Hierarchical Assignment of Behaviours by Self-Organizing

W. Moerman¹ B. Bakker² M. Wiering³

¹M.Sc. Cognitive Artificial Intelligence Utrecht University

²Intelligent Autonomous Systems Group University of Amsterdam

> ³Intelligent Systems Group Utrecht University

Neural Information Processing Systems 2007 Workshop Hierarchical Organization of Behaviour: Computational, Psychological and Neural Perspectives

(B)

NIPS 2007

1/18

Summary of Ideas

We propose:

- Shifting the design burden:
 - from task decomposition
 - to a suitable abstract representation of the state space

• • • • • • • • • • • • •

Summary of Ideas

We propose:

- Shifting the design burden:
 - from task decomposition
 - to a suitable abstract representation of the state space

• Using self-organization to figure out which behaviours are needed

- starting with uncommitted policies
- learning (parts of) its hierarchical structure
- no designed or fixed pre/post conditions

• • • • • • • • • • • •

Summary of Ideas

We propose:

- Shifting the design burden:
 - from task decomposition
 - to a suitable abstract representation of the state space

• Using self-organization to figure out which behaviours are needed

- starting with uncommitted policies
- learning (parts of) its hierarchical structure
- no designed or fixed pre/post conditions

The algorithm is called HABS:

Hierachical Assignment of Behaviours by Self-organization

• • • • • • • • • • • •

Outline

Introduction

- Hierarchical Reinforcement Learning
- Abstractions

Our Algorithm (HABS)

- High Level Policy and Subpolicies
- Self-Organizing Behaviours
- Relating HABS to Other Work

3 Experiments

- Setup
- Results

Using behaviours (temporally extended/high level actions, ...) allows

extended actions

• • • • • • • • • • • •

Using behaviours (temporally extended/high level actions, ...) allows

- "Divide and Conquer": decompose into smaller (easier) subtasks
 - task decomposition enables re-use of (sub)policies

Moerman, Bakker, Wiering (UU, UvA)

• • • • • • • • • • • •

Using behaviours (temporally extended/high level actions, ...) allows

- "Divide and Conquer": decompose into smaller (easier) subtasks
 task decomposition enables re-use of (sub)policies
- "Dæmon of Dimensionality": smaller state spaces on all levels

Using behaviours (temporally extended/high level actions, ...) allows

- "Divide and Conquer": decompose into smaller (easier) subtasks
 task decomposition enables re-use of (sub)policies
- "Dæmon of Dimensionality": smaller state spaces on all levels
- Different specific state abstractions for different (sub)policies (just wait until tomorow)

Using behaviours (temporally extended/high level actions, ...) allows

- "Divide and Conquer": decompose into smaller (easier) subtasks
 task decomposition enables re-use of (sub)policies
- "Dæmon of Dimensionality": smaller state spaces on all levels
- Different specific state abstractions for different (sub)policies (just wait until tomorow)
- Faster exploration

- Reinforcement Learning Description is random walk
- but behaviours do something consistent (hopefully)
 - they move agent non-randomly through state space

- Reinforcement Learning Description is random walk
- but behaviours do something consistent (hopefully)
 - they move agent non-randomly through state space

less random choices

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Reinforcement Learning Description is random walk
- but behaviours do something consistent (hopefully)
 - they move agent non-randomly through state space

 less random choices
 more distance covered in random walk

- Reinforcement Learning Description is random walk
- but behaviours do something consistent (hopefully)
 - they move agent non-randomly through state space

- less random choices
- more distance covered in random walk
- faster exploration

A (1) > A (1) > A

- Reinforcement Learning Description is random walk
- but behaviours do something consistent (hopefully)
 - they move agent non-randomly through state space

- less random choices
- more distance covered in random walk
- faster exploration

Drunken Mans walk

Random Walks on street level

Abstract State Space

A suitable Abstract State Space has these properties:

- it has an underlying "geometric" structure:
 - not constrained to "spatial" geometry
 - consistent mapping: points close together in state space should be near each other in abstract state space, and vice versa
- Abstract State Space significantly smaller than State Space

