Hierarchical Assignment of Behaviours by
Self-Organizing

W. Moerman' B. Bakker? M. Wiering®

M.Sc. Cognitive Atrtificial Intelligence
Utrecht University

2|ntelligent Autonomous Systems Group
University of Amsterdam

SIntelligent Systems Group
Utrecht University

Neural Information Processing Systems 2007 Workshop
Hierarchical Organization of Behaviour: Computational,
Psychological and Neural Perspectives

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 1/18

Summary of Ideas

We propose:
@ Shifting the design burden:

» from task decomposition
» to a suitable abstract representation of the state space

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007

2/18

Summary of Ideas

We propose:

@ Shifting the design burden:

» from task decomposition
» to a suitable abstract representation of the state space

@ Using self-organization to figure out which behaviours are needed

» starting with uncommitted policies
» learning (parts of) its hierarchical structure
» no designed or fixed pre/post conditions

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 2/18

Summary of Ideas

We propose:

@ Shifting the design burden:

» from task decomposition
» to a suitable abstract representation of the state space

@ Using self-organization to figure out which behaviours are needed

» starting with uncommitted policies
» learning (parts of) its hierarchical structure
» no designed or fixed pre/post conditions

The algorithm is called HABS:
Hierachical Assignment of Behaviours by Self-organization

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 2/18

Outline

0 Introduction
@ Hierarchical Reinforcement Learning
@ Abstractions

© Our Algorithm (HABS)
@ High Level Policy and Subpolicies
@ Self-Organizing Behaviours
@ Relating HABS to Other Work

Q Experiments

@ Setup
@ Results

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours

NIPS 2007

3/18

Hierarchical Reinforcement Learning
Why use hierarchies at all?

Using behaviours (temporally extended/high level actions, ...) allows

extended actions

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 4/18

Hierarchical Reinforcement Learning
Why use hierarchies at all?

Using behaviours (temporally extended/high level actions, ...) allows

@ “Divide and Conquer”: decompose into smaller (easier) subtasks
» task decomposition enables re-use of (sub)policies

task

subtask, l subtasks

/ subtask,
subsubtask, subs\ul%

subsubtask, subsubtask,

extended actions decomposition and re-use

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 4/18

Hierarchical Reinforcement Learning
Why use hierarchies at all?

Using behaviours (temporally extended/high level actions, ...) allows

@ “Divide and Conquer”: decompose into smaller (easier) subtasks
» task decomposition enables re-use of (sub)policies

@ “Dzemon of Dimensionality”: smaller state spaces on all levels

task [ESE SHENEEN|

subtask, l subtasks

/ subtask,
subsubtask, subs\ul% A

subsubtask, subsubtask,

>

> »

extended actions decomposition and re-use curse of dimensionality

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 4/18

Hierarchical Reinforcement Learning
Why use hierarchies at all?

Using behaviours (temporally extended/high level actions, ...) allows

@ “Divide and Conquer”: decompose into smaller (easier) subtasks
» task decomposition enables re-use of (sub)policies

@ “Dzemon of Dimensionality”: smaller state spaces on all levels

@ Different specific state abstractions for different (sub)policies
(just wait until tomorow)

extended actions

Moerman, Bakker, Wiering (UU, UvA)

task

subtask, l subtasks

/ subtask,
subsubtask, subsulbx

subsubtask, subsubtask,

decomposition and re-use

>

- =3

curse of dimensionality

Self-Organizing Hierarchical Behaviours NIPS 2007

4/18

Hierarchical Reinforcement Learning
Why use hierarchies at all?

Using behaviours (temporally extended/high level actions, ...) allows

@ “Divide and Conquer”: decompose into smaller (easier) subtasks
» task decomposition enables re-use of (sub)policies

@ “Dzemon of Dimensionality”: smaller state spaces on all levels

@ Different specific state abstractions for different (sub)policies
(just wait until tomorow)

@ Faster exploration

task [ESE SHENEEN|

subtask, l subtasks

/ subtask,
subsubtask, subs\ul% A

subsubtask, subsubtask,

>

> »

extended actions decomposition and re-use curse of dimensionality

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 4/18

Hierarchical Reinforcement Learning
Hierarchies Make Exploration Faster

@ Reinforcement Learning @ exploration is random walk
@ but behaviours do something consistent (hopefully)
» they move agent non-randomly through state space
e

