
Hierarchical Assignment of Behaviours by
Self-Organizing

W. Moerman1 B. Bakker2 M. Wiering3

1M.Sc. Cognitive Artificial Intelligence
Utrecht University

2Intelligent Autonomous Systems Group
University of Amsterdam

3Intelligent Systems Group
Utrecht University

Neural Information Processing Systems 2007 Workshop
Hierarchical Organization of Behaviour: Computational,

Psychological and Neural Perspectives

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 1 / 18

Introduction

Summary of Ideas

We propose:

Shifting the design burden:

H from task decomposition

H to a suitable abstract representation of the state space

Using self-organization to figure out which behaviours are needed

H starting with uncommitted policies

H learning (parts of) its hierarchical structure

H no designed or fixed pre/post conditions

The algorithm is called HABS:
Hierachical Assignment of Behaviours by Self-organization

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 2 / 18

Introduction

Summary of Ideas

We propose:

Shifting the design burden:

H from task decomposition

H to a suitable abstract representation of the state space

Using self-organization to figure out which behaviours are needed

H starting with uncommitted policies

H learning (parts of) its hierarchical structure

H no designed or fixed pre/post conditions

The algorithm is called HABS:
Hierachical Assignment of Behaviours by Self-organization

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 2 / 18

Introduction

Summary of Ideas

We propose:

Shifting the design burden:

H from task decomposition

H to a suitable abstract representation of the state space

Using self-organization to figure out which behaviours are needed

H starting with uncommitted policies

H learning (parts of) its hierarchical structure

H no designed or fixed pre/post conditions

The algorithm is called HABS:
Hierachical Assignment of Behaviours by Self-organization

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 2 / 18

Introduction

Outline

1 Introduction
Hierarchical Reinforcement Learning
Abstractions

2 Our Algorithm (HABS)
High Level Policy and Subpolicies
Self-Organizing Behaviours
Relating HABS to Other Work

3 Experiments
Setup
Results

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 3 / 18

Introduction Hierarchical Reinforcement Learning

Why use hierarchies at all?

Using behaviours (temporally extended/high level actions, . . .) allows

“Divide and Conquer”: decompose into smaller (easier) subtasks

H task decomposition enables re-use of (sub)policies

“Dæmon of Dimensionality”: smaller state spaces on all levels
Different specific state abstractions for different (sub)policies
(just wait until tomorow)
Faster exploration

room C

room B

room Aroom D

extended actions

task

subtask2

subtask3subtask1

subsubtask
1 subsubtask

3

subsubtask
2

subsubtask
4...

decomposition and re-use curse of dimensionality

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 4 / 18

Introduction Hierarchical Reinforcement Learning

Why use hierarchies at all?

Using behaviours (temporally extended/high level actions, . . .) allows

“Divide and Conquer”: decompose into smaller (easier) subtasks

H task decomposition enables re-use of (sub)policies

“Dæmon of Dimensionality”: smaller state spaces on all levels
Different specific state abstractions for different (sub)policies
(just wait until tomorow)
Faster exploration

room C

room B

room Aroom D

extended actions

task

subtask2

subtask3subtask1

subsubtask
1 subsubtask

3

subsubtask
2

subsubtask
4...

decomposition and re-use

curse of dimensionality

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 4 / 18

Introduction Hierarchical Reinforcement Learning

Why use hierarchies at all?

Using behaviours (temporally extended/high level actions, . . .) allows

“Divide and Conquer”: decompose into smaller (easier) subtasks

H task decomposition enables re-use of (sub)policies

“Dæmon of Dimensionality”: smaller state spaces on all levels

Different specific state abstractions for different (sub)policies
(just wait until tomorow)
Faster exploration

room C

room B

room Aroom D

extended actions

task

subtask2

subtask3subtask1

subsubtask
1 subsubtask

3

subsubtask
2

subsubtask
4...

decomposition and re-use curse of dimensionality

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 4 / 18

Introduction Hierarchical Reinforcement Learning

Why use hierarchies at all?

Using behaviours (temporally extended/high level actions, . . .) allows

“Divide and Conquer”: decompose into smaller (easier) subtasks

H task decomposition enables re-use of (sub)policies

“Dæmon of Dimensionality”: smaller state spaces on all levels
Different specific state abstractions for different (sub)policies
(just wait until tomorow)

Faster exploration

room C

room B

room Aroom D

extended actions

task

subtask2

subtask3subtask1

subsubtask
1 subsubtask

3

subsubtask
2

subsubtask
4...

decomposition and re-use curse of dimensionality

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 4 / 18

Introduction Hierarchical Reinforcement Learning

Why use hierarchies at all?

