% of training runs. However, when
the original doorway options are also included, the agent learns to reach the goal only by

way of the main doorways, eventually ignoring the passageway completely.®

Figure 5 around here

These illustrations show that the impact of temporally abstract actions on learning and
planning depends critically on which specific actions the agent has in its repertoire. This
raises a pivotal question, which motivates a significant portion of current HRL research:
By what means can a learning agent acquire temporally abstract actions that are likely to
be useful in solving future problems, and avoid acquiring unhelpful ones? The existence
of both positive and negative transfer in human performance indicates the relevance of
this question to psychological theory, as well. With this in mind, it is of interest to
consider the range of answers that have been proposed in machine learning, and their

potential relations to findings from behavioral science.

The Option Discovery Problem

One approach to the problem of discovering useful options has been to think of options as

genetically specified, being shaped across generations by natural selection (Elfwing,

Uchibe, & Christensen, 2007). Along these same lines, in empirical research, motor

20
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behavior has often been characterized as building upon simple, innately specified
components (e.g., Bruner, 1973). In some cases extended action sequences, such as
grooming sequences in rodents, have been considered to be genetically specified

(Aldridge & Berridge, 1998), functioning essentially as innate options.

While evolution seems likely to play an important role in providing the building blocks
for animal and human behavior, it is also clear that both animals and humans discover
useful behavioral subroutines through learning (Conway & Christiansen, 2001; Fischer,
1980; Greenfield et al., 1972). One proposal from HRL for how this might be
accomplished is through analysis of externally rewarded action sequences. Here, as the
agent explores a particular problem, or a series of interrelated problems, it keeps a record
of states or subsequences that occur relatively frequently in trajectories that culminate in
reward (McGovern, 2002; Pickett & Barto, 2002; Thrun & Scwhartz, 1995). These states
and sequences pinpoint useful destinations in the problem space — such as the doors in
the rooms scenario discussed above — which are good candidates to become option
subgoals. On the empirical side, this proposal appears consonant with work showing that
humans, even very young children, can be extremely sensitive to the structure underlying
repeating and systematically varying event sequences (Saffran, Aslin, & Newport, 1996),

a point that extends to hierarchical structure (Saffran & Wilson, 2003).

Another HRL approach to the option discovery problem involves analyzing not

trajectories through the problem space, but the problem space itself. Here, a graph is

constructed to represent the relevant set of world states and the transitions that can be
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made among them through action. Graph partitioning methods are then used to identify
states that constitute bottlenecks or access points within the graph, which are then
designated as option subgoals (Mannor, Menache, Hoze, & Klein, 2004; Menache,
Mannor, & Shimkin, 2002; Simsek, Wolfe, & Barto, 2005; see also Hengst, 2002;
Jonsson & Barto, 2005). This set of approaches resonates with behavioral data showing
that humans (including children) spontaneously generate causal representations from
interactions with the world, and link these representations together into large-scale causal
models (Gopnik et al., 2004; Gopnik & Schulz, 2004; Sommerville & Woodward, 2005a;
Sommerville & Woodward, 2005b). Whether such causal models are, in fact, applied
toward the identification of useful subgoal states is an interesting question for empirical

investigation.

Another approach within HRL takes the perspective that options can be formed during an
analog of a developmental period, without the need for any externally-imposed tasks.
Instead of learning from extrinsically provided rewards, the agent learns from intrinsic
rewards generated by built-in mechanisms that identify subgoals — states or situations
that have the property that skills capable of achieving them are likely to be useful in
many different future tasks (Barto, Singh, & Chentanez, 2004; Singh, Barto, &
Chentanez, 2005). One example of this approach assumes that certain action outcomes
are unusually salient, and that the unexpected occurrence of these outcomes during
exploratory behavior triggers efforts to make them reoccur (and thus learning of options
that treat these events as subgoals). More specifically, unexpected salient events are

assumed to be intrinsically motivating. Singh et al. (2005) demonstrated how this
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mechanism can lead to the stepwise development of hierarchies of skills. The behavior
of the agent in their simulations bears an intriguing similarity to children’s ‘circular
reactions,” behavior aimed at reproducing initially inadvertent action outcomes such as
turning a light on and off (Fischer & Connell, 2003; Piaget, 1936/1952). Singh et al.
(2005) pointed out the unexpected occurrence of a salient events is but one way to trigger
intrinsic reward, with other possibilities suggested by the psychological literature (e.g.,
Berlyne, 1960; White, 1959) as well as earlier studies of internal rewards in the RL
literature (e.g., Kaplan & Oudeyer, 2004; Schmidhuber, 1991). Oudeyer, Kaplan, and

Hafner (2007) provide an overview of much of this work.’