=

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 5/18

Hierarchical Reinforcement Learning
Hierarchies Make Exploration Faster

@ Reinforcement Learning @ exploration is random walk
@ but behaviours do something consistent (hopefully)
» they move agent non-randomly through state space
e

=

» less random choices

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 5/18

Hierarchical Reinforcement Learning
Hierarchies Make Exploration Faster

@ Reinforcement Learning @ exploration is random walk
@ but behaviours do something consistent (hopefully)
» they move agent non-randomly through state space
e

=

» |ess random choices
» more distance covered
in random walk

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 5/18

Hierarchical Reinforcement Learning
Hierarchies Make Exploration Faster

@ Reinforcement Learning @ exploration is random walk
@ but behaviours do something consistent (hopefully)
» they move agent non-randomly through state space
e

=

» less random choices

» more distance covered
in random walk

» faster exploration

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 5/18

Hierarchical Reinforcement Learning
Hierarchies Make Exploration Faster

@ Reinforcement Learning @ exploration is random walk
@ but behaviours do something consistent (hopefully)
» they move agent non-randomly through state space
e

=

Drunken Mans walk

» less random choices

» more distance covered
in random walk

» faster exploration

[t

Random Walks on street level

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 5/18

Introduction Abstractions

Abstract State Space

primitive N P abstract
! Sk -
actlon ‘:;‘::‘:‘::929-:‘ pping a,ctlons
CCSPET o S '
PR S
S RIS
SRS
state space abstract state space

A suitable Abstract State Space has these properties:
@ it has an underlying “geometric” structure:

» not constrained to “spatial” geometry
» consistent mapping: points close together in state space should be
near each other in abstract state space, and vice versa

@ Abstract State Space significantly smaller than State Space

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 6/18

Behaviour Space

@ Behaviour Space: space of all possible transition
vectors in the Abstract State Space

> note: Abstract State Space treated as continuous
» intuition: think of Behaviour Space as a sphere

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours

NIPS 2007

7/18

Behaviour Space

@ Behaviour Space: space of all possible transition
vectors in the Abstract State Space
> note: Abstract State Space treated as continuous
» intuition: think of Behaviour Space as a sphere

(Abstract State Space properties continued . . .)

@ Actually occuring transitions between abstract states need to be
distributed non-uniformly in the Behaviour Space
» behaviours (transitions) in abstract state space
are vectors in Behaviour Space
» can be characterized by a limited number of vectors if clustered

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 7/18

High Level Policy and Subpolicies
Proposed Algorithm

HABS (Hierachical Assignment of Behaviours by Self-organization)

@ One (high level) Policyy. and
a limited set of subpolicies

> uses abstract state space

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 8/18

High Level Policy and Subpolicies
Proposed Algorithm

HABS (Hierachical Assignment of Behaviours by Self-organization)

@ One (high level) Policyy. and 28
a limited set of subpolicies 08

> uses abstract state space /) §w

@ Policyy has subpolicies as its : °*° X subpolncreso/jgjaf'o g
(extended) actions: ‘ a8

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 8/18

High Level Policy and Subpolicies
Proposed Algorithm

HABS (Hierachical Assignment of Behaviours by Self-organization)

@ One (high level) Policyy. and Polioyy o 28
a limited set of subpolicies : a8

> uses abstract state space " 4 YENC g

@ Policyy has subpolicies as its *0\0\0 subpoliciés;;f'O)/ZQ e
(extended) actions: e d 8

» subpolicies self-organize to cover required behaviours

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 8/18

High Level Policy and Subpolicies
Proposed Algorithm

HABS (Hierachical Assignment of Behaviours by Self-organization)

@ One (high level) Policyy. and Polioyy o 28
a limited set of subpolicies : a8

> uses abstract state space " 4 YENC g

@ Policyy has subpolicies as its *0\0\0 subpoliciés;;f'O)/ZQ e
(extended) actions: e d 8

» subpolicies self-organize to cover required behaviours
» rewards received during a behaviour are accumulated
and used for High Level Policyy, reward

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 8/18

High Level Policy and Subpolicies
Proposed Algorithm

HABS (Hierachical Assignment of Behaviours by Self-organization)