Using behaviours (temporally extended/high level actions, . . .) allows

“Divide and Conquer”: decompose into smaller (easier) subtasks

H task decomposition enables re-use of (sub)policies

“Dæmon of Dimensionality”: smaller state spaces on all levels
Different specific state abstractions for different (sub)policies
(just wait until tomorow)
Faster exploration

room C

room B

room Aroom D

extended actions

task

subtask2

subtask3subtask1

subsubtask
1 subsubtask

3

subsubtask
2

subsubtask
4...

decomposition and re-use curse of dimensionality

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 4 / 18

Introduction Hierarchical Reinforcement Learning

Hierarchies Make Exploration Faster

Reinforcement Learning exploration is random walk
but behaviours do something consistent (hopefully)

H they move agent non-randomly through state space

Drunken Mans walk

H less random choices

H more distance covered
in random walk

H faster exploration
Random Walks on street level

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 5 / 18

Introduction Hierarchical Reinforcement Learning

Hierarchies Make Exploration Faster

Reinforcement Learning exploration is random walk
but behaviours do something consistent (hopefully)

H they move agent non-randomly through state space

Drunken Mans walk

H less random choices

H more distance covered
in random walk

H faster exploration
Random Walks on street level

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 5 / 18

Introduction Hierarchical Reinforcement Learning

Hierarchies Make Exploration Faster

Reinforcement Learning exploration is random walk
but behaviours do something consistent (hopefully)

H they move agent non-randomly through state space

Drunken Mans walk

H less random choices

H more distance covered
in random walk

H faster exploration
Random Walks on street level

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 5 / 18

Introduction Hierarchical Reinforcement Learning

Hierarchies Make Exploration Faster

Reinforcement Learning exploration is random walk
but behaviours do something consistent (hopefully)

H they move agent non-randomly through state space

Drunken Mans walk

H less random choices

H more distance covered
in random walk

H faster exploration

Random Walks on street level

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 5 / 18

Introduction Hierarchical Reinforcement Learning

Hierarchies Make Exploration Faster

Reinforcement Learning exploration is random walk
but behaviours do something consistent (hopefully)

H they move agent non-randomly through state space

Drunken Mans walk

H less random choices

H more distance covered
in random walk

H faster exploration
Random Walks on street level

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 5 / 18

Introduction Abstractions

Abstract State Space

state space abstract state space

mapping
abstract
actions

primitive
actions

A suitable Abstract State Space has these properties:
it has an underlying “geometric” structure:

H not constrained to “spatial” geometry

H consistent mapping: points close together in state space should be
near each other in abstract state space, and vice versa

Abstract State Space significantly smaller than State Space

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 6 / 18

Introduction Abstractions

Behaviour Space

Behaviour Space: space of all possible transition
vectors in the Abstract State Space

H note: Abstract State Space treated as continuous

H intuition: think of Behaviour Space as a sphere

b2

b1

b3

(Abstract State Space properties continued . . .)

Actually occuring transitions between abstract states need to be
distributed non-uniformly in the Behaviour Space

H behaviours (transitions) in abstract state space
are vectors in Behaviour Space

H can be characterized by a limited number of vectors if clustered

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 7 / 18

Introduction Abstractions

Behaviour Space

Behaviour Space: space of all possible transition
vectors in the Abstract State Space

H note: Abstract State Space treated as continuous

H intuition: think of Behaviour Space as a sphere

b2

b1

b3

(Abstract State Space properties continued . . .)

Actually occuring transitions between abstract states need to be
distributed non-uniformly in the Behaviour Space

H behaviours (transitions) in abstract state space
are vectors in Behaviour Space

H can be characterized by a limited number of vectors if clustered

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 7 / 18

Our Algorithm (HABS) High Level Policy and Subpolicies

Proposed Algorithm

HABS (Hierachical Assignment of Behaviours by Self-organization)

One (high level) PolicyHL and
a limited set of subpolicies

H uses abstract state space

PolicyHL has subpolicies as its
(extended) actions:

state

1

...

subpolicies

state

2

state

3

s
ta

te
 s

p
a

c
e

Policy
HL

a
b
s
tra

c
t

s
ta

te
 s

p
a
c
e

H subpolicies self-organize to cover required behaviours

H rewards received during a behaviour are accumulated
and used for High Level PolicyHL reward

H subpolicy rewarding is independent of overall task

Standard RL techniques (online, off policy) like Q-learning

Q(st , at)← (1−α) ·Q(st , at) +α · (rewardt + γ ·max
a

Q(st+1, a))