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Behaviour Space

- Behaviour Space: space of all possible transition vectors in the Abstract State Space
 - note: Abstract State Space treated as continuous
 - intuition: think of Behaviour Space as a sphere

Behaviour Space

- Behaviour Space: space of all possible transition vectors in the Abstract State Space
 - note: Abstract State Space treated as continuous
 - intuition: think of Behaviour Space as a sphere

- Actually occuring transitions between abstract states need to be distributed non-uniformly in the Behaviour Space
 - behaviours (transitions) in abstract state space are vectors in Behaviour Space
 - can be characterized by a limited number of vectors if clustered

HABS (Hierachical Assignment of Behaviours by Self-organization)

- One (high level) Policy_{HL} and a limited set of subpolicies
 - uses abstract state space

HABS (Hierachical Assignment of Behaviours by Self-organization)

- One (high level) Policy_{HL} and a limited set of subpolicies
 uses abstract state space
- Policy_{HL} has subpolicies as its (extended) actions:

- 4 ∃ →

HABS (Hierachical Assignment of Behaviours by Self-organization)

- One (high level) Policy_{HL} and a limited set of subpolicies
 - uses abstract state space
- Policy_{HL} has subpolicies as its (extended) actions:

subpolicies self-organize to cover required behaviours

HABS (Hierachical Assignment of Behaviours by Self-organization)

- One (high level) Policy_{HL} and a limited set of subpolicies
 - uses abstract state space
- Policy_{HL} has subpolicies as its (extended) actions:

-∢ ∃ ▶

- subpolicies self-organize to cover required behaviours
- rewards received during a behaviour are accumulated and used for High Level Policy_{HL} reward

HABS (Hierachical Assignment of Behaviours by Self-organization)

- One (high level) Policy_{HI} and a limited set of subpolicies
 - uses abstract state space
- Policy_H has subpolicies as its (extended) actions:

- subpolicies self-organize to cover required behaviours
- rewards received during a behaviour are accumulated and used for High Level Policy_{HL} reward
- subpolicy rewarding is independent of overall task

- 4 ∃ →

HABS (Hierachical Assignment of Behaviours by Self-organization)

- One (high level) Policy_{HL} and a limited set of subpolicies
 - uses abstract state space
- Policy_{HL} has subpolicies as its (extended) actions:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- subpolicies self-organize to cover required behaviours
- rewards received during a behaviour are accumulated and used for High Level Policy_{HL} reward
- subpolicy rewarding is independent of overall task

Standard RL techniques (online, off policy) like Q-learning •

 $Q(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q(s_t, a_t) + \alpha \cdot (\mathit{reward}_t + \gamma \cdot \max_a Q(s_{t+1}, a))$

• Assume: actually occuring behaviours are clustered together

- use clustering algorithm
- assign subpolicy to cluster center (specialize)

• • • • • • • • • • • •

Assume: actually occuring behaviours are clustered together

- use clustering algorithm
- assign subpolicy to cluster center (specialize)
- Exploration: agent will stumble upon new abstract states
 - transitions to new states are behaviours

Assume: actually occuring behaviours are clustered together

- use clustering algorithm
- assign subpolicy to cluster center (specialize)
- Exploration: agent will stumble upon new abstract states
 - transitions to new states are behaviours
 - abstract states are nearby

Assume: actually occuring behaviours are clustered together

- use clustering algorithm
- assign subpolicy to cluster center (specialize)
- Exploration: agent will stumble upon new abstract states
 - transitions to new states are behaviours
 - abstract states are nearby
 - random walks on small distances are disproportionately better

Assume: actually occuring behaviours are clustered together

- use clustering algorithm
- assign subpolicy to cluster center (specialize)
- Exploration: agent will stumble upon new abstract states
 - transitions to new states are behaviours
 - abstract states are nearby
 - random walks on small distances are disproportionately better
 - will happen long before overall task is completed

