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Outline

 Introduction
− learning may require external guidance
− shaping as a concept: 

 Set-Up
− 12-AX task, LSTM network, shaping procedure

 Results
− simple shaping
− when does shaping help most?
− flexibility to adapt to variations

 Conclusions, issues and future work
− rules and habits



  

Introduction

 Learning essential for flexibility
− trial and error
− external guidance:

 “one shot teaching” by verbal explanation of abstract rules
 imitation 
 shaping

 Guidance critical for complex behavior
− branching, working memory, rapid changes



  

Shaping

 “a method of successive approximations” 
(Skinner 1938)

 Key features:
− external alteration of reward contingencies
− withdrawal of intermittent rewards

 Creates behavioral units
− e.g. lever pressing of a rat

 Separate time scales / branching points
− by providing separate stages in shaping

 Ubiquitously (and implicitly) in animal experiments



  

12-AX task

Demo



  

LSTM network

 Long Short-Term memory (Hochreiter and Schmidthuber 1997)

− 3-layer recurrent neural network

 Provides built-in mechanisms for:
− working memory
− gating (input, output and forget)

 Abstract “over-simplified” model of PFC
− basis to motivate PBWM (O’Reilly et al.) 



  

Shaping procedure

 Teach 12-AX as successive 
approximations

 Separate WM timescales:
− long: (1 / 2 )

− short: (AX/BY)

 Learning in 7 stages
− last stage: full 12-AX

 Resource allocation
− currently done by hand
− each stage learned into a new block

 all other memory blocks disabled

− provides separation / No interference



  

Simple shaping

• Improvement in learning times:
• 8 fold decrease (only final stage)
• significantly better (including complete training) 
• median: 13 epochs, min: 8 epochs

• Need the 4 stages of shaping 1 and 2

• High variance in shaping times



  

What makes shaping work

 Robustness to additional structure:
− irrelevant “experience”

 related and unrelated tasks / inputs

 Resource allocation:
− interference between tasks => no benefits



  

Shaping: when is it useful?

 Can shaping prevent scaling 
of learning time with task 
complexity?

 One aspect of complexity: 
Temporal credit assignment

− increase the outer loop length 
=> higher temporal complexity

  Results:
− training time still increases, but 

scales much slower.
− increasing complexity

=> shaping more important



  

Rule abstraction

 Rule abstraction:
− flexibility to cope with change in 

statistics

 Train on the base 12-AX task (loop 
length 4)

 Test with variations
− loop lengths 4, 5, 12, 40
− disable learning 

 Should perform perfectly
− abstract rules have not changed



  

Generalisation

 Generalisation:
− cope with yet unseen data 

(inner loop combinations)

 Train 12-AX task without AZ 
and  CX

 Test performance on full task

 Only 7 combinations
− one valid generalisation only? 

 Mixed results:
− differences in emphasis (1-

back / 0-back)
− overall shaping still better



  

Reversal learning

• Reverse stimulus – rule association
• shape all components needed

• Repeatedly reverse (after 500 epochs)
• learning of reversals.

• Identify flexibility to perform reversals
• unshaped: mostly fails
• shaped: succeeds more often



  

Conclusions

 Shaping works

 Reduces learning times

 Helps learning long time delays
− separating time scales of actions
− recombine “behavioral units” into sequences

 Improves abstraction and separation 

 Increases flexibility to reversals

 Take home message:
− need to take sequential and transfer learning more into account when 

looking at learning architectures.

 Still issues to solve though



  

Limitations

 Resource allocation
− prime computational issue

 done by hand (Homunculus) 

− ideas to automate:
 compute “responsibilities”
 Mosaic

 Experimental data
− no published data on learning 12-AX 
− interesting manipulations:

 loop length, target frequency, …
 natural grouping of alphabet



  

Future Work

 Still based on “habitual” learning => no instant reprogramming
 Need additional mechanisms:

− more explicit rules
− variable substitution

 Bilinear rules framework:
(Dayan 2007)

− recall
− match
− execute

 Close interaction between habitual and rule based learning
− rules supervise habit learning
− habits form basis of rule execution

 Results in a task grammar?



  

Questions?

Thank you