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 8 / 18

Our Algorithm (HABS) High Level Policy and Subpolicies

Proposed Algorithm

HABS (Hierachical Assignment of Behaviours by Self-organization)

One (high level) PolicyHL and
a limited set of subpolicies

H uses abstract state space

PolicyHL has subpolicies as its
(extended) actions:

state

1

...

subpolicies

state

2

state

3

s
ta

te
 s

p
a

c
e

Policy
HL

a
b

s
tra

c
t

s
ta

te
 s

p
a

c
e

H subpolicies self-organize to cover required behaviours

H rewards received during a behaviour are accumulated
and used for High Level PolicyHL reward

H subpolicy rewarding is independent of overall task

Standard RL techniques (online, off policy) like Q-learning

Q(st , at)← (1−α) ·Q(st , at) +α · (rewardt + γ ·max
a

Q(st+1, a))

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 8 / 18

Our Algorithm (HABS) High Level Policy and Subpolicies

Proposed Algorithm

HABS (Hierachical Assignment of Behaviours by Self-organization)

One (high level) PolicyHL and
a limited set of subpolicies

H uses abstract state space

PolicyHL has subpolicies as its
(extended) actions:

state

1

...

subpolicies

state

2

state

3

s
ta

te
 s

p
a

c
e

Policy
HL

a
b

s
tra

c
t

s
ta

te
 s

p
a

c
e

H subpolicies self-organize to cover required behaviours

H rewards received during a behaviour are accumulated
and used for High Level PolicyHL reward

H subpolicy rewarding is independent of overall task

Standard RL techniques (online, off policy) like Q-learning

Q(st , at)← (1−α) ·Q(st , at) +α · (rewardt + γ ·max
a

Q(st+1, a))

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 8 / 18

Our Algorithm (HABS) High Level Policy and Subpolicies

Proposed Algorithm

HABS (Hierachical Assignment of Behaviours by Self-organization)

One (high level) PolicyHL and
a limited set of subpolicies

H uses abstract state space

PolicyHL has subpolicies as its
(extended) actions:

state

1

...

subpolicies

state

2

state

3

s
ta

te
 s

p
a

c
e

Policy
HL

a
b

s
tra

c
t

s
ta

te
 s

p
a

c
e

H subpolicies self-organize to cover required behaviours

H rewards received during a behaviour are accumulated
and used for High Level PolicyHL reward

H subpolicy rewarding is independent of overall task

Standard RL techniques (online, off policy) like Q-learning

Q(st , at)← (1−α) ·Q(st , at) +α · (rewardt + γ ·max
a

Q(st+1, a))

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 8 / 18

Our Algorithm (HABS) High Level Policy and Subpolicies

Proposed Algorithm

HABS (Hierachical Assignment of Behaviours by Self-organization)

One (high level) PolicyHL and
a limited set of subpolicies

H uses abstract state space

PolicyHL has subpolicies as its
(extended) actions:

state

1

...

subpolicies

state

2

state

3

s
ta

te
 s

p
a

c
e

Policy
HL

a
b

s
tra

c
t

s
ta

te
 s

p
a

c
e

H subpolicies self-organize to cover required behaviours

H rewards received during a behaviour are accumulated
and used for High Level PolicyHL reward

H subpolicy rewarding is independent of overall task

Standard RL techniques (online, off policy) like Q-learning

Q(st , at)← (1−α) ·Q(st , at) +α · (rewardt + γ ·max
a

Q(st+1, a))

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 8 / 18

Our Algorithm (HABS) High Level Policy and Subpolicies

Proposed Algorithm

HABS (Hierachical Assignment of Behaviours by Self-organization)

One (high level) PolicyHL and
a limited set of subpolicies

H uses abstract state space

PolicyHL has subpolicies as its
(extended) actions:

state

1

...

subpolicies

state

2

state

3

s
ta

te
 s

p
a

c
e

Policy
HL

a
b

s
tra

c
t

s
ta

te
 s

p
a

c
e

H subpolicies self-organize to cover required behaviours

H rewards received during a behaviour are accumulated
and used for High Level PolicyHL reward

H subpolicy rewarding is independent of overall task

Standard RL techniques (online, off policy) like Q-learning

Q(st , at)← (1−α) ·Q(st , at) +α · (rewardt + γ ·max
a

Q(st+1, a))

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 8 / 18

Our Algorithm (HABS) Self-Organizing Behaviours

Our Solution: Self-Organizing the Behaviours

Assume: actually occuring behaviours are clustered together

H use clustering algorithm

H assign subpolicy to cluster center (specialize)