The intrinsic motivation approach to subgoal discovery in HRL dovetails with
psychological theories suggesting that human behavior is motivated by a drive toward
exploration or toward mastery, independent of external reward (e.g., Berlyne, 1960;
Harlow, Harlow, & Meyer, 1950; Ryan & Deci, 2000; White, 1959). Moreover, the idea
that unanticipated events can engage reinforcement mechanisms is also consistent with
neuroscientific findings. In particular, the same midbrain dopaminergic neurons that are
thought to report a temporal-difference reward prediction error also respond to salient
novel stimuli (Bunzeck & Duzel, 2006; Redgrave & Gurney, 2006; Schultz, Apicella, &

Ljungberg, 1993).

When option discovery is viewed as a psychological problem, other possible mechanisms

for option discovery become evident, which go beyond those so far considered in HRL

research. For example, Soar provides a highly detailed account of subgoal generation
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and chunk formation, according to which subgoals, and later chunks, are established in
response to problem-solving impasses (Laird et al., 1986; Lehman et al., 1996). Another
still richer source of useful subgoals might be provided by the social environment. For
example, empirical work with both children and adults demonstrates that human
observers spontaneously infer goals and subgoals from the behavior of others (Gergely &
Csibra, 2003; Meltzoff, 1995; Sommerville & Woodward, 2005a; Tenenbaum & Saxe,
2006; Woodward, Sommerville, & Guajardo, 2001). By this means, subgoals and
associated action sequences could be gleaned both from the behavior of unwitting models
and from deliberate demonstrations from parents, teachers, and others (Greenfield, 1984;
Yan & Fischer, 2002). Indeed, it seems natural to think of much of education and child-

rearing as involving the deliberate social transmission useful action routines.

Neuroscientific Implications

In the above, we have suggested potential bi-directional links between HRL and research
on learning and behavior in humans and animals. We turn now to the potential
implications of HRL for understanding neural function. To make these concrete, we will
use the actor-critic formulation of HRL presented earlier. Previous work has already
drawn parallels between the elements of the actor-critic framework and specific
neuroanatomical structures. Situating HRL within the actor-critic framework thus
facilitates the formation of hypotheses concerning how HRL might map onto functional

neuroanatomy. '
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Although accounts relating the actor-critic architecture to neural structures vary, one
proposal has been to identify the actor with the dorsolateral striatum (DLS), while
identifying the critic with the ventral striatum (VS) and the mesolimbic dopaminergic
system (see, e.g., Daw, Niv, & Dayan, 2006; O'Doherty et al., 2004; Figure 2C).
Dopamine (DA), in particular, has been associated with the function of signaling reward
prediction errors (Montague et al., 1996; Schultz et al., 1997). In order to evaluate how
HRL would modify this mapping, we will focus individually on the elements that HRL
adds or modifies within the actor-critic framework, as introduced earlier. In the
following two sections, we consider four key extensions, two relevant to the actor

component, and two to the critic.

The Actor in HRL: Relation to Prefrontal Cortex

Extension 1: Support structure for temporally abstract actions. Under HRL, in addition
to primitive actions, the actor must build in representations that identify specific
temporally abstract actions or options. Using these, the actor must be able to keep track

of which option is currently selected and in control of behavior.

Potential neural correlates. This first extension to the actor-critic framework calls to
mind functions commonly ascribed to the dorsolateral prefrontal cortex (DLPFC). The
DLPFC has long been considered to house representations that guide temporally
integrated, goal-directed behavior (Fuster, 1997, 2004; Grafman, 2002; Petrides, 1995;

Shallice & Burgess, 1991; Wood & Grafman, 2003). Recent work has refined this idea
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by demonstrating that DLPFC neurons play a direct role in representing task sets. Here, a
single pattern of DLPFC activation serves to represent an entire mapping from stimuli to
responses, i.e., a policy (Asaad, Rainer, & Miller, 2000; Bunge, 2004; Hoshi, Shima, &
Tanji, 1998; Johnston & Everling, 2006; Rougier, Noell, Braver, Cohen, & O'Reilly,
2005; Shimamura, 2000; Wallis, Anderson, & Miller, 2001; White, 1999). According to
the guided activation theory proposed by Miller and Cohen (2001), prefrontal
representations do not implement policies directly, but instead select among stimulus-
response pathways implemented outside the prefrontal cortex. This division of labor fits
well with the distinction in HRL between an option’s identifier and the policy with which

it is associated (Figure 6).

