
Hierarchy, Behavior, and Off-

policy Learning
Rich Sutton

University of Alberta

Outline

a “micro-scale model” of cognition, in which

abstractions play no role in producing behavior

abstraction in state and time can be supported by

options, but off-policy learning is required

a new actor-critic-advantage algorithm for off-

policy learning

is hierarchical behavior a “user illusion”?

is it something we use it to explain our behavior,

to others and to ourselves,

but not what are brains are really doing?

or is it a real phenomena involved in every muscle

we twitch?

there is no current option

no goal stack

no hierarchical execution

no execution of high-level anything, ever

all execution is at a very low level (say 100hz)

Working hypothesis:
Hierarchy and abstraction play
no role in producing behavior

some definitions:

action = lowest level action, 100hz

observation = lowest level sensation, 100hz

state = some representation/memory of the state
of the world, updated at 100hz

policy = the mapping from state to action used
to produce behavior, at 100hz

some definitions:

action = lowest level action, 100hz

observation = lowest level sensation, 100hz

state = some representation/memory of the state
of the world, updated at 100hz

policy = the mapping from state to action used
to produce behavior, at 100hz

STATE UPDATE

.

OBSACTIONPOLIC
Y

STATE

T

STATE

T+1

on every step, 100hz

by learning

by planning

abstractions are also used in the design of the

state representation

but in the end, to produce behavior, there is just a

low-level policy

Abstractions are used only
for changing the policy

Outline

a “micro-scale model” of cognition, in which

abstractions play no role in producing behavior

abstraction in state and time can be supported by

options, but off-policy learning is required

a new actor-critic-advantage algorithm for off-

policy learning

Definitions re: options

option = a way of behaving that terminates when

one of a set of states is reached

defined entirely in low-level terms (100hz)

actions are a special case of options

option outcome = how the option terminates

what state?

how much reward along the way?

Option models as world
knowledge

option model = a mapping from states to

predicted outcomes for some option

each option model is a tiny abstract model of the
world

if i tried to, could i open the door?

if i dropped this, would it make a sound?

if i waited, would this talk ever end?

if i tried to sit, would i fall on the floor?

Option models as state
representations

option models are predictions of option outcomes

such predictions can make great abstract state

variables

if i opened the box, what would i see?

if i shifted lanes, would i hit another car?

if i ring Joe’s room, will he answer?

option models are PSRs (Littman et al., 2002) on
steroids

OBS

STATE

T

STATE

T

on every step, at 100hz

ACTION

A

B

A PREDICTS B AFTER OPTION O

PREDICTION OF A PREDICTION

REWARD

VALUE FUNCTION

everything is still running at 100hz

all options, option models, predictive state

representations can be learned off-policy, in

parallel, at 100hz

even planning can run at 100hz

Dyna strategy: plan by learning on simulated transitions

use option models to generate transitions from the

beginning to the end of options

long/variable time spans are reduced to single steps

a parallel machine, running at the smallest time

scale, yet always learning and thinking about

large-scale behavior and abstract states

option
! " #

target

A THOUSAND POINTS OF

LIGHT, EACH DOING

OFF-POLICY LEARNING

ABOUT ITS OWN OPTION

y

y

w e

z

z!

!

"

d

d+!

#

di
ve

rg
en

ce

fro
m

 re
co

gn
iz
er

te
rm

in
at

io
n

ta
rg

et

node's

prediction

UPDATE PROCESS

LEARNING (WEIGHT UPDATE)

LOCAL TD ERROR

ELIGIBILITY TRACES

CIRCUIT DIAGRAM

FOR AN OFF-POLICY

LEARNING ALGORITHM

CONTINUOUS-TIME

EQUATIONS

all this presumes we can do off-policy, intra-option
learning with function approximation

off-policy learning = learning about one policy while
following another

we must learn off-policy in order to learn
efficiently about options

you can only behave one way, but you want to
learn about many different ways of behaving

intra-option learning = learning about an overall
option while only doing per-time-step operations

function approximation = generalizing across states

Do we know how to do
off-policy learning?

there are known, sound, off-policy learning methods

based on importance sampling (Precup et al, 2000)

based on averagers (Gordon, 1995)

but they learn much more slowly than seems

necessary

and they are not “elegant”

RL Algorithm Space

TD Linear FA

Off-policy

Linear

TD(!)

