

Flexible Shaping: How learning in small steps helps

Hierarchical Organization of Behavior, NIPS 2007

Kai Krueger and Peter Dayan

Gatsby Computational Neuroscience Unit

Outline

- Introduction
 - learning may require external guidance
 - shaping as a concept:
- Set-Up
 - 12-AX task, LSTM network, shaping procedure
- Results
 - simple shaping
 - when does shaping help most?
 - flexibility to adapt to variations
- Conclusions, issues and future work
 - rules and habits

Introduction

- Learning essential for flexibility
 - trial and error
 - external guidance:
 - "one shot teaching" by verbal explanation of abstract rules
 - imitation
 - shaping
- Guidance critical for complex behavior
 - branching, working memory, rapid changes

Shaping

- "a method of successive approximations" (Skinner 1938)
- Key features:
 - external alteration of reward contingencies
 - withdrawal of intermittent rewards
- Creates behavioral units
 - e.g. lever pressing of a rat
- Separate time scales / branching points
 - by providing separate stages in shaping
- Ubiquitously (and implicitly) in animal experiments

12-AX task

Demo

LSTM network

- Long Short-Term memory (Hochreiter and Schmidthuber 1997)
 - 3-layer recurrent neural network
- Provides built-in mechanisms for:
 - working memory
 - gating (input, output and forget)
- Abstract "over-simplified" model of PFC
 - basis to motivate PBWM (O'Reilly et al.)

Shaping procedure

- Teach 12-AX as successive approximations
- Separate WM timescales:
 - long: (1 / 2)
 - short: (AX/BY)
- Learning in 7 stages
 - last stage: full 12-AX
- Resource allocation
 - currently done by hand
 - each stage learned into a new block
 - all other memory blocks disabled
 - provides separation / No interference

Simple shaping

- Improvement in learning times:
 - 8 fold decrease (only final stage)
 - significantly better (including complete training)
 - median: 13 epochs, min: 8 epochs
- Need the 4 stages of shaping 1 and 2
- High variance in shaping times

What makes shaping work

- Robustness to additional structure:
 - irrelevant "experience"
 - related and unrelated tasks / inputs
- Resource allocation:
 - interference between tasks => no benefits

Shaping: when is it useful?

- Can shaping prevent scaling of learning time with task complexity?
- One aspect of complexity: Temporal credit assignment
 - increase the outer loop length=> higher temporal complexity
- Results:
 - training time still increases, but scales much slower.
 - increasing complexityshaping more important

Rule abstraction

- Rule abstraction:
 - flexibility to cope with change in statistics
- Train on the base 12-AX task (loop length 4)
- Test with variations
 - loop lengths 4, 5, 12, 40
 - disable learning
- Should perform perfectly
 - abstract rules have not changed

Generalisation

- Generalisation:
 - cope with yet unseen data (inner loop combinations)
- Train 12-AX task without AZ and CX
- Test performance on full task
- Only 7 combinations
 - one valid generalisation only?
- Mixed results:
 - differences in emphasis (1back / 0-back)
 - overall shaping still better

Reversal learning

- Reverse stimulus rule association
 - shape all components needed
- Repeatedly reverse (after 500 epochs)
 - learning of reversals.
- Identify flexibility to perform reversals
 - unshaped: mostly fails
 - shaped: succeeds more often

Conclusions

- Shaping works
- Reduces learning times
- Helps learning long time delays
 - separating time scales of actions
 - recombine "behavioral units" into sequences
- Improves abstraction and separation
- Increases flexibility to reversals
- Take home message:
 - need to take sequential and transfer learning more into account when looking at learning architectures.
- Still issues to solve though

Limitations

Resource allocation

- prime computational issue
 - done by hand (Homunculus)
- ideas to automate:
 - compute "responsibilities"
 - Mosaic

Experimental data

- no published data on learning 12-AX
- interesting manipulations:
 - loop length, target frequency, ...
 - natural grouping of alphabet

Future Work

- Still based on "habitual" learning => no instant reprogramming
- Need additional mechanisms:
 - more explicit rules
 - variable substitution
- Bilinear rules framework: (Dayan 2007)
 - recall
 - match
 - execute

- Close interaction between habitual and rule based learning
 - rules supervise habit learning
 - habits form basis of rule execution
- Results in a task grammar?

Questions?

Thank you