Figure 6 around here

In addition to the DLPFC, there is evidence that other frontal areas may also carry
representations of task set, including pre-supplementary motor area (pre-SMA;
Rushworth, Walton, Kennerley, & Bannerman, 2004) and premotor cortex (PMC;
Muhammad, Wallis, & Miller, 2006; Wallis & Miller, 2003). Furthermore, like options
in HRL, neurons in several frontal areas including DLPFC, pre-SMA and supplementary
motor area (SMA) have been shown to code for particular sequences of low-level actions
(Averbeck & Lee, 2007; Bor, Duncan, Wiseman, & Owen, 2003; Shima, Isoda,
Mushiake, & Tanji, 2007; Shima & Tanji, 2000). Research on frontal cortex also accords
well with the stipulation in HRL that temporally abstract actions may organize into

hierarchies, with the policy for one option (say, an option for making coffee) calling
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other, lower-level options (say, options for adding sugar or cream). This fits with
numerous accounts suggesting that the frontal cortex serves to represent action at
multiple, nested levels of temporal structure (Grafman, 2002; Sirigu et al., 1995; Wood &
Grafman, 2003; Zalla, Pradat-Diehl, & Sirigu, 2003), possibly in such a way that higher
levels of structure are represented more anteriorly (Botvinick, in press; Fuster, 2001,

2004; Haruno & Kawato, 2006; Koechlin et al., 2003).

Extension 2: Option-specific policies. In addition to its default, top-level policy, the actor
in HRL must implement option-specific policies. Thus, the actor must carry a separate

set of action strengths for each option.

Potential neural correlates. As noted earlier, it has been typical to draw a connection
from the policy in standard RL to the DLS. For the DLS to implement the option-
specific policies found in HRL, it would need to receive input from cortical regions
representing options. It is thus relevant that such regions as the DLPFC, SMA, pre-SMA
and PMC — areas interpreted above as representing options — all project heavily to the
DLS (Alexander, DeLLong, & Strick, 1986; Parent & Hazrati, 1995). Frank, O’Reilly and
colleagues (Frank & Claus, 2006; O'Reilly & Frank, 2005; Rougier et al., 2005) have put
forth detailed computational models that show how frontal inputs to the striatum could
switch among different stimulus-response pathways. Here, as in guided activation
theory, temporally abstract action representations in frontal cortex select among

alternative (i.e., option-specific) policies.
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In order to support option-specific policies, the DLS would need to integrate information
about the currently controlling option with information about the current environmental
state, as is indicated by the arrows converging on the policy module in Figure 2B. This is
consistent with neurophysiological data showing that some DLS neurons respond to
stimuli in a way that varies with task context (Ravel, Sardo, Legallet, & Apicella, 2006;
see also Salinas, 2004). Other studies have shown that action representations within the
DLS can also be task-dependent. For example, Aldridge and Berridge (1998) reported
that, in rats, different DLS neurons fired in conjunction with simple grooming
movements depending on whether those actions were performed in isolation or as part of
a grooming sequence (see also Aldridge, Berridge, & Rosen, 2004; Graybiel, 1995, 1998;
Lee, Seitz, & Assad, 2006). This is consistent with the idea that option-specific policies
(action strengths) might be implemented in the DLS, since this would imply that a
particular motor behavior, when performed in different task contexts, would be selected

via different neural pathways.

Recall that, within HRL, policies are responsible for selecting not only primitive actions,
but also for selecting options. Translated into neural terms, this would require the DLS to
participate in the selection of options. This is consistent with data from Muhammad et al.
(2006), who observed striatal activation relating to task rules (see also Graybiel, 1998). It
is also consistent with the fact that the DLS projects heavily, via thalamic relays, to all of
the frontal regions linked above with a role in representing options (Alexander et al.,

1986; Middleton & Strick, 2002).
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Unlike the selection of primitive actions, the selection of options in HRL involves
initiation, maintenance and termination phases. At the neural level, the maintenance
phase would be naturally supported within DLPFC, which has been extensively
implicated in working memory function (Courtney et al., in press; D'Esposito, 2007;
Postle, 2006). With regard to initiation and termination, it is intriguing that phasic
activity has been observed, both within the DLS and in several areas of frontal cortex, at
the boundaries of temporally extended action sequences (Fujii & Graybiel, 2003; Morris,
Arkadir, Nevet, Vaadia, & Bergman, 2004; Zacks et al., 2001). Since these boundaries
correspond to points where new options would be selected, boundary-aligned activity in
the DLS and frontal cortex is also consistent with a proposed role of the DLS in gating
information into prefrontal working memory circuits (O'Reilly & Frank, 2005; Rougier et

al., 2005).