Q-learning,

options
stable

We need

all 3

But we can

only get 2

at a time

Tsitsiklis & Van Roy 1997

Tadic 2000

Baird 1995

Gordon 1995

NDP 1996

Boom!

under on-policy training,

learning occurs along

whole trajectories

each region of state space

is exited the same number

of times as it is entered

each region’s estimated

value is corrected as many

times as it is used

STATE

SPACE

Trajectories are good

under off-policy training,

learning occurs along

segments of broken

trajectories

regions of state space may

be entered more times than

they are exited

a region’s estimated value

may be used many times as

a target, yet rarely be

updated itself

with function approximation,

its estimate can get severely

out of wack

STATE

SPACE

THIS REGION IS BACKED-UP FROM,

BUT NEVER BACKED-UP TO

BEHAVIOR POLICY

BEHAVIOR

DIVERGES

FROM THE

TARGET POLICY

BACKUP

TARGET POLICY

TARGET POLICY

BEHAVIOR POLICY

BEHAVIOR

DIVERGES

FROM THE

TARGET POLICY

VALUE WRT

TARGET POLICY

“ADVANTAGE”

The OPACA algorithm

Off-Policy Actor-Critic-Advantage algorithm

advantages: A!(s,a) = Q!(s,a) - V!(s)

the advantages are estimated using a third

independent linear function approximator (in

addition those for the actor and the critic)

Actor:

π(s, a, θ) =
eθ!φ(s,a)

∑
b eθ!φ(s,b)

θ,φ ∈ "m (1)

Critic:

Vt(s) = v!t f(s) v, f ∈ "n (2)

Advantages:

At(s, a) = w!t ψ(s, a) w ∈ "m (3)

using the actor-compatible feature vectors:

ψ(s, a) = φ(s, a)−
∑

b

π(s, b)φ(s, b) (4)

Rationale:

V π(s) + Aπ(s, a) = E {rt+1 + γV π(st+1) | st = s, at = a} (5)

thus

0 = E {rt+1 + γV π(st+1) | st = s, at = a} − V π(s)−Aπ(s, a) (6)

Leading to the advantage-based TD error:

δt = rt+1 + γVt(st+1)− Vt(st)−At(st, at) (7)
= rt+1 + γv!t f(st+1)− v!t f(st)− w!t ψ(st, at) (8)

and to these one-step TD updates:

vt+1 = vt + αδtf(st) (9)

wt+1 = wt + αδtψ(st, at) (10)

Note: there must be analogous equations using eligibility traces.

Note: i think there is some way to do without an explicit policy and work directly
in compatible feature vectors. this way one would not have to make sure they are
compatible: by construction they would be compatible with some policy. the best
way for this to work out would be for the policy/option to be in the form of a sort of
compatibility recognizer that would take an action and state as input and produce the
compatible feature vector. the vectors for each state must be such that there is a convex
combination of them that is zero. i don’t think there is any other requirement.

let the policy, at s, be a function of a vector of “action numbers”, the inner products of
some theta and the phi(s, a) for all a. the function can depend only on the relative values
of the action numbers but is otherwise unrestricted. define phi(s) as the average phi(s,
a) under the policy. then psi(s, a) can be computed from phi(s, a) and phi(s), and thus

1

OPACA alg. structures
Leading to an advantage-based TD error:

δt = rt+1 + γVt(st+1)− Vt(st)−At(st, at) (1)
= rt+1 + γv!t f(st+1)− v!t f(st)− w!t ψ(st, at) (2)

and to one-step TD updates:

vt+1 = vt + αδtf(st) (3)

wt+1 = wt + αδtψ(st, at) (4)

1

so far we have only been able to prove

convergence for the table-lookup case

OPACA learning rule

Conclusions (1)

it is perfectly feasible to generate behavior that is

informed by abstract, higher-level considerations

without using anything high-level at execute-time

this makes for a simple, uniform, distributed

architecture with local communication

options can support abstraction in state and time,

but require off-policy methods for efficient learning

the search for an elegant off-policy algorithm

continues

The “micro-scale model”
of cognition and behavior

in which the brain is viewed as an “experience

engine,” humming along at 100hz,

rapidly responding and predicting, and changing

its responses and predictions

creating and “compiling away” abstractions for

immediate recall

a demon model. a million recognizers, each

watching for a single aspect of experience, yelling

out their prediction of it

