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Outline

a “micro-scale model” of cognition, in which 

abstractions play no role in producing behavior 

abstraction in state and time can be supported by 

options, but off-policy learning is required

a new actor-critic-advantage algorithm for off-

policy learning

is hierarchical behavior a “user illusion”?

is it something we use it to explain our behavior, 

to others and to ourselves,

but not what are brains are really doing?

or is it a real phenomena involved in every muscle 

we twitch?

there is no current option

no goal stack

no hierarchical execution

no execution of high-level anything, ever

all execution is at a very low level (say 100hz)

Working hypothesis: 
Hierarchy and abstraction play 
no role in producing behavior

some definitions:

action = lowest level action, 100hz

observation = lowest level sensation, 100hz

state = some representation/memory of the state 
of the world, updated at 100hz

policy = the mapping from state to action used 
to produce behavior, at 100hz

some definitions:

action = lowest level action, 100hz

observation = lowest level sensation, 100hz

state = some representation/memory of the state 
of the world, updated at 100hz

policy = the mapping from state to action used 
to produce behavior, at 100hz
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abstractions are also used in the design of the 

state representation

but in the end, to produce behavior, there is just a 

low-level policy

Abstractions are used only 
for changing the policy

Outline

a “micro-scale model” of cognition, in which 

abstractions play no role in producing behavior 

abstraction in state and time can be supported by 

options, but off-policy learning is required

a new actor-critic-advantage algorithm for off-

policy learning

Definitions re: options

option = a way of behaving that terminates when 

one of a set of states is reached

defined entirely in low-level terms (100hz)

actions are a special case of options

option outcome = how the option terminates

what state? 

how much reward along the way?

Option models as world 
knowledge

option model = a mapping from states to 

predicted outcomes for some option

each option model is a tiny abstract model of the 
world

if i tried to, could i open the door?

if i dropped this, would it make a sound?

if i waited, would this talk ever end?

if i tried to sit, would i fall on the floor?

Option models as state 
representations

option models are predictions of option outcomes

such predictions can make great abstract state 

variables

if i opened the box, what would i see?

if i shifted lanes, would i hit another car?

if i ring Joe’s room, will he answer?

option models are PSRs (Littman et al., 2002) on 
steroids
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everything is still running at 100hz

all options, option models, predictive state 

representations can be learned off-policy, in 

parallel, at 100hz

even planning can run at 100hz

Dyna strategy: plan by learning on simulated transitions 

use option models to generate transitions from the 

beginning to the end of options

long/variable time spans are reduced to single steps

a parallel machine, running at the smallest time 

scale, yet always learning and thinking about 

large-scale behavior and abstract states 
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all this presumes we can do off-policy, intra-option 
learning with function approximation

off-policy learning = learning about one policy while 
following another

we must learn off-policy in order to learn 
efficiently about options

you can only behave one way, but you want to 
learn about many different ways of behaving

intra-option learning = learning about an overall 
option while only doing per-time-step operations

function approximation = generalizing across states

Do we know how to do 
off-policy learning?

there are known, sound, off-policy learning methods 

based on importance sampling (Precup et al, 2000)

based on averagers (Gordon, 1995)

but they learn much more slowly than seems 

necessary

and they are not “elegant”
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Q-learning,

options
stable

We need

all 3

But we can

only get 2 

at a time

Tsitsiklis & Van Roy 1997

Tadic 2000

Baird 1995

Gordon 1995

NDP 1996

Boom!

under on-policy training, 

learning occurs along 

whole trajectories

each region of state space 

is exited the same number 

of times as it is entered

each region’s estimated 

value is corrected as many 

times as it is used

STATE

SPACE

Trajectories are good

under off-policy training, 

learning occurs along 

segments of broken 

trajectories

regions of state space may 

be entered more times than 

they are exited

a region’s estimated value 

may be used many times as 

a target, yet rarely be 

updated itself

with function approximation, 

its estimate can get severely 

out of wack
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“ADVANTAGE”

The OPACA algorithm

Off-Policy Actor-Critic-Advantage algorithm

advantages:  A!(s,a) = Q!(s,a) - V!(s)

the advantages are estimated using a third 

independent linear function approximator (in 

addition those for the actor and the critic)



Actor:

π(s, a, θ) =
eθ!φ(s,a)

∑
b eθ!φ(s,b)

θ,φ ∈ "m (1)

Critic:

Vt(s) = v!t f(s) v, f ∈ "n (2)

Advantages:

At(s, a) = w!t ψ(s, a) w ∈ "m (3)

using the actor-compatible feature vectors:

ψ(s, a) = φ(s, a)−
∑

b

π(s, b)φ(s, b) (4)

Rationale:

V π(s) + Aπ(s, a) = E {rt+1 + γV π(st+1) | st = s, at = a} (5)

thus

0 = E {rt+1 + γV π(st+1) | st = s, at = a} − V π(s)−Aπ(s, a) (6)

Leading to the advantage-based TD error:

δt = rt+1 + γVt(st+1)− Vt(st)−At(st, at) (7)
= rt+1 + γv!t f(st+1)− v!t f(st)− w!t ψ(st, at) (8)

and to these one-step TD updates:

vt+1 = vt + αδtf(st) (9)

wt+1 = wt + αδtψ(st, at) (10)

Note: there must be analogous equations using eligibility traces.

Note: i think there is some way to do without an explicit policy and work directly
in compatible feature vectors. this way one would not have to make sure they are
compatible: by construction they would be compatible with some policy. the best
way for this to work out would be for the policy/option to be in the form of a sort of
compatibility recognizer that would take an action and state as input and produce the
compatible feature vector. the vectors for each state must be such that there is a convex
combination of them that is zero. i don’t think there is any other requirement.

let the policy, at s, be a function of a vector of “action numbers”, the inner products of
some theta and the phi(s, a) for all a. the function can depend only on the relative values
of the action numbers but is otherwise unrestricted. define phi(s) as the average phi(s,
a) under the policy. then psi(s, a) can be computed from phi(s, a) and phi(s), and thus
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OPACA alg. structures
Leading to an advantage-based TD error:

δt = rt+1 + γVt(st+1)− Vt(st)−At(st, at) (1)
= rt+1 + γv!t f(st+1)− v!t f(st)− w!t ψ(st, at) (2)

and to one-step TD updates:

vt+1 = vt + αδtf(st) (3)

wt+1 = wt + αδtψ(st, at) (4)
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so far we have only been able to prove 

convergence for the table-lookup case

OPACA learning rule

Conclusions (1)

it is perfectly feasible to generate behavior that is 

informed by abstract, higher-level considerations 

without using anything high-level at execute-time

this makes for a simple, uniform, distributed 

architecture with local communication

options can support abstraction in state and time, 

but require off-policy methods for efficient learning

the search for an elegant off-policy algorithm 

continues

The “micro-scale model” 
of cognition and behavior

in which the brain is viewed as an “experience 

engine,” humming along at 100hz,

rapidly responding and predicting, and changing 

its responses and predictions

creating and “compiling away” abstractions for 

immediate recall

a demon model.  a million recognizers, each 

watching for a single aspect of experience, yelling 

out their prediction of it 