The Critic in HRL: Relation to Orbitofrontal Cortex

As noted earlier, HRL also requires two key extensions to the critic component of the

actor-critic architecture.

Extension 3: Option-specific value functions. Under HRL, in addition to its top-level
state-value function, the critic must also maintain a set of option-specific value functions.
Recall that, in both standard RL and HRL, the value function indicates how well things
are expected to go following arrival at a given state. This depends on which actions the

agent will select, and under HRL these depend on the option that is currently in control of
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behavior. The controlling option also determines which actions will lead to pseudo-
reward. Thus, whenever an option is guiding behavior, the value attached to a state must
take the identity of that option into account. That is, the critic must use option-specific

state values.

Potential neural correlates. 1f there is a neural structure that computes something like
option-specific state values, this structure would be expected to communicate closely
with the VS, the region typically identified with the locus of state or state-action values in
RL. However, the structure would also be expected to receive inputs from the portions of
frontal cortex that we have identified as representing options. One brain region that
meets both of these criteria is the orbitofrontal cortex (OFC), an area that has strong
connections with both VS and DLPFC (Alexander, Crutcher, & DeLong, 1990; Rolls,
2004). The idea that the OFC might participate in computing option-specific state values
also fits well with the behavior of individual neurons within this cortical region. OFC
neurons have been extensively implicated in representing the value of events (Rolls,
2004; Schultz, Tremblay, & Hollerman, 2000). However, other data suggests that OFC
neurons can also be sensitive to shifts in response policy or task set (e.g., O'Doherty,
Critchley, Deichmann, & Dolan, 2003). Critically, Schoenbaum, Chiba and Gallagher
(1999) observed that OFC representations of event value changed in parallel with shifts
in strategy, a finding that fits precisely with the idea that the OFC might represent option-

specific state values.
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Extension 4: Temporal scope of the prediction error. Moving from RL to HRL brings
about an important alteration in the way that the prediction error is computed.
Specifically, it changes the scope of the events that the prediction error addresses. In
standard RL, the prediction error indicates whether things went better or worse than
expected since the immediately preceding time-step. HRL, in addition, evaluates at the
completion of an option whether things have gone better or worse than expected since the
initiation of that option (see Figure 3). Thus, unlike standard RL, the prediction errors
associated with options in HRL are framed around temporally extended events. Formally
speaking, the HRL setting is no longer a Markov decision process, but rather a semi-

Markov decision process (SMDP).

Potential neural correlates. This aspect of HRL resonates, once again, with data from
the OFC. Note that, in order to evaluate whether things went better or worse than
expected over the course of an entire option, the critic needs access, when an option
terminates, to the reward prediction it made when the option was initially selected. This
is consistent with the finding that within OFC, unlike some other areas, reward-predictive
activity tends to be sustained, spanning temporally extended segments of task structure
(Schultz et al., 2000). Another relevant finding is that the response of OFC neurons to
the receipt of primary rewards varies depending on the wait-time leading up to the reward
(Roesch, Taylor, & Schoenbaum, 2006; see Appendix, Eq. 7). This suggests, again, that

the OFC interprets value within the context of temporally extended segments of behavior.
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The widened scope of the prediction error computation in HRL also resonates with work
on midbrain DA function. In particular, Daw (2003) suggested, based on midbrain
responses to delayed rewards, that dopaminergic function is driven by representations
that divide event sequences into temporally extended segments. In articulating this
account, Daw (2003) provided a formal analysis of DA function that draws on precisely
the same principles of temporal abstraction that also provide the foundation for HRL,

namely an SMDP framework.

In further examining the potential links between DA and HRL, it may be useful to
consider recent work by O’Reilly and Frank (2005), which shows through computational
modeling how DA might support learning in working memory circuits, supporting the
performance of hierarchically organized, temporally-extended tasks. This research
addresses issues somewhat different from those that are central to HRL, focusing in
particular upon tasks that require preservation of information conveyed by transient cues
(a case treated in machine learning under the rubric of partially observable Markov
decision problems). However, O’Reilly and colleagues have also begun to explore the
application of similar mechanisms to the learning of abstract task representations
(Rougier et al., 2005). One interesting aspect of this latter work is its focus on cases
where task-appropriate behavior can be acquired through attending selectively to
particular stimulus dimensions (e.g., color or shape), a mechanism different from, but
certainly not incompatible with, those involved HRL (see, e.g., Dietterich, 2000; Jonsson
& Barto, 2001). Characterizing further the relationship between this computational work

and HRL is an inviting area for further analysis.
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Discussion

We have shown that recently developed HRL techniques have much in common with
psychological accounts of hierarchically organized behavior. Furthermore, through a
new actor-critic implementation of HRL, we have suggested several points of contact
between HRL and the neural substrates of decision making and hierarchical control.
Before summing up, we briefly consider the relation of HRL to two further topics that

have been at the focus of recent work on the control of action.