• • • • • • • • • • • •

Assume: actually occuring behaviours are clustered together

- use clustering algorithm
- assign subpolicy to cluster center (specialize)
- Exploration: agent will stumble upon new abstract states
 - transitions to new states are behaviours
 - abstract states are nearby
 - random walks on small distances are disproportionately better
 - will happen long before overall task is completed

Agent can discover meaningful behaviours long before it has a chance to solve overall problem (due to Random Walks properties)

Clustering and Rewarding Subpolicies

- Subpolicy terminates \iff new abstract state reached or timeout
- On subpolicy termination: compare actually executed behaviour to cluster center (characteristic behaviour) of terminated subpolicy
 - if closest match: move cluster center towards experience

Clustering and Rewarding Subpolicies

- Subpolicy terminates \iff new abstract state reached or timeout
- On subpolicy termination: compare actually executed behaviour to cluster center (characteristic behaviour) of terminated subpolicy
 - if closest match: move cluster center towards experience

Always train subpolicy using Reinforcement Learning

$\mathit{reward}_{\mathit{sub}} = \Big\{$	(0	not terminated
	1	terminated: closest match
	κ _r	terminated: another cluster center is closer
	κ _f	terminated: timeout (failed to reach anything)
	•	

repeat

// run HL-Policy

Policy_{HL} selects SubPolicy SUB_i;

// HL-action

update *Policy_{HL}* with *reward_{HL}*; until task solved or timeout_{HL} // for executing SUB i

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours

repeat

```
Policy<sub>HL</sub> selects SubPolicy SUB<sub>i</sub>;

repeat // execute SUB i

SUB<sub>i</sub> selects and executes a primitive action;

if new abstract state then BREAK; // behaviour=>terminate

else update SUB<sub>i</sub> with 0; // sparse reward

until timeout<sub>SUB</sub>
```

update *Policy_{HL}* with *reward_{HL}*; until task solved or timeout_{HL}

```
repeat
    Policy_{HL} selects SubPolicy SUB_i;
    repeat
        SUB<sub>i</sub> selects and executes a primitive action :
        if new abstract state then BREAK :
        else update SUB<sub>i</sub> with 0;
    until timeoutsur
    if timeout<sub>SUB</sub> then punish SUB<sub>i</sub> :
                                        // no new abs. state
    else
                                   // compare EXECuted with clusters
        if EXEC ∈ CLUSTER<sub>SUB</sub> then
            reward SUB_i:
                                                                        // match
            move CLUSTER<sub>SUB</sub> towards EXEC;
                                                                        // match
        else punish SUB<sub>i</sub>;
                                                                   // no match
    update Policy_{HI} with reward<sub>HI</sub>;
until task solved or timeout<sub>HI</sub>
```

NIPS 2007

11/18

```
repeat
    reward_{HI} = 0:
                                                // for accumulating rewards
    Policy_{HL} selects SubPolicy SUB_i;
    repeat
         SUB<sub>i</sub> selects and executes a primitive action :
         reward_{HI} \leftarrow reward_{HI} + receivedReward;
                                                                      // accumulate
        if new abstract state then BREAK :
        else update SUB<sub>i</sub> with 0;
    until timeoutsub
    if timeout<sub>SUB</sub> then punish SUB<sub>i</sub> ;
    else
        if EXEC ∈ CLUSTER<sub>SUB</sub> then
             reward SUB_i:
             move CLUSTER<sub>SUB</sub> towards EXEC;
        else punish SUB<sub>i</sub>;
    update Policy_{HI} with reward<sub>HI</sub>;
until task solved or timeout<sub>HI</sub>
```

NIPS 2007

11/18

```
repeat
    reward_{HI} = 0:
    Policy_{HL} selects SubPolicy SUB_i;
    repeat
         SUB<sub>i</sub> selects and executes a primitive action :
         reward_{HI} \leftarrow reward_{HI} + receivedReward;
         if new abstract state then BREAK :
         else update SUB<sub>i</sub> with 0;
    until timeoutsub
    if timeout<sub>SUB</sub> then punish SUB<sub>i</sub>;
    else
         if EXEC ∈ CLUSTER<sub>SUB</sub> then
             reward SUB_i:
              move CLUSTER<sub>SUB</sub> towards EXEC;
         else punish SUB<sub>i</sub>;
    update Policy_{HI} with reward<sub>HI</sub>;
until task solved or timeout<sub>HI</sub>
```