Exploration: agent will stumble upon new abstract states

H transitions to new states are behaviours

H abstract states are nearby

H random walks on small distances are disproportionately better

H will happen long before overall task is completed

Agent can discover meaningful behaviours long before it has a chance
to solve overall problem (due to Random Walks properties)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 9 / 18

Our Algorithm (HABS) Self-Organizing Behaviours

Our Solution: Self-Organizing the Behaviours

Assume: actually occuring behaviours are clustered together

H use clustering algorithm

H assign subpolicy to cluster center (specialize)

Exploration: agent will stumble upon new abstract states

H transitions to new states are behaviours

H abstract states are nearby

H random walks on small distances are disproportionately better

H will happen long before overall task is completed

Agent can discover meaningful behaviours long before it has a chance
to solve overall problem (due to Random Walks properties)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 9 / 18

Our Algorithm (HABS) Self-Organizing Behaviours

Our Solution: Self-Organizing the Behaviours

Assume: actually occuring behaviours are clustered together

H use clustering algorithm

H assign subpolicy to cluster center (specialize)

Exploration: agent will stumble upon new abstract states

H transitions to new states are behaviours

H abstract states are nearby

H random walks on small distances are disproportionately better

H will happen long before overall task is completed

Agent can discover meaningful behaviours long before it has a chance
to solve overall problem (due to Random Walks properties)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 9 / 18

Our Algorithm (HABS) Self-Organizing Behaviours

Our Solution: Self-Organizing the Behaviours

Assume: actually occuring behaviours are clustered together

H use clustering algorithm

H assign subpolicy to cluster center (specialize)

Exploration: agent will stumble upon new abstract states

H transitions to new states are behaviours

H abstract states are nearby

H random walks on small distances are disproportionately better

H will happen long before overall task is completed

Agent can discover meaningful behaviours long before it has a chance
to solve overall problem (due to Random Walks properties)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 9 / 18

Our Algorithm (HABS) Self-Organizing Behaviours

Our Solution: Self-Organizing the Behaviours

Assume: actually occuring behaviours are clustered together

H use clustering algorithm

H assign subpolicy to cluster center (specialize)

Exploration: agent will stumble upon new abstract states

H transitions to new states are behaviours

H abstract states are nearby

H random walks on small distances are disproportionately better

H will happen long before overall task is completed

Agent can discover meaningful behaviours long before it has a chance
to solve overall problem (due to Random Walks properties)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 9 / 18

Our Algorithm (HABS) Self-Organizing Behaviours

Our Solution: Self-Organizing the Behaviours

Assume: actually occuring behaviours are clustered together

H use clustering algorithm

H assign subpolicy to cluster center (specialize)

Exploration: agent will stumble upon new abstract states

H transitions to new states are behaviours

H abstract states are nearby

H random walks on small distances are disproportionately better

H will happen long before overall task is completed

Agent can discover meaningful behaviours long before it has a chance
to solve overall problem (due to Random Walks properties)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 9 / 18

Our Algorithm (HABS) Self-Organizing Behaviours

Clustering and Rewarding Subpolicies

Subpolicy terminates⇐⇒ new abstract state reached or timeout
On subpolicy termination: compare actually executed behaviour to
cluster center (characteristic behaviour) of terminated subpolicy

H if closest match: move cluster center towards experience

d1

d2

d1

d2

d1

d2
time time

Always train subpolicy using Reinforcement Learning

rewardsub =

0 not terminated
1 terminated: closest match
κr terminated: another cluster center is closer
κf terminated: timeout (failed to reach anything)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 10 / 18

Our Algorithm (HABS) Self-Organizing Behaviours

Clustering and Rewarding Subpolicies

Subpolicy terminates⇐⇒ new abstract state reached or timeout
On subpolicy termination: compare actually executed behaviour to
cluster center (characteristic behaviour) of terminated subpolicy

H if closest match: move cluster center towards experience

d1

d2

d1

d2

d1

d2
time time

Always train subpolicy using Reinforcement Learning

rewardsub =

0 not terminated
1 terminated: closest match
κr terminated: another cluster center is closer
κf terminated: timeout (failed to reach anything)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 10 / 18