Dual Modes of Action Control

Work on animal and human behavior suggests that goal-directed action arises from two
modes of control, one built on established stimulus-response links or ‘habits,” and the
other on prospective planning (Balleine & Dickinson, 1998). Daw, Niv and Dayan
(2005) have mapped these modes of control onto RL constructs, characterizing the
former as relying on cached action or state values and the latter as looking ahead based
on an internal model relating actions to their likely effects. In considering HRL, we have
cast it in terms of the cache-based system, both because this is most representative of
existing work on HRL and because the principles of model-based search have not yet
been as fully explored, either at the computational level or in terms of neural correlates.
However, it is straightforward to incorporate temporal abstraction into model-based,

prospective control. This is accomplished by assuming that each option is associated
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with an option model, a knowledge structure indicating the ultimate outcomes likely to
result from selecting the option, the reward or cost likely to be accrued during its
execution, and the amount of time this execution is likely to take (see Sutton et al., 1999).
Equipped with models of this kind, the agent can use them to look ahead, evaluating
potential courses of action. Importantly, the search process can now ‘skip over’
potentially large sequences of primitive actions, effectively reducing the size of the
search tree (Figure 1C; Hayes-Roth & Hayes-Roth, 1979; Nau et al., 2003). This kind of
saltatory search process seems to fit well with everyday planning, which introspectively
seems to operate at the level of temporally abstract actions (‘Perhaps I should buy one of
those new cell phones....Well, that would cost me a few hundred dollars....But if I
bought one, I could use it to check my email...”). The idea of action models, in general,
also fits well with work on motor control (e.g., Wolpert & Flanagan, 2001), which
strongly suggests the involvement of predictive models in the guidance of bodily
movements. Because option models encode the consequences of interventions, and
therefore can be thought of as representing causal information, it is interesting to note
that the representation of causal relations has been mapped, in neuroimaging studies, to
prefrontal cortex (e.g., Fugelsang & Dunbar, 2005), a region whose potential links with

HRL we have already considered.

Strict versus Quasi-Hierarchical Structure

Although human behavior, like behavior in HRL systems, is often hierarchically

structured, there are also aspects of human behavior that resist a strictly hierarchical
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account. For example, execution of subtasks in everyday behavior is highly context-
sensitive, that is, the way in which a subtask is executed can depend on the larger task
context in which it occurs (Agre, 1988). Furthermore, naturalistic tasks exhibit a great
deal of overlap or shared structure (Schank & Abelson, 1977), a point that is reflected in
the errors or slips that occur in the performance of such tasks (Reason, 1992). As pointed
out by Botvinick and Plaut (2002; 2004; 2006), these factors make it difficult to model
detailed human behavior in strictly hierarchical terms. Shared structure raises a problem
because temporal abstractions have only a limited ability to acknowledge detailed
patterns of overlap among tasks. Thus, using options, it would be difficult to capture the
overlap among tasks such as spreading jam on bread, spreading mustard on a hotdog, and
spreading icing on a cake. Context sensitivity raises the problem that different levels
within a task hierarchy are no longer independent. For example, the subtask of picking up
a pencil cannot be represented as a free-standing unit if the details of its execution (e.g.,
the rotation of the hand) depend on whether one is going to use the pencil to write or to
erase (see Ansuini, Santello, Massaccesi, & Castiello, 2006). Significantly, related
tensions between hierarchical compositionality and context-sensitivity have also been

noted in work on HRL (Dietterich, 2000).

Botvinick and Plaut (2002; 2004; 2006) proposed a computational model of routine
sequential behavior that is sensitive to hierarchical task structure, but which also
accommodates context-dependent subtask performance and overlap between tasks. That
model, like the HRL model we have presented here, displays transfer effects when faced

with new problems (Botvinick & Plaut, 2002). Furthermore, Ruh (2007) has
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demonstrated that the Botvinick and Plaut (2004) model can acquire target behaviors
through RL. Understanding the relationship between this computational approach and

HRL is an interesting challenge for further investigation.

