Hierarchical Control of Action: Some Behavioural Findings and a Model

Rick Cooper Nicolas Ruh Denis Mareschal Tim Shallice

Serial Behaviour: Evidence for an Intermediate Level

- Action slips and lapses in normal, over-learned, behaviour (Reason, 1979, 1984; Norman, 1981):
 - Errors of capture, anticipation, omission, perseveration, object substitution
- Neuropsychological disturbances of action:
 - Action Disorganisation Syndrome: Sequential and object substitution errors in object-related goal-directed sequential action
 - Ideational Apraxia: Conceptual and sequential errors in overlearned object-related action sequences
 - Amphetamine psychosis: Increased rate of responding with reduced number of response categories
 - Bradykinesia: Slowed initiation of an action sequence

Hierarchical Control: Supporting Evidence

- What makes serial behaviour hierarchical?
 - The occurrence of subsequences in different contexts, or
 - The goal/subgoal structure of behaviour
- Anecdotal behavioural evidence for hierarchy:
 - Goal-directedness but note flexible subsequence concatenation
 - Chunking, transfer, canonicity, but note interleaving
- Phenomenology:
 - Willed control of action at multiple levels
- Experimental work:
 - Botvinick & Bylsma (2005)
 - Ruh, Cooper & Mareschal (2006; in preparation)

Cooper & Shallice Model: I Hierarchical Structuring of Schemas

Cooper & Shallice Model: IV

- Strengths
 - Plausible account of routine slips and lapses
 - Good account of Action Disorganisation Syndrome (noise in schema network, object networks or both)
 - Good account of Ideational Apraxia (disconnection between schemas and objects)
 - Qualitative simulations of disorders of rate
- Limitations
 - No quantitative simulations of disorders or rate or RT effects
 - Primitive account of visual attention.
 - No learning!

Ruh et al: Experiment 1 Method

- 40 subjects learned a set of hierarchically structured tasks (beverage preparation) from feedback on task completion
- Tasks were presented on screen, and required ordered drag and drop operations to make tea/coffee
- Two hour-long training sessions; 112 trials in total
- On 50% of trials participants also completed a secondary task (auditory monitoring)
- Primary dependent measure:
 - Latency between mouse clicks either when "picking up" the spoon (nBP) or "picking up" the first ingredient (BP)

Ruh et al: Experiment 1 Results

Between-action latency at branch points depends upon task experience and presence of a secondary task

Ruh et al: Experiment 2 Aims and Method

- Aim: Explore effects of task frequency, environmental cues
- 19 subjects; 200 trials over 3 sessions
- 6 task variants, learned through instruction and feedback:

Ruh et al: Experiment 2 Selected Results

Selection of invariant actions is unaffected by secondary task, but selection at branch points is

Selection of C is speeded when the pot is transparent, but all other actions are unaffected

Conclusion

- Empirical:
 - Selection difficulties occur when low frequency responses must be chosen, environmental cues are absent, temporal dependencies are involved, or attentional processes are diverted
- Modelling:
 - Cooper & Shallice capture the patient data, but not learning data
- Ultimate goal:
 - A network that learns to settle while remaining instructable at multiple levels and sensitive to both higher goals and environmental contingencies
 - This may combine IAN and SRN concepts