Our Algorithm (HABS) Self-Organizing Behaviours

HABS in Pseudo Code
repeat // run HL-Policy

rewardHL = 0

; // for accumulating rewards

PolicyHL selects SubPolicy SUBi ; // HL-action

repeat

// execute SUB i

SUBi selects and executes a primitive action ;

rewardHL← rewardHL + receivedReward

; // accumulate

if new abstract state then BREAK

; // behaviour=>terminate

else update SUBi with 0

; // sparse reward

until timeoutSUB

if timeoutSUB then punish SUBi

; // no new abs. state

else

// compare EXECuted with clusters

if EXEC ∈ CLUSTERSUB then
reward SUBi

; // match

move CLUSTERSUB towards EXEC

; // match

else punish SUBi

; // no match

update PolicyHL with rewardHL ; // for executing SUB i
until task solved or timeoutHL

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 11 / 18

Our Algorithm (HABS) Self-Organizing Behaviours

HABS in Pseudo Code
repeat

// run HL-Policy
rewardHL = 0

; // for accumulating rewards

PolicyHL selects SubPolicy SUBi ;

; // HL-action

repeat // execute SUB i
SUBi selects and executes a primitive action ;

rewardHL← rewardHL + receivedReward

; // accumulate

if new abstract state then BREAK ; // behaviour=>terminate
else update SUBi with 0 ; // sparse reward

until timeoutSUB

if timeoutSUB then punish SUBi

; // no new abs. state

else

// compare EXECuted with clusters

if EXEC ∈ CLUSTERSUB then
reward SUBi

; // match

move CLUSTERSUB towards EXEC

; // match

else punish SUBi

; // no match

update PolicyHL with rewardHL ;

; // for executing SUB i

until task solved or timeoutHL

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 11 / 18

Our Algorithm (HABS) Self-Organizing Behaviours

HABS in Pseudo Code
repeat

// run HL-Policy
rewardHL = 0

; // for accumulating rewards

PolicyHL selects SubPolicy SUBi ;

; // HL-action

repeat

// execute SUB i

SUBi selects and executes a primitive action ;

rewardHL← rewardHL + receivedReward

; // accumulate

if new abstract state then BREAK ;

; // behaviour=>terminate

else update SUBi with 0 ;

; // sparse reward

until timeoutSUB

if timeoutSUB then punish SUBi ; // no new abs. state
else // compare EXECuted with clusters

if EXEC ∈ CLUSTERSUB then
reward SUBi ; // match
move CLUSTERSUB towards EXEC ; // match

else punish SUBi ; // no match
update PolicyHL with rewardHL ;

; // for executing SUB i

until task solved or timeoutHL

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 11 / 18

Our Algorithm (HABS) Self-Organizing Behaviours

HABS in Pseudo Code
repeat

// run HL-Policy

rewardHL = 0 ; // for accumulating rewards
PolicyHL selects SubPolicy SUBi ;

; // HL-action

repeat

// execute SUB i

SUBi selects and executes a primitive action ;
rewardHL← rewardHL + receivedReward ; // accumulate
if new abstract state then BREAK ;

; // behaviour=>terminate

else update SUBi with 0 ;

; // sparse reward

until timeoutSUB

if timeoutSUB then punish SUBi ;

; // no new abs. state

else

// compare EXECuted with clusters

if EXEC ∈ CLUSTERSUB then
reward SUBi ;

; // match

move CLUSTERSUB towards EXEC ;

; // match

else punish SUBi ;

; // no match

update PolicyHL with rewardHL ;

; // for executing SUB i

until task solved or timeoutHL

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 11 / 18

Our Algorithm (HABS) Self-Organizing Behaviours

HABS in Pseudo Code
repeat

// run HL-Policy

rewardHL = 0 ;

; // for accumulating rewards

PolicyHL selects SubPolicy SUBi ;

; // HL-action

repeat

// execute SUB i

SUBi selects and executes a primitive action ;
rewardHL← rewardHL + receivedReward ;

; // accumulate

if new abstract state then BREAK ;

; // behaviour=>terminate

else update SUBi with 0 ;

; // sparse reward

until timeoutSUB

if timeoutSUB then punish SUBi ;

; // no new abs. state

else

// compare EXECuted with clusters

if EXEC ∈ CLUSTERSUB then
reward SUBi ;

; // match

move CLUSTERSUB towards EXEC ;

; // match

else punish SUBi ;

; // no match

update PolicyHL with rewardHL ;

; // for executing SUB i

until task solved or timeoutHL

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 11 / 18

Our Algorithm (HABS) Relating HABS to Other Work

The Difference: Shifting the Burden

HABS differs from other hierarchical RL approaches:

no focus on defining a task decomposition (MAXQ, HEXQ, HAM)

H no need to define start and stop conditions

starts with uncommitted subpolicies that self-organize

HABS shifts design burden from task decomposition to defining a
suitable abstract representation

Like many hierarchical approaches, HABS depends on a
certain structure (“geometry”) in the State Space

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 12 / 18

Experiments Setup

Experiment Description (“Cleaner”)

Gridworld environment:
H actions: North, East, South, West, Pickupobject , Dropobject

H walls, drop areas and portable objects (max. 1 per cell)

H reward for each object dropped at drop area

“Cleaner”:

H many objects

H agent can carry 10

H high level policy: multilayer
neural network

H subpolicies: multilayer
neural network

Task has spatial and non-spatial aspects!