@ One (high level) Policyy. and Polioy o
a limited set of subpolicies >

> uses abstract state space

oords ajels
10B1ISQR

@ Policyy. has subpolicies as its o2 ol subpolicies T 50!
(extended) actions: NN yg’?
» subpolicies self-organize to cover required behaviours
» rewards received during a behaviour are accumulated
and used for High Level Policyy, reward
» subpolicy rewarding is independent of overall task

soeds ajels

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 8/18

High Level Policy and Subpolicies
Proposed Algorithm

HABS (Hierachical Assignment of Behaviours by Self-organization)

@ One (high level) Policyy. and
a limited set of subpolicies

> uses abstract state space

10RAISqR

oords ajels

7

@ Policyy,. has subpolicies as its *0\0\0 subpolncreso;gj;/vo
(extended) actions: ‘
» subpolicies self-organize to cover required behaviours
» rewards received during a behaviour are accumulated
and used for High Level Policyy, reward
» subpolicy rewarding is independent of overall task

eaeds 21ElS

@ Standard RL technigques (online, off policy) like Q-learning

Q(st,ar) — (1 —a)-Q(st,a) + - (rewards + - - max Q(st11,a))

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 8/18

Our Solution: Self-Organizing the Behaviours

@ Assume: actually occuring behaviours are clustered together

» use clustering algorithm
» assign subpolicy to cluster center (specialize)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007

9/18

Our Solution: Self-Organizing the Behaviours

@ Assume: actually occuring behaviours are clustered together

» use clustering algorithm
» assign subpolicy to cluster center (specialize)

@ Exploration: agent will stumble upon new abstract states
» transitions to new states are behaviours

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007

9/18

Our Solution: Self-Organizing the Behaviours

@ Assume: actually occuring behaviours are clustered together

» use clustering algorithm
» assign subpolicy to cluster center (specialize)

@ Exploration: agent will stumble upon new abstract states

» transitions to new states are behaviours
» abstract states are nearby

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007

9/18

Our Solution: Self-Organizing the Behaviours

@ Assume: actually occuring behaviours are clustered together

» use clustering algorithm
» assign subpolicy to cluster center (specialize)

@ Exploration: agent will stumble upon new abstract states

» transitions to new states are behaviours
» abstract states are nearby
» random walks on small distances are disproportionately better

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 9/18

Our Solution: Self-Organizing the Behaviours

@ Assume: actually occuring behaviours are clustered together
» use clustering algorithm
» assign subpolicy to cluster center (specialize)

@ Exploration: agent will stumble upon new abstract states
» transitions to new states are behaviours
» abstract states are nearby
» random walks on small distances are disproportionately better
» will happen long before overall task is completed

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 9/18

Our Solution: Self-Organizing the Behaviours

@ Assume: actually occuring behaviours are clustered together
» use clustering algorithm
» assign subpolicy to cluster center (specialize)

@ Exploration: agent will stumble upon new abstract states
» transitions to new states are behaviours
» abstract states are nearby
» random walks on small distances are disproportionately better
» will happen long before overall task is completed

Agent can discover meaningful behaviours long before it has a chance
to solve overall problem (due to Random Walks properties)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 9/18

Self-Organizing Behaviours
Clustering and Rewarding Subpolicies

@ Subpolicy terminates <= new abstract state reached or timeout

@ On subpolicy termination: compare actually executed behaviour to
cluster center (characteristic behaviour) of terminated subpolicy

» if closest match: move cluster center towards experience

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 10/18

Self-Organizing Behaviours
Clustering and Rewarding Subpolicies

@ Subpolicy terminates <= new abstract state reached or timeout

@ On subpolicy termination: compare actually executed behaviour to
cluster center (characteristic behaviour) of terminated subpolicy

» if closest match: move cluster center towards experience

@ Always train subpolicy using Reinforcement Learning

0 not terminated

1 terminated: closest match

kr terminated: another cluster center is closer
k¢ terminated: timeout (failed to reach anything)

rewardsyp =

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 10/18

HABS in Pseudo Code

repeat // run HL-Policy
Policyy; selects SubPolicy SUB; ; // HL-action
update Policyn, with rewardy; ; // for executing SUB i

until fask solved or timeouty,

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 11/18

HABS in Pseudo Code

repeat

Policyn selects SubPolicy SUB; ;

repeat // execute SUB i
SUB; selects and executes a primitive action ;

if new abstract state then BREAK ; // behaviour=>terminate
else update SUB; with 0 ; // sparse reward
until timeoutsz