Conclusion

Computational RL has proved extremely useful to research on behavior and brain
function. Our aim here has been to explore whether HRL might prove similarly
applicable. An initial motivation for considering this question derives from the fact that
HRL addresses an inherent limitation of RL, the scaling problem, which would clearly be
of relevance to any organism relying on RL-like learning mechanisms. Implementing
HRL along the lines of the actor-critic framework, thereby bringing it into alignment with
existing mappings between RL and neuroscience, reveals direct parallels between
components of HRL and specific functional neuroanatomic structures, including the
DLPFC and OFC. HRL suggests new ways of interpreting neural activity in these as well
as several other regions. HRL also resonates strongly with issues in psychology, in
particular with work on task representation and the control of hierarchically structured
behavior, adding to these a unifying normative perspective. Among the most important
implications of HRL is the way in which it highlights the option discovery problem.
Here, and on many other fronts, HRL appears to offer a potentially useful set of tools for
further investigating the computational and neural basis of hierarchical structured

behavior.
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Appendix

We present here the details of our HRL implementation and the simulations briefly
described in the main text. For clarity, we begin by describing our implementation of
non-hierarchical RL, which was used in the simulations including only primitive actions.
This will then be extended, in the next section, to the hierarchical case. All simulations
were run using Matlab (The Mathworks, Natick, MA). Code is available for download at

www.princeton.edu/~matthewb.

Basic Actor-Critic Implementation

Task and representations. Following the standard RL approach (see Sutton & Barto,
1998), tasks were represented by four elements: a set of states S, a set of actions A, a
reward function R assigning a real-valued number to every state transition, and a
transition function 7" giving a new state for each pairing of a state with an action. In our
simulations, S contained the set of location tiles in the layout depicted in Figure 4A; A
contained eight single-step movements, following the principle compass directions; R
yielded a reward of 100 on transitions to the goal state indicated with a G in Figure 4A,
otherwise zero; and 7 was deterministic. All actions were available in every state, and
actions yielded no change in state if a move into a wall was attempted. Our choice to use
deterministic actions was for simplicity of exposition, and does not reflect a limitation of

either the RL or HRL paradigm.
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Architecture. The basic RL agent comprised actor and critic components. The actor
maintained a set (matrix) of real-valued strengths (W) for each action in each state. The

critic maintained a vector V of values, attaching a real number to each state.

Training. At the outset of training, action strengths and state values were initialized to
zero; the state was initialized to the start location indicated in Figure 4A; and a time index
t was initialized at zero. On each step of processing, f, an action was selected

probabilistically according to the softmax equation:

W(s,,a)/t

e
2 eW(x,,a')/t

a’eA

Eq.1 P(a)=

where P(a) is the probability of selecting action a at step t; W(s,, a) is the weight for
action a in the current state; and 7 is a temperature parameter controlling the tendency

toward exploration in action selection (10 in our simulations). The next state (s,,,) was
then determined based on the transition function 7, and the reward for the transition (7,, )

based on R. Using these, the temporal-difference (TD) prediction error () was computed

as

Eq.2 6=r, +7V(s)-V(s)

where ¥ is a discount factor (0.9 in our simulations). The TD prediction error was then

used to update both the value function and the strength for the action just completed:
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Eq.3 V(s,)«<V(s)+a.0

Eq.4 W(s,,a)«<W(s,,a)+ 0,0

The learning rate parameters ¢ and o, were set to 0.2 and 0.1, respectively. Following

these updates, ¢ was incremented and a new action was selected. The cycle was repeated
until the goal state was reached, at which point the agent was returned to the start state, ¢

was reinitialized, and another episode was run.

HRL Implementation

Our implementation of HRL was based on the options framework described by Sutton et

al. (1999), but adapted to the actor-critic framework.

Task and Representations. The set of available actions was expanded to include options
in addition to primitive actions. Each option was associated with (1) an initiation set,
indicating the states where the option could be selected; (2) a termination function,
returning the probability of terminating the option in each state; and (3) a set of option-
specific strengths W, containing one weight for each action (primitive or abstract) at

each state.
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For the four-rooms simulations, two options could be initiated in each room, each
terminating deterministically at one of the room’s two doors. Each option also had a
pseudo-reward function, yielding a pseudo-reward of 100 at the option’s termination
state. For simplicity, each option was associated with strengths only for primitive actions
(i.e., not for other options). That is, option policies were only permitted to select
primitive actions. As indicated in the main text, options are ordinarily permitted to select
other options. This more general arrangement is compatible with the implementation

described here.