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 13 / 18

Experiments Setup

Experiment Description (“Cleaner”)

Gridworld environment:
H actions: North, East, South, West, Pickupobject , Dropobject

H walls, drop areas and portable objects (max. 1 per cell)

H reward for each object dropped at drop area

“Cleaner”:

H many objects

H agent can carry 10

H high level policy: multilayer
neural network

H subpolicies: multilayer
neural network

Task has spatial and non-spatial aspects!

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 13 / 18

Experiments Setup

Experiment Description (“Cleaner”)

Gridworld environment:
H actions: North, East, South, West, Pickupobject , Dropobject

H walls, drop areas and portable objects (max. 1 per cell)

H reward for each object dropped at drop area

“Cleaner”:

H many objects

H agent can carry 10

H high level policy: multilayer
neural network

H subpolicies: multilayer
neural network

Task has spatial and non-spatial aspects!

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 13 / 18

Experiments Setup

State Space and Abstract State Spaces

State Space: (subpolicies)

Agent has a simulated “radar” observes
object/wall/drop areas (∼ 100 inputs)

Abstract State Space: (high level policy)

“cleaner” task uses < areaagent , cargo > to determine
subpolicy termination

H no info about other objects!

H objects moving/(dis)appearing without the agent is no behaviour:
agent behaviour only defined by its position and cargo

H but objects are important for behaviour selection:
“high level radar” observations (wider and coarser than low level)

Better to say: “radar” observation is Abstract State – and only a
subset of the Abstract States is used for subpolicy termination

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 14 / 18

Experiments Setup

State Space and Abstract State Spaces

State Space: (subpolicies)

Agent has a simulated “radar” observes
object/wall/drop areas (∼ 100 inputs)

Abstract State Space: (high level policy)

“cleaner” task uses < areaagent , cargo > to determine
subpolicy termination

H no info about other objects!

H objects moving/(dis)appearing without the agent is no behaviour:
agent behaviour only defined by its position and cargo

H but objects are important for behaviour selection:
“high level radar” observations (wider and coarser than low level)

Better to say: “radar” observation is Abstract State – and only a
subset of the Abstract States is used for subpolicy termination

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 14 / 18

Experiments Setup

State Space and Abstract State Spaces

State Space: (subpolicies)

Agent has a simulated “radar” observes
object/wall/drop areas (∼ 100 inputs)

Abstract State Space: (high level policy)

“cleaner” task uses < areaagent , cargo > to determine
subpolicy termination

H no info about other objects!

H objects moving/(dis)appearing without the agent is no behaviour:
agent behaviour only defined by its position and cargo

H but objects are important for behaviour selection:
“high level radar” observations (wider and coarser than low level)

Better to say: “radar” observation is Abstract State – and only a
subset of the Abstract States is used for subpolicy termination

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 14 / 18

Experiments Setup

State Space and Abstract State Spaces

State Space: (subpolicies)

Agent has a simulated “radar” observes
object/wall/drop areas (∼ 100 inputs)

Abstract State Space: (high level policy)

“cleaner” task uses < areaagent , cargo > to determine
subpolicy termination

H no info about other objects!

H objects moving/(dis)appearing without the agent is no behaviour:
agent behaviour only defined by its position and cargo

H but objects are important for behaviour selection:
“high level radar” observations (wider and coarser than low level)

Better to say: “radar” observation is Abstract State – and only a
subset of the Abstract States is used for subpolicy termination

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 14 / 18

Experiments Setup

State Space and Abstract State Spaces

State Space: (subpolicies)

Agent has a simulated “radar” observes
object/wall/drop areas (∼ 100 inputs)

Abstract State Space: (high level policy)

“cleaner” task uses < areaagent , cargo > to determine
subpolicy termination

H no info about other objects!