update Policyy with rewardy ;
until fask solved or timeouty,

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 11/18

HABS in Pseudo Code

repeat

Policyn selects SubPolicy SUB; ;

repeat
SUB; selects and executes a primitive action ;

if new abstract state then BREAK ;
else update SUB,; with 0 ;
until timeoutsp

if timeoutsys then punish SUB,; ; // no new abs. state

else // compare EXECuted with clusters
if EXEC € CLUSTERs 5 then

reward SUB,; ; // match

move CLUSTERsg towards EXEC ; // match

else punish SUB; ; // no match

update Policyy with rewardy ;
until fask solved or timeouty,

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 11/18

HABS in Pseudo Code

repeat
rewardy, =0 ; // for accumulating rewards
Policyn selects SubPolicy SUB; ;
repeat
SUB; selects and executes a primitive action ;
rewardy, < rewardy, + receivedReward ; // accumulate

if new abstract state then BREAK ;
else update SUB,; with 0 ;
until timeoutsz

if timeoutsys then punish SUB,; ;
else
if EXEC € CLUSTERg5 then
reward SUB; ;
move CLUSTERs 5 towards EXEC ;
else punish SUB; ;
update Policyy with rewardy ;
until task solved or timeouty,

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 11/18

HABS in Pseudo Code

repeat
rewardy, =0 ;
Policyn selects SubPolicy SUB; ;
repeat
SUB; selects and executes a primitive action ;
rewardy, < rewardy; + receivedReward ;
if new abstract state then BREAK ;
else update SUB; with 0 ;
until timeouts g

if timeoutsys then punish SUB,; ;
else
if EXEC € CLUSTERg5 then
reward SUB; ;
move CLUSTERs 5 towards EXEC ;
else punish SUB; ;
update Policyy with rewardy ;
until task solved or timeouty,

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007

11/18

il 4415 e Qi i
The Difference: Shifting the Burden

HABS differs from other hierarchical RL approaches:

@ no focus on defining a task decomposition (MAXQ, HEXQ, HAM)
» no need to define start and stop conditions

@ starts with uncommitted subpolicies that self-organize

HABS shifts design burden from task decomposition to defining a
suitable abstract representation

Like many hierarchical approaches, HABS depends on a
certain structure (“geometry”) in the State Space

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 12/18

Sz
Experiment Description (“Cleaner”)

@ Gridworld environment:

» actions: North, East, South, West, Pickupopject, Dropopject
> walls, drop areas and portable objects (max. 1 per cell)
» reward for each object dropped at drop area

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007

13/18

Sz
Experiment Description (“Cleaner”)

@ Gridworld environment:
» actions: North, East, South, West, Pickupopject, Dropopject
> walls, drop areas and portable objects (max. 1 per cell)
» reward for each object dropped at drop area

@ “Cleaner”:
> many objects
»> agent can carry 10
> high level policy: multilayer
neural network
> subpolicies: multilayer
neural network

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 13/18

Sz
Experiment Description (“Cleaner”)

@ Gridworld environment:
» actions: North, East, South, West, Pickupopject, Dropopject
> walls, drop areas and portable objects (max. 1 per cell)
» reward for each object dropped at drop area

@ “Cleaner”:
> many objects
»> agent can carry 10
> high level policy: multilayer
neural network
> subpolicies: multilayer
neural network

@ Task has spatial and non-spatial aspects!

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 13/18

State Space and Abstract State Spaces

State Space: (subpolicies)

@ Agent has a simulated “radar” @9 observes
object/wall/drop areas (~ 100 inputs)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 14/18

State Space and Abstract State Spaces

State Space: (subpolicies)

@ Agent has a simulated “radar” @9 observes
object/wall/drop areas (~ 100 inputs)

Abstract State Space: (high level policy)

@ “cleaner” task uses < areaasgent, cargo > to determine
subpolicy termination

» no info about other objects!