The Difference: Shifting the Burden

HABS differs from other hierarchical RL approaches:

- no focus on defining a task decomposition (MAXQ, HEXQ, HAM)
 - no need to define start and stop conditions
- starts with uncommitted subpolicies that self-organize

HABS shifts design burden from task decomposition to defining a suitable abstract representation

Like many hierarchical approaches, HABS depends on a certain structure ("geometry") in the State Space

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Experiment Description ("Cleaner")

• Gridworld environment:

- actions: North, East, South, West, Pickup_{object}, Drop_{object}
- walls, drop areas and portable objects (max. 1 per cell)
- reward for each object dropped at drop area

• • • • • • • • • • • • •

Experiment Description ("Cleaner")

• Gridworld environment:

- actions: North, East, South, West, Pickup_{object}, Drop_{object}
- walls, drop areas and portable objects (max. 1 per cell)
- reward for each object dropped at drop area

• "Cleaner":

- many objects
- agent can carry 10
- high level policy: multilayer neural network
- subpolicies: multilayer neural network

• • • • • • • • • • • •

Experiment Description ("Cleaner")

• Gridworld environment:

- actions: North, East, South, West, Pickup_{object}, Drop_{object}
- walls, drop areas and portable objects (max. 1 per cell)
- reward for each object dropped at drop area

• "Cleaner":

- many objects
- agent can carry 10
- high level policy: multilayer neural network
- subpolicies: multilayer neural network •

• • • • • • • • • • • • •

• Task has spatial and non-spatial aspects!

State Space and Abstract State Spaces

State Space: (subpolicies)

 Agent has a simulated "radar" → observes object/wall/drop areas (~ 100 inputs)

State Space and Abstract State Spaces

State Space: (subpolicies)

 Agent has a simulated "radar" ● observes object/wall/drop areas (~ 100 inputs)

Abstract State Space: (high level policy)

- "cleaner" task uses < area_{agent}, cargo > to determine subpolicy termination
 - no info about other objects!

< □ > < □ > < □ > < □ >

State Space and Abstract State Spaces

State Space: (subpolicies)

 Agent has a simulated "radar" ● observes object/wall/drop areas (~ 100 inputs) Ø.

Abstract State Space: (high level policy)

- "cleaner" task uses < area_{agent}, cargo > to determine subpolicy termination
 - no info about other objects!
 - objects moving/(dis)appearing without the agent is no behaviour: agent behaviour only defined by its position and cargo

• • • • • • • • • • • •

State Space and Abstract State Spaces

State Space: (subpolicies)

 Agent has a simulated "radar" ● observes object/wall/drop areas (~ 100 inputs) Ð.

Abstract State Space: (high level policy)

- "cleaner" task uses < area_{agent}, cargo > to determine subpolicy termination
 - no info about other objects!
 - objects moving/(dis)appearing without the agent is no behaviour: agent behaviour only defined by its position and cargo
 - but objects are important for behaviour selection:
 "high level radar" observations (wider and coarser than low level)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

State Space and Abstract State Spaces

State Space: (subpolicies)

 Agent has a simulated "radar" ● observes object/wall/drop areas (~ 100 inputs)

Abstract State Space: (high level policy)

- "cleaner" task uses < area_{agent}, cargo > to determine subpolicy termination
 - no info about other objects!
 - objects moving/(dis)appearing without the agent is no behaviour: agent behaviour only defined by its position and cargo
 - but objects are important for behaviour selection:
 "high level radar" observations (wider and coarser than low level)
- Better to say: "radar" observation is Abstract State and only a subset of the Abstract States is used for subpolicy termination

Experiments

Results

Cleaner: Results

Boxplots:

- HABS

- "flat" learner

 $m{lpha} = \{ {\color{red} 0.02}, {\color{black} 0.01} \}$

HABS: 5 hidden (Policy_{HL}) 2 hidden (subpol.)