H objects moving/(dis)appearing without the agent is no behaviour:
agent behaviour only defined by its position and cargo

H but objects are important for behaviour selection:
“high level radar” observations (wider and coarser than low level)

Better to say: “radar” observation is Abstract State – and only a
subset of the Abstract States is used for subpolicy termination

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 14 / 18

Experiments Results

Cleaner: Results

 0

 10

 20

 30

 40

 50

 60

 70

0.0 ⋅ 100 1.0 ⋅ 107 2.0 ⋅ 107 3.0 ⋅ 107 4.0 ⋅ 107

co
lle

ct
ed

 o
bj

ec
ts

 in
 1

00
0

st
ep

s

number of steps

 0

 10

 20

 30

 40

 50

 60

 70

0.0 ⋅ 100 1.0 ⋅ 107 2.0 ⋅ 107 3.0 ⋅ 107 4.0 ⋅ 107

co
lle

ct
ed

 o
bj

ec
ts

 in
 1

00
0

st
ep

s

number of steps

 0

 10

 20

 30

 40

 50

 60

 70

0.0 ⋅ 100 1.0 ⋅ 107 2.0 ⋅ 107 3.0 ⋅ 107 4.0 ⋅ 107

co
lle

ct
ed

 o
bj

ec
ts

 in
 1

00
0

st
ep

s

number of steps

 0

 10

 20

 30

 40

 50

 60

 70

0.0 ⋅ 100 1.0 ⋅ 107 2.0 ⋅ 107 3.0 ⋅ 107 4.0 ⋅ 107

co
lle

ct
ed

 o
bj

ec
ts

 in
 1

00
0

st
ep

s

number of steps

HABS
flat 0.01
flat 0.02

Boxplots:
- HABS

- “flat” learner

α = {0.02, 0.01}

HABS:

5 hidden (PolicyHL)

2 hidden (subpol.)

“flat”: 15 hidden

HABS is much faster and only slightly suboptimal

H “flat” has wide variance in convergence value m

H “flat” has far wider variance in convergence time⇐⇒

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 15 / 18

Experiments Results

HABS Demonstration

HABS near convergence
shows suboptimality: agent ignores objects in area l (pink, center)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 16 / 18

Experiments Results

Conclusions / Future Work

conclusions about HABS:

H possible to shift design burden from task decomposition to state
space abstraction

H learns conditions for behaviours by self-organizing

H can start with unspecified behaviours (no fixed pre/post conditions)

future work

H try HABS with 3 or more layers

H behaviour representation: limited to vectors?

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 17 / 18

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 18 / 18

Appendix

Action Space and Primitive Actions

Action Space: space of all possible transition
vectors in the state space

primitive actions are vectors in the Action
Space (a subset)

b2

b1

b3

primitive actions are not distributed evenly but clustered together

H primitive actions are not distributed evenly but clustered together

H only one primitive action for North instead of many
North1, North2, North3, . . . for going north from state 1 to 352, from
state 2 to 369, from state 3 to 792345, . . .

relative (vectors), not absolute (North = “in state A goto B”)
back to behaviour space

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 19 / 18

Appendix

Behaviours Mirror Primitive Actions

Primitive Actions Behaviours
vectors in action space vectors in behaviour space

relative to state relative to abstract state
clustered hopefully clustered

1 time step 1 high level time step
action successful reach new abstract state

action fails timeout
back to behaviour space

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 20 / 18

Appendix

Training Subpolicies, How?

a subpolicy starts with no knowledge (i.e. randomly initated)
H what is its desired or characteristic behaviour?

train on pairs of abstract states?

H designer needs to specify pre/post conditions
rewards independent of the overall task (PolicyHL)

H behaviour “A⇒ goal” same as “B⇒ C”

H blue behaviour has high QHL-value in A but low QHL-value in B

H red behaviour has high QHL-value in B

not dependence on PolicyHL on fixed pre/post conditions!
back to PolicyHL

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 21 / 18

Appendix

Reinforcement Learning

An agent:
observes a state
executes an action
receives a reward

Based on this information, it needs to learn what actions to select in
what situations – using an RL algorithm:

future rewards need to be discounted
stored in tabular form or function approximator

back to intro

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 22 / 18

Appendix

Q-Learning and Advantage Learning

Q-Learning:

Q(st , at) ← (1−α) ·Q(st , at) +

α · (rewardt+1 + γ ·max
a

Q(st+1, a))

Advantage Learning (Baird):