Architecture. In addition to the option-specific strengths just mentioned, the actor
maintained a ‘root’ set of strengths, used for action selection when no option was
currently active. The critic maintained a root-level value function plus a set of option-

specific value functions V..

Training. Since primitive actions can be thought of as single-step options, we shall
henceforth refer to primitive actions as ‘primitive options’ and temporally abstract
actions as ‘abstract options,” using the term ‘option’ to refer to both at once. The model
was initialized as before, with all option strengths and state values initialized to zero. On

each successive step, an option o was selected according to

W (51 ,0)/T

2 Voar G107

0’e0

Eq.5 P(o)=
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where O is the set of available options, including primitive options; o, is the option

cir
currently in control of behavior (if any); and W, (s,,0) is the option-specific — i.e., 0,
specific — strength for option o (or the root strength for o in the case where no option is
currently in control). Following identification of the next state and of the reward
(including pseudo-reward) yielded by the transition, the prediction error was calculated

for all terminating options, including primitive options, as

Eq.6 8=r,, +7"V, (s.)-V,

Octri Detrl

(Sinit )

where ¢,, is the number of time-steps elapsed since the relevant option was selected (one

for primitive actions); s, is the state in which the option was selected; o, is the option

whose policy selected the option that is now terminating (or the root value function if the

terminating option was selected by the root policy); and r,,,, is the cumulative discounted

cum

reward for the duration of the option:

Lot
i-1

Eq.7 :Zy T

cum tinie i
i=1

Note that 7, ., incorporated pseudo-reward only if s was a subgoal state for o,

it Linig +1
Thus, pseudo-reward was used to compute prediction errors ‘within’ an option, i.e., when
updating the option’s policy, but not ‘outside’ the option, at the next level up. It should

also be remarked that, at the termination of non-primitive options, two TD prediction
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errors were computed, one for the last primitive action selected under the option and one

for the option itself (see Figure 3).

Following calculation of each 9, value functions and option strengths were updated:

Eq.8 V, (s, )&V, (s, )+a.0

ctrl i Ocirl

Eq.9 W, (s, ,o00<W, (s, ,0)+a,6

Octrl init Ocrri it

The time index was then incremented and a new option/action selected, with the entire

cycle continuing until the top-level goal was reached.

In our simulations, the model was first pre-trained for a total of 50000 time-steps without
termination or reward delivery at G. This allowed option-specific action strengths and
values to develop, but did not lead to any change in strengths or values at the root level.
Thus, action selection at the top level was random during this phase of training. In order
to obtain the data displayed in Figure 4 C, for clarity of illustration, training with pseudo-

reward only was conducted with a small learning rate (o, = 0.01, o = 0.1), reinitializing

to a random state whenever the relevant option reached its subgoal.
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Notes

1. An alternative term for temporal abstraction is thus policy abstraction.

2. Some versions of HRL allow for options to be interrupted at points where another
option or action is associated with a higher expected value. See, e.g., Sutton et al.,
(1999).

3. For other work translating HRL into an actor-critic format, see Bhatnagara and
Panigrahi (2006)

4. It is often assumed that the utility attached to rewards decreases with the length of
time it takes to obtain them, and in such cases the objective is to maximize the
discounted long-term reward. As reflected in the Appendix, our implementation
assumes such discounting. For simplicity, however, discounting is ignored in the
main text.

5. The termination function may be probabilistic.

6. As discussed by Sutton et al. (1999), it is possible to update the value function based
only on comparisons between states and their immediate successors. However, the
relevant procedures, when combined with those involved in learning option-specific
policies (as described later), require complicated bookkeeping and control operations
for which neural correlates seem less plausible.

7. If it is assumed that option policies can call other options, then the actor must also
keep track of the entire set of active options and their calling relations.

8. Mean solution times over the last 10 episodes from a total of 500 episodes, averaged

over 100 simulation runs, was 11.79 with the doorway options (passageway state
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visited on 0% of episodes), compared with 9.73 with primitive actions only
(passageway visited on 79% of episodes). Note that, given a certain set of
assumptions, convergence on the optimal, shortest path, policy can be guaranteed in
RL algorithms, including those involved in HRL. However, this is only strictly true
under boundary conditions that involve extremely slow learning, due to an extremely
slow transition from exploration to exploitation. Away from these extreme
conditions, there is a marked tendency for HRL systems to “satisfice,” as illustrated
in the passageway simulation.

9. These studies, directed at facilitating the learning of environmental models, are also
relevant to learning of option hierarchies.