"flat": 15 hidden

• HABS is much faster and only slightly suboptimal

- "flat" has wide variance in convergence value
- "flat" has far wider variance in convergence time

Results

HABS Demonstration

- HABS near convergence
- shows suboptimality: agent ignores objects in area I (pink, center)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours

NIPS 2007 16 / 18

Conclusions / Future Work

o conclusions about HABS:

- possible to shift design burden from task decomposition to state space abstraction
- learns conditions for behaviours by self-organizing
- can start with unspecified behaviours (no fixed pre/post conditions)

• future work

- try HABS with 3 or more layers
- behaviour representation: limited to vectors?

• • • • • • • • • • • •

Moerman, Bakker, Wiering (UU, UvA)

Self-Organizing Hierarchical Behaviours

NIPS 2007 18 / 18

(日)

Action Space and Primitive Actions

Action Space: space of all possible transition vectors in the state space

• primitive actions are vectors in the *Action Space* (a subset)

• primitive actions are not distributed evenly but clustered together

- primitive actions are not distributed evenly but clustered together
- only one primitive action for North instead of many North₁, North₂, North₃,... for going north from state 1 to 352, from state 2 to 369, from state 3 to 792345, ...
- relative (vectors), not absolute (North = "in state A goto B")

back to behaviour space

Behaviours Mirror Primitive Actions

Primitive Actions	Behaviours
vectors in action space	vectors in behaviour space
relative to state	relative to abstract state
clustered	hopefully clustered
1 time step	1 high level time step
action successful	reach new abstract state
action fails	timeout

back to behaviour space

イロト イヨト イヨト イヨト

Training Subpolicies, How?

- a subpolicy starts with no knowledge (i.e. randomly initated)
 - what is its desired or characteristic behaviour?
- train on pairs of abstract states?
 - designer needs to specify pre/post conditions
- rewards independent of the overall task (Policy_{HL})
 - ▶ behaviour "A ⇒ goal" same as "B ⇒ C"
 - ▶ blue behaviour has high Q_{HL}-value in A but low Q_{HL}-value in B
 - red behaviour has high Q_{HL}-value in B

not dependence on Policy_{HL} on fixed pre/post conditions!

▶ back to Policy_{HL}

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Reinforcement Learning

An agent:

- observes a state
- executes an action
- receives a reward

Based on this information, it needs to learn what actions to select in what situations – using an RL algorithm:

- future rewards need to be discounted
- stored in tabular form or function approximator

back to intro

A (1) > A (2) > A

Q-Learning and Advantage Learning

Q-Learning:

$$\begin{array}{rcl} Q(s_t, a_t) & \leftarrow & (1 - \alpha) \cdot Q(s_t, a_t) & + \\ & & \alpha \cdot (\mathit{reward}_{t+1} + \gamma \cdot \max_a Q(s_{t+1}, a)) \end{array}$$

Advantage Learning (Baird):

$$\begin{array}{lcl} \mathcal{A}(s_t, a_t) & \leftarrow & (1 - \alpha) \cdot \mathcal{A}(s_t, a_t) & + \\ & & & \alpha \cdot \left(\begin{array}{c} \max_{a_t} \mathcal{A}(s_t, a_t) & + \\ & & \frac{\mathsf{reward}_{t+1} + \gamma \max_a \mathcal{A}(s_{t+1}, a) - \max_{a_t} \mathcal{A}(s_t, a_t)}{k} \end{array} \right) \end{array}$$

• • • • • • • • • • • •

NIPS 2007

23/18

where α is the learning rate, and *k* the scaling factor ($0 < k \le 1$). With k = 1 this equation reduces to Q-Learning

back to intro back to Proposed Algorithm back to Subpolicies

Formula for Clustering

- used euclidean distance for determining closest cluster center
- if subpolicy was the winner, move cluster center:

 $char_{t+\Delta t} = (1 - \alpha) \cdot char_t + \alpha \cdot act_{t \to t+\Delta t}$

where $act_{t \to t+\Delta t}$ is the actually executed behaviour, Δt the time it took to execute the subpolicy, and *char_t* the characteristic behaviour vector for a subpolicy at time *t*

- otherwise: do nothing with the clustering
 - subpolicy executed a behaviour that is better matched by another subpolicy

back to clustering

(ロ) (同) (E) (E) (E) (O)

Details on Self Organizing

- When agent reaches new abstract state it experiences a behaviour
 - center of closest cluster moved towards the newly experienced behaviour
 - this is the clustering part
- characteristic behaviour for a subpolicy is represented by cluster center
 - reward subpolicy when actually executed behaviour closest to its own cluster center
 - forced "outward" by punishing "staying in the same abstract state"
 - the self-organizing part

• • • • • • • • • • • •

Formulae for Rewarding Behaviours 1

At every time step during the execution of a subpolicy, the normal RL (Q-Learning, Advantage Learning, ...) update is applied:

$$Q_L(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q_L(s_t, a_t) + \alpha \cdot (r_{t+1} + \gamma \cdot \max_a Q_L(s_{t+1}, a))$$

 Q_{L} is the Q-Value for a (low level) subpolicy, α and γ are the learning rate and discount as usual

Sensors

- agent has radar-like sensorgrid (8 areas per ring)
 - details nearby, course observations far away
 - trade off between detail and amount of sensor data

observation: vector of area densities

- $\blacktriangleright \langle \frac{1}{28}, \frac{2}{24}, \frac{3}{28}, \frac{4}{24}, \dots, \frac{3}{8}, 0, 0, \frac{1}{6}, \dots, \frac{2}{3}, 0, \frac{1}{3}, 1, \dots, 1, 1, 0, 1, \dots \rangle$
- for walls / objects / drop areas, so 3 × 32 inputs

extra values coding for position, cargo, etc were added

back to state space

Neural Nets for Subpolicies 1

Linear neural network:

Multilayer Neural network:

Both are "feed forward" networks (no recurrence)

back to experiment description

Appendix

Neural Nets for Subpolicies 2

- each subpolicy has 6 neural nets, one (shown on prev. slide) for each action a_i, giving Q(s, a_i) in state s
 - allows for different inputs for different actions (not tried here)
- advantage of seperate networks:
 - no interference between actions
 - less hidden neurons needed for each network
 - faster backpropagation (because only one action is updated)

back to experiment description

• • • • • • • • • • • •

Comparing with Flat Learners

A "flat" reinforcement learning agent was used for comparison

- first experiment (maze): tabular
 - each observation is unique (because position is included)
 - more efficient storage in table (only store position)
- second experiment (cleaner): neural network
 - comparable to what the high level policy used
 - also tried with more hidden neurons

used best performance settings for the "flat" learner (took lots and lots of time to find)

Experiment: Maze

gridworld environment:

- actions: North, East, South, West, Pickup_{object}, Drop_{object}
- walls, drop areas and portable objects (max. 1 per cell)
- reward for each object dropped at drop area

- first experiment (Maze):
 - big $(39 \times 36 \approx 1.4 \cdot 10^3 \text{ cells})$
 - only one object
 - high level policy tabular
 - subpolicies: linear neural network D

back to Cleaner Description

📔 🕨 back to Cleaner Resu

Appendix

First Experiment (Maze): Results

- HABS compared with "flat" learner (best performance, tabular)
- for HABS, only coarse search was done, but no extensive fine tuning!

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- HABS is order of magnitude faster but sub optimal
- memory usage:
 - ▶ flat learner needs to store 10^7 Q-values (≈ 100 megabyte)
 - ► HABS needs $5 \cdot 10^3 \times numberOfSubpolicies$ (≈ 1 megabyte)
 - Neural network storage is neglectable

back to Cleaner Description back to Cleaner Results