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 14/18

State Space and Abstract State Spaces

State Space: (subpolicies)

@ Agent has a simulated “radar” @9 observes
object/wall/drop areas (~ 100 inputs)

Abstract State Space: (high level policy)
@ “cleaner” task uses < areaasgent, cargo > to determine
subpolicy termination

» no info about other objects!
» objects moving/(dis)appearing without the agent is no behaviour:
agent behaviour only defined by its position and cargo

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 14/18

State Space and Abstract State Spaces

State Space: (subpolicies)

@ Agent has a simulated “radar” @9 observes
object/wall/drop areas (~ 100 inputs)

Abstract State Space: (high level policy)

@ “cleaner” task uses < areaasgent, cargo > to determine
subpolicy termination
» no info about other objects!
» objects moving/(dis)appearing without the agent is no behaviour:
agent behaviour only defined by its position and cargo
» but objects are important for behaviour selection:
“high level radar” observations (wider and coarser than low level)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 14/18

State Space and Abstract State Spaces

State Space: (subpolicies)

@ Agent has a simulated “radar” @9 observes
object/wall/drop areas (~ 100 inputs)

Abstract State Space: (high level policy)

@ “cleaner” task uses < areaasgent, cargo > to determine
subpolicy termination
» no info about other objects!
» objects moving/(dis)appearing without the agent is no behaviour:
agent behaviour only defined by its position and cargo
» but objects are important for behaviour selection:
“high level radar” observations (wider and coarser than low level)

@ Better to say: “radar” observation is Abstract State —and only a
subset of the Abstract States is used for subpolicy termination

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 14/18

Cleaner: Results

70

60

50

40

30

20

collected objects in 1000 steps

10

[

|

I

1

flat 0.01 =———
flat 0.02 =——

II=IIIIIIIIIINI ITTL

—r
P

0
0.0 010°

Moerman, Bakker, Wiering (UU, UvA)

1.00107

h))
2.0010° 3.0010° 40010
number of steps

Self-Organizing Hierarchical Behaviours

Boxplots:

- HABS

- “flat” learner

o = {0.02, 0.01}

HABS:
5 hidden (Policyn,)

2 hidden (subpol.)

“flat”: 15 hidden

HABS is much faster and only slightly suboptimal

> “flat” has wide variance in convergence value {
» “flat” has far wider variance in convergence time <—-

NIPS 2007

15/18

Results
HABS Demonstration

@ HABS near convergence
@ shows suboptimality: agent ignores objects in area | (pink, center)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 16/18

Conclusions / Future Work

@ conclusions about HABS:

» possible to shift design burden from task decomposition to state
space abstraction

» |earns conditions for behaviours by self-organizing

» can start with unspecified behaviours (no fixed pre/post conditions)

o future work

» try HABS with 3 or more layers
» behaviour representation: limited to vectors?

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 17/18

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 18/18

Action Space and Primitive Actions

Action Space: space of all possible transition
vectors in the state space
@ primitive actions are vectors in the Action
Space (a subset)

@ primitive actions are not distributed evenly but clustered together

» primitive actions are not distributed evenly but clustered together
» only one primitive action for North instead of many
Northy, Norths, Norths, . . . for going north from state 1 to 352, from
state 2 to 369, from state 3 to 792345, . ..

@ relative (vectors), not absolute (North = “in state A goto B”)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 19/18

Behaviours Mirror Primitive Actions

Primitive Actions

Behaviours

vectors in action space
relative to state
clustered

1 time step

action successful
action fails

Moerman, Bakker, Wiering (UU, UvA)

vectors in behaviour space
relative to abstract state
hopefully clustered

1 high level time step
reach new abstract state
timeout

Self-Organizing Hierarchical Behaviours NIPS 2007

20/18

Training Subpolicies, How?

@ a subpolicy starts with no knowledge (i.e. randomly initated)
» what is its desired or characteristic behaviour?

@ ftrain on pairs of abstract states?
> designer needs to specify pre/post conditions

@ rewards independent of the overall task (Policyy,)

» behaviour “A = goal” same as “B = C”
» blue behaviour has high Qy;-value in A but low Qg -value in B
> red behaviour has high Qg -value in B

ﬁ
Ao 5 <B, C

not dependence on Policyy, on fixed pre/post conditions!