10. For different approaches to the mapping between HRL and neuroanatomy, see De

Pisapia (2003) and Zhou and Coggins (2002; 2004).
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1.

Figure Captions

An illustration of how options can facilitate search. (A) A search tree with arrows
indicating the pathway to a goal state. A specific sequence of seven independently
selected actions is required to reach the goal. (B) The same tree and trajectory, the
colors indicating that the first four and the last three actions have been aggregated
into options. Here, the goal state is reached after only two independent choices
(selection of the options). (C) Illustration of search using option models, which
allow the ultimate consequences of an option to be forecast without requiring

consideration of the lower-level steps that would be involved in executing the option.

An actor-critic implementation. (A) Schematic of the basic actor-critic architecture.
R(s): reward function; V(s): value function; &: temporal difference prediction error;
7(s): policy, determined by action strengths W. (B) An actor critic implementation of
HRL. o: currently controlling option, R (s): option-dependent reward function. V (s):
option-specific value functions; 6: temporal difference prediction error; 7,(s): option-
specific policies, determined by option-specific action/option strengths. (C) Putative
neural correlates to components of the elements diagramed in panel A. (D) Potential
neural correlates to components of the elements diagramed in panel C.
Abbreviations: DA: dopamine; DLPFC: dorsolateral prefrontal cortex, plus other

frontal structures potentially including premotor, supplementary motor and pre-

supplementary motor cortices; DLS, dorsolateral striatum; HT+: hypothalamus and
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other structures, potentially including the habenula, the pedunculopontine nucleus,

and the superior colliculus; OFC: orbitofrontal cortex; VS, ventral striatum.

3. A schematic illustration of HRL dynamics. a, primitive actions; o, option. On the
first timestep (¢ = 1), the agent executes a primitive action (short black arrow). Based

on the consequent state (i.e., the state at ¢ = 2), a prediction error ¢ is computed (green

arrow running from 7 =2 to t = 1), and used to update the value (V) and action/option
strengths (W) associated with the preceding state. At ¢ = 2, the agent selects an option
(long black arrow), which remains active through # = 5. During this time, primitive
actions are selected according to the option’s policy (lower tier of black arrows). A
prediction error is computed after each (lower tier of green arrows), and used to
update the option-specific values (V,) and action strengths (W,) associated with the
preceding state. These prediction errors, unlike those at the level above, take into
account pseudo-reward received throughout the execution of the option (yellow
asterisk). Once the option’s subgoal state is reached, the option is terminated. A
prediction error is computed for the entire option (long green arrow), and this is used
to update the values and option strengths associated with the state in which the option
was initiated. The agent then selects a new action at the top level, which yields
external reward (red asterisk). The prediction errors computed at the top level, but

not at the level below, take this reward into account.

4. (A) The rooms problem, adapted from Sutton et al. (1999). S§: start; G: goal. (B)

Learning curves for the eight doorway options, plotted over the first 150 occurrences
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of each (mean over 100 simulation runs). See appendix for simulation details. (C)
The upper left room from panel A, illustrating the policy learned by one doorway
option. Arrows indicate the primitive action selected most frequently in each state.
SG: option subgoal. Colors indicate the option-specific value for each state. (D)
Learning curves indicating solution times, i.e., steps to goal, on the problem
illustrated in panel A (mean over 100 simulation runs). Upper data series:
Performance when only primitive actions were included. Lower series: Performance

when both primitive actions and doorway options were included.

5. (A) The rooms problem from Figure 4, with ‘windows’ (w) defining option subgoals.
(B) Learning curves for the problem illustrated in panel A. Lower data series: steps
to goal over episodes with only primitive actions included (mean values over 100
simulation runs). Upper series: performance with both primitive actions and window
options included. (C) Illustration of performance when a ‘shortcut’ is opened up
between the upper right and lower left rooms (yellow tile). Lower trajectory: path to
goal most frequently taken after learning with only primitive actions included. Upper
trajectory: path most frequently taken after learning with both primitive actions and
doorway options. Black arrows indicate primitive actions selected by the root policy.

Colored arrows indicate primitive actions selected by two doorway options.

6. Illustration of the role of the prefrontal cortex, as postulated by guided activation

theory (Miller & Cohen, 2001). Patterns of activation in prefrontal cortex (red

elements in the boxed region) effectively select among stimulus-response pathways
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lying elsewhere in the brain (lower area). Here, representations within prefrontal
cortex correspond to option identifiers in HRL, while the stimulus-response pathways
selected correspond to option-specific policies. Figure adapted from Miller and

Cohen (2001, permission pending).
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