A(st , at) ← (1−α) · A(st , at) +

α ·

 maxat A(st , at) +

rewardt+1 + γmaxa A(st+1, a)−maxat A(st , at)

k

where α is the learning rate, and k the scaling factor (0 < k ≤ 1).
With k = 1 this equation reduces to Q-Learning

back to intro back to Proposed Algorithm back to Subpolicies

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 23 / 18

Appendix

Formula for Clustering

used euclidean distance for determining closest cluster center
if subpolicy was the winner, move cluster center:

chart+∆t = (1−α) · chart +α · actt→t+∆t

where actt→t+∆t is the actually executed behaviour, ∆t the time it
took to execute the subpolicy, and chart the characteristic
behaviour vector for a subpolicy at time t
otherwise: do nothing with the clustering

H subpolicy executed a behaviour that is better matched by another
subpolicy

back to clustering

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 24 / 18

Appendix

Details on Self Organizing

When agent reaches new abstract state it experiences a
behaviour

H center of closest cluster moved towards the newly experienced
behaviour

H this is the clustering part
characteristic behaviour for a subpolicy is represented by cluster
center

H reward subpolicy when actually executed behaviour closest to its
own cluster center

H forced “outward” by punishing “staying in the same abstract state”

H the self-organizing part

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 25 / 18

Appendix

Formulae for Rewarding Behaviours 1

At every time step during the execution of a subpolicy, the normal RL
(Q-Learning, Advantage Learning, . . .) update is applied:

QL(st , at) ← (1−α) ·QL(st , at) +

α · (rt+1 + γ ·max
a

QL(st+1, a))

QL is the Q-Value for a (low level) subpolicy, α and γ are the learning
rate and discount as usual

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 26 / 18

Appendix

Sensors

agent has radar-like sensorgrid (8 areas per ring)
H details nearby, course observations far away

H trade off between detail and amount of sensor data

observation: vector of area densities

H 〈 1
28 , 2

24 , 3
28 , 4

24 , . . . , 3
8 , 0, 0, 1

6 , . . . , 2
3 , 0, 1

3 , 1, . . . 1, 1, 0, 1, . . .〉

H for walls / objects / drop areas, so 3× 32 inputs
extra values coding for position, cargo, etc were added

back to state space

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 27 / 18

Appendix

Neural Nets for Subpolicies 1

Linear neural network:

Multilayer Neural network:

Both are “feed forward” networks (no recurrence)

back to experiment description

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 28 / 18

Appendix

Neural Nets for Subpolicies 2

each subpolicy has 6 neural nets, one (shown on prev. slide) for
each action ai , giving Q(s, ai) in state s

H allows for different inputs for different actions (not tried here)
advantage of seperate networks:

H no interference between actions

H less hidden neurons needed for each network

H faster backpropagation (because only one action is updated)
back to experiment description

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 29 / 18

Appendix

Comparing with Flat Learners

A “flat” reinforcement learning agent was used for comparison

first experiment (maze): tabular

H each observation is unique (because position is included)

H more efficient storage in table (only store position)
second experiment (cleaner): neural network

H comparable to what the high level policy used

H also tried with more hidden neurons

used best performance settings for the “flat” learner (took lots and lots
of time to find)

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 30 / 18

Appendix

Experiment: Maze

gridworld environment:

H actions: North, East, South, West, Pickupobject , Dropobject

H walls, drop areas and portable objects (max. 1 per cell)

H reward for each object dropped at drop area

first experiment (Maze):

H big (39× 36 ≈ 1.4 · 103 cells)
H only one object

H high level policy tabular
H subpolicies: linear neural network

back to Cleaner Description back to Cleaner Results

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 31 / 18

Appendix

First Experiment (Maze): Results

HABS compared with “flat”
learner (best performance,
tabular)
for HABS, only coarse search
was done, but no extensive
fine tuning!

60

300

600

 100

 1000

0 1 ⋅ 108 2 ⋅ 108 3 ⋅ 108 4 ⋅ 108

av
er

ag
e

nr
. o

f s
te

ps
 to

 g
oa

l

number of steps

 HABS
flat

HABS is order of magnitude faster but sub optimal
memory usage:

H flat learner needs to store 107 Q-values (≈ 100 megabyte)

H HABS needs 5 · 103 × numberOfSubpolicies (≈ 1 megabyte)

H Neural network storage is neglectable

back to Cleaner Description back to Cleaner Results

Moerman, Bakker, Wiering (UU, UvA) Self-Organizing Hierarchical Behaviours NIPS 2007 32 / 18

	Introduction
	
	Hierarchical Reinforcement Learning
	Abstractions

	Our Algorithm (HABS)
	High Level Policy and Subpolicies
	Self-Organizing Behaviours
	Relating HABS to Other Work

	Experiments
	Setup
	Results

	