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 21/18

Reinforcement Learning

An agent:
@ observes a state
@ executes an action
@ receives a reward

Based on this information, it needs to learn what actions to select in
what situations — using an RL algorithm:

o future rewards need to be discounted
@ stored in tabular form or function approximator

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 22/18

Q-Learning and Advantage Learning

Q-Learning:
Q(st,a)) «— (1—a)-Q(s,ar) +
o - (reward; 4 + - max Q(St11,a))
Advantage Learning (Baird):

A(st,a)) «— (1—a) A(s,,ar) +
maxg, A(St, at) +

reward:, 1 + v maxa A(St11,a) — maxa, A(St, ar)
k

where « is the learning rate, and k the scaling factor (0 < k < 1).
With k = 1 this equation reduces to Q-Learning

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 23/18

Formula for Clustering

@ used euclidean distance for determining closest cluster center
@ if subpolicy was the winner, move cluster center:

chariiat = (1 —) - chari + o - acti 14 at

where act; _.;, a; is the actually executed behaviour, At the time it
took to execute the subpolicy, and char; the characteristic
behaviour vector for a subpolicy at time ¢

@ otherwise: do nothing with the clustering

» subpolicy executed a behaviour that is better matched by another
subpolicy

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 24/18

Details on Self Organizing

@ When agent reaches new abstract state it experiences a
behaviour

» center of closest cluster moved towards the newly experienced
behaviour

» this is the clustering part

@ characteristic behaviour for a subpolicy is represented by cluster
center

> reward subpolicy when actually executed behaviour closest to its
own cluster center

» forced “outward” by punishing “staying in the same abstract state”

> the self-organizing part

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 25/18

Formulae for Rewarding Behaviours 1

At every time step during the execution of a subpolicy, the normal RL
(Q-Learning, Advantage Learning, ...) update is applied:

Qu(star) «— (1—a) Qussa) +
o (M1 +7- max QL(St+1,a))

Q, is the Q-Value for a (low level) subpolicy, a and ~ are the learning
rate and discount as usual

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 26/18

Sensors
@ agent has radar-like sensorgrid (8 areas per ring)

» details nearby, course observations far away
» trade off between detail and amount of sensor data

1 20 3
28 24 28
% prr 2
0 PEER] 2

200026 24
R O.IO .§ 5

@ observation: vector of area densities

> (g g 3.0.08,.,2011,..1,1,01,..)
» for walls / objects / drop areas, so 3 x 32 inputs

@ extra values coding for position, cargo, etc were added

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 27/18

Neural Nets for Subpolicies 1

Linear neural network:

S output: Q(s,a)

x (1}

ocC

2.0

283 input: state (observation) s

Multilayer Neural network:
output: Q(s,a)

hidden neurons

network for action a,

input: state (observation) s
Both are “feed forward” networks (no recurrence)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 28/18

Neural Nets for Subpolicies 2

lQ(s,a) |Q(s,b)| lQ(s,n) |

i I i i “ i output

| | seperate 1 [l

| | 1 networks | [|| |

I ! ! hidden
input

@ each subpolicy has 6 neural nets, one (shown on prev. slide) for
each action a;, giving Q(s, a;) in state s
» allows for different inputs for different actions (not tried here)
@ advantage of seperate networks:
» no interference between actions
» less hidden neurons needed for each network
» faster backpropagation (because only one action is updated)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 29/18

Comparing with Flat Learners

A “flat” reinforcement learning agent was used for comparison

@ first experiment (maze): tabular

» each observation is unique (because position is included)
» more efficient storage in table (only store position)

@ second experiment (cleaner): neural network

» comparable to what the high level policy used
» also tried with more hidden neurons

used best performance settings for the “flat” learner (took lots and lots
of time to find)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 30/18

Experiment: Maze

@ gridworld environment:

» actions: North, East, South, West, Pickupopject, Dropobject
» walls, drop areas and portable objects (max. 1 per cell)
» reward for each object dropped at drop area

A
P

o first experiment (Maze):
> big (39 x 36 ~ 1.4 - 10° cells)
» only one object
> high level policy tabular
» subpolicies: linear neural network

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 31/18

First Experiment (Maze): Results

1000

@ HABS compared with “flat”
learner (best performance,
tabular)

e for HABS, only coarse search
was done, but no extensive
fine tuning!

600

300

100

average nr. of steps to goal

60

0 1mo® 2mo® 3mo® 4mo®
number of steps

@ HABS is order of magnitude faster but sub optimal
@ memory usage:

» flat learner needs to store 107 Q-values (~ 100 megabyte)
» HABS needs 5 - 10% x numberOfSubpolicies (~ 1 megabyte)
» Neural network storage is neglectable

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 32/18

	Introduction
	
	Hierarchical Reinforcement Learning
	Abstractions

	Our Algorithm (HABS)
	High Level Policy and Subpolicies
	Self-Organizing Behaviours
	Relating HABS to Other Work

	Experiments
	Setup
	Results

	

