Hierarchy, Behavior, and Off-

policy Learning

* is hierarchical behavior a “user illusion”?

* is it something we use it to explain our behavior,
to others and to ourselves,

* but not what are brains are really doing?

* or is it a real phenomena involved in every muscle
we twitch?

% some definitions:
* action = lowest level action, 100hz
* observation = lowest level sensation, 100hz

* state = some representation/memory of the state
of the world, updated at 100hz

* policy = the mapping from state to action used
to produce behavior, at 100hz

Outline

* a “micro-scale model” of cognition, in which
abstractions play no role in producing behavior

* abstraction in state and time can be supported by
options, but off-policy learning is required

* a new actor-critic-advantage algorithm for off-
policy learning

Working hypothesis:
Hierarchy and abstraction play
no role in producing behavior

* there is no current option

* no goal stack

* no hierarchical execution

* no execution of high-level anything, ever

* all execution is at a very low level (say 100hz)

% some definitions:
* action = lowest level action, 100hz
* observation = lowest level sensation, 100hz

* state = some representation/memory of the state
of the world, updated at 100hz

* policy = the mapping from state to action used
to produce behavior, at 100hz

on every step, 100hz

ACTION

STATE UPDATE

A\ 4

STATE STATE

Abstractions are used only
for changing the policy

* by learning
* by planning

* abstractions are also used in the design of the
state representation

* but in the end, to produce behavior, there is just a
low-level policy

Outline

* a “micro-scale model” of cognition, in which
abstractions play no role in producing behavior

* abstraction in state and time can be supported by
options, but off-policy learning is required

* a new actor-critic-advantage algorithm for off-
policy learning

Definitions re: options

* option = a way of behaving that terminates when
one of a set of states is reached

* defined entirely in low-level terms (100hz)

* actions are a special case of options

* option outcome = how the option terminates
* what state?

* how much reward along the way?

Option models as world
knowledge

* option model = a mapping from states to
predicted outcomes for some option

* each option model is a tiny abstract model of the
world

* if i tried to, could i open the door?

* if i dropped this, would it make a sound?
* if i waited, would this talk ever end?

* if i tried to sit, would i fall on the floor?

Option models as state
representations

* option models are predictions of option outcomes

* such predictions can make great abstract state
variables

* if i opened the box, what would i see?
* if i shifted lanes, would i hit another car?
* if i ring Joe’s room, will he answer?

* option models are PSRs (Littman et al., 2002) on
steroids

on every step, at 100hz

VALUE FUNCTION

A

PREDICTION OF A PREDICTION
STATE STATE

* everything is still running at 100hz

* all options, option models, predictive state
representations can be learned off-policy, in
parallel, at 100hz

* even planning can run at 100hz

* Dyna strategy: plan by learning on simulated transitions

* use option models to generate transitions from the
beginning to the end of options

* long/variable time spans are reduced to single steps
* a parallel machine, running at the smallest time

scale, yet always learning and thinking about
large-scale behavior and abstract states

A THOUSAND POINTS OF
LIGHT, EACH DOING
OFF-POLICY LEARNING
ABOUT ITS OWN OPTION

S CIRCUIT DIAGRAM
an FOR AN OFF-POLICY
| LearniNG ALGORITHM

o
=

node's

prcicion CONTINUOUS-TIME
T EQUATIONS
y = u(a, 0,y,w) UPDATE PROCESS
W, =alde; LEARNING (WEIGHT UPDATE)
d=9y+z-0 LOCAL TD ERROR
. 0y
=5 -~ (d+F)e; ELIGIBILITY TRACES
W;

* all this presumes we can do off-policy, intra-option
learning with function approximation

* off-policy learning = learning about one policy while
following another

* we must learn off-policy in order to learn
efficiently about options

* you can only behave one way, but you want to
learn about many different ways of behaving

* intra-option learning = learning about an overall
option while only doing per-time-step operations

* function approximation = generalizing across states

Do we know how to do
off-policy learning?

* there are known, sound, off-policy learning methods
* based on importance sampling (Precup et al, 2000)
* based on averagers (Gordon, 1995)

* but they learn much more slowly than seems
necessary

* and they are not “elegant”

RL Algorithm Space

Tsitsiklis & Van Roy 1997

Tadic 2000
Baird 1995
Gordon 1995
. NDP 1996
Linear
TD(A)
~ stable
We need But we can
all 3 only get 2
at a fime
* under off-policy training,
learning occurs along
segments of broken
STATE trajectories
SPACE :
* regions of state space may
be entered more times than
N they are exited
[
\ /
\\/f * aregion’s estimated value
may be used many times as
a target, yet rarely be
updated itself
* with function approximation,
its estimate can get severely
out of wack
VALUE WRT
TARGET POLICY
TARGET POLICY
-—-=>
BEHAVIOR POLICY / “ADVANTAGE”
BEHAVIOR
DIVERGES
FROM THE

TARGET POLICY

Trajectories are good

* under on-policy training,
learning occurs along
whole trajectories

* each region of state space
is exited the same number
of times as it is entered

* each region’s estimated
value is corrected as many
times as it is used

THIS REGION IS BACKED-UP FROM,
BUT NEVER BACKED-UP TO

TARGET POLICY

BEHAVIOR POLICY / BACKUP
_
_
BEHAVIOR
DIVERGES
FROM THE
TARGET POLICY

The OPACA algorithm

* Off-Policy Actor-Critic-Advantage algorithm
* advantages: A"(s,a) = Q%(s,a) - V(s)

* the advantages are estimated using a third
independent linear function approximator (in
addition those for the actor and the critic)

OPACA alg. structures

Actor:
b d(s,0)

7r(s,a,0) = W

0,0 € X"
Critic:

Vi(s) =vif(s) v,fe®R"
Advantages:

Ai(s,a) = w)l (s, a) weR”
using the actor-compatible feature vectors:

U(s,a) = ¢(s,a) — Zw(s,b)qﬁ(s, b)

b

OPACA learning rule

Leading to an advantage-based TD error:

0 = Tep1 +YVa(se41) — Va(se) — As(se, ar)
= e+ f(s001) = v B(se) — W W (sy,ar)

and to one-step TD updates:
Vit1 = V¢ + Ol5tf(8t)
Wip1 = W+ ad)(se, ar)

* so far we have only been able to prove
convergence for the table-lookup case

Conclusions (1)

* it is perfectly feasible to generate behavior that is
informed by abstract, higher-level considerations
without using anything high-level at execute-time

* this makes for a simple, uniform, distributed
architecture with local communication

* options can support abstraction in state and time,
but require off-policy methods for efficient learning

* the search for an elegant off-policy algorithm
continues

The “micro-scale model”
of cognition and behavior

* in which the brain is viewed as an “experience
engine,” humming along at 100hz,

* rapidly responding and predicting, and changing
its responses and predictions

* creating and “compiling away” abstractions for
immediate recall

* a demon model. a million recognizers, each
watching for a single aspect of experience, yelling
out their prediction of it

