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Reinforcement learning: The Good, The Bad and The Ugly
Peter Dayana and Yael Nivb
Reinforcement learning provides both qualitative and

quantitative frameworks for understanding and modeling

adaptive decision-making in the face of rewards and

punishments. Here we review the latest dispatches from the

forefront of this field, and map out some of the territories where

lie monsters.
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Introduction
Reinforcement learning (RL) [1] studies the way that

natural and artificial systems can learn to predict the con-

sequences of and optimize their behavior in environments

in which actions lead them from one state or situation to the

next, and can also lead to rewards and punishments. Such

environments arise in a wide range of fields, including

ethology, economics, psychology, and control theory.

Animals, from the most humble to the most immodest,

face a range of such optimization problems [2], and, to an

apparently impressive extent, solve them effectively. RL,

originally born out of mathematical psychology and oper-

ations research, provides qualitative and quantitative com-

putational-level models of these solutions.

However, the reason for this review is the increasing

realization that RL may offer more than just a compu-

tational, ‘approximate ideal learner’ theory for affective

decision-making. RL algorithms, such as the temporal

difference (TD) learning rule [3], appear to be directly

instantiated in neural mechanisms, such as the phasic

activity of dopamine neurons [4]. That RL appears to be

so transparently embedded has made it possible to use it

in a much more immediate way to make hypotheses

about, and retrodictive and predictive interpretations

of, a wealth of behavioral and neural data collected in a
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huge range of paradigms and systems. The literature in

this area is by now extensive, and has been the topic of

many recent reviews (including [5–9]). This is in addition

to rapidly accumulating literature on the partly related

questions of optimal decision-making in situations invol-

ving slowly amounting information, or social factors such

as games [10–12]. Thus here, after providing a brief

sketch of the overall RL scheme for control (for a more

extensive review, see [13]), we focus only on some of the

many latest results relevant to RL and its neural instan-

tiation. We categorize these recent findings into those

that fit comfortably with, or flesh out, accepted notions

(playfully, ‘The Good’), some new findings that are not as

snugly accommodated, but suggest the need for exten-

sions or modifications (‘The Bad’), and finally some key

areas whose relative neglect by the field is threatening to

impede its further progress (‘The Ugly’).

The reinforcement learning framework
Decision-making environments are characterized by a

few key concepts: a state space (states are such things

as locations in a maze, the existence or absence of

different stimuli in an operant box or board positions

in a game), a set of actions (directions of travel, presses on

different levers, and moves on a board), and affectively

important outcomes (finding cheese, obtaining water, and

winning). Actions can move the decision-maker from one

state to another (i.e. induce state transitions) and they can

produce outcomes. The outcomes are assumed to have

numerical (positive or negative) utilities, which can

change according to the motivational state of the

decision-maker (e.g. food is less valuable to a satiated

animal) or direct experimental manipulation (e.g. poison-

ing). Typically, the decision-maker starts off not knowing

the rules of the environment (the transitions and out-

comes engendered by the actions), and has to learn or

sample these from experience.

In instrumental conditioning, animals learn to choose

actions to obtain rewards and avoid punishments, or,

more generally to achieve goals. Various goals are

possible, such as optimizing the average rate of acqui-

sition of net rewards (i.e. rewards minus punishments), or

some proxy for this such as the expected sum of future

rewards, where outcomes received in the far future are

discounted compared with outcomes received more

immediately. It is the long-term nature of these goals

that necessitates consideration not only of immediate

outcomes but also of state transitions, and makes choice

interesting and difficult. In terms of RL, instrumental

conditioning concerns optimal choice, that is determining
ad and The Ugly, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.08.003
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an assignment of actions to states, also known as a policy
that optimizes the subject’s goals.

By contrast with instrumental conditioning, Pavlovian (or

classical) conditioning traditionally treats how subjects

learn to predict their fate in those cases in which they

cannot actually influence it. Indeed, although RL is

primarily concerned with situations in which action selec-

tion is germane, such predictions play a major role in

assessing the effects of different actions, and thereby in

optimizing policies. In Pavlovian conditioning, the pre-

dictions also lead to responses. However, unlike the

flexible policies that are learned via instrumental con-

ditioning, Pavlovian responses are hard-wired to the

nature and emotional valence of the outcomes.

RL methods can be divided into two broad classes, model-
based and model-free, which perform optimization in very

different ways (Box 1, [14]). Model-based RL uses experi-

ence to construct an internal model of the transitions and

immediate outcomes in the environment. Appropriate

actions are then chosen by searching or planning in this

world model. This is a statistically efficient way to use

experience, as each morsel of information from the

environment can be stored in a statistically faithful and

computationally manipulable way. Provided that constant

replanning is possible, this allows action selection to be

readily adaptive to changes in the transition contingencies

and the utilities of the outcomes. This flexibility makes

model-based RL suitable for supporting goal-directed

actions, in the terms of Dickinson and Balleine [15].

For instance, in model-based RL, performance of actions

leading to rewards whose utilities have decreased is

immediately diminished. Via this identification and other

findings, the behavioral neuroscience of such goal-

directed actions suggests a key role in model-based RL

(or at least in its components such as outcome evaluation)

for the dorsomedial striatum (or its primate homologue,

the caudate nucleus), prelimbic prefrontal cortex, the

orbitofrontal cortex, the medial prefrontal cortex,1 and

parts of the amygdala [9,17–20].

Model-free RL, on the other hand, uses experience to

learn directly one or both of two simpler quantities (state/

action values or policies) which can achieve the same

optimal behavior but without estimation or use of a world

model. Given a policy, a state has a value, defined in terms

of the future utility that is expected to accrue starting

from that state. Crucially, correct values satisfy a set of

mutual consistency conditions: a state can have a high

value only if the actions specified by the policy at that

state lead to immediate outcomes with high utilities, and/

or states which promise large future expected utilities (i.e.
Please cite this article in press as: Dayan P, Niv Y, Reinforcement learning: The Good, The B
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have high values themselves). Model-free learning rules

such as the temporal difference (TD) rule [3] define any

momentary inconsistency as a prediction error, and use it to

specify rules for plasticity that allow learning of more

accurate values and decreased inconsistencies. Given

correct values, it is possible to improve the policy by

preferring those actions that lead to higher utility out-

comes and higher valued states. Direct model-free

methods for improving policies without even acquiring

values are also known [21].

Model-free methods are statistically less efficient than

model-based methods, because information from the

environment is combined with previous, and possibly

erroneous, estimates or beliefs about state values, rather

than being used directly. The information is also stored

in scalar quantities from which specific knowledge about

rewards or transitions cannot later be disentangled. As

a result, these methods cannot adapt appropriately

quickly to changes in contingency and outcome utilities.

Based on the latter characteristic, model-free RL has

been suggested as a model of habitual actions [14,15], in

which areas such as the dorsolateral striatum and the

amygdala are believed to play a key role [17,18]. How-

ever, a far more direct link between model-free RL and

the workings of affective decision-making is apparent in

the findings that the phasic activity of dopamine

neurons during appetitive conditioning (and indeed

the fMRI BOLD signal in the ventral striatum of

humans, a key target of dopamine projections) has many

of the quantitative characteristics of the TD prediction

error that is key to learning model-free values [4,22–24].

It is these latter results that underpin the bulk of neural

RL.

‘The Good’: new findings in neural RL
Daw et al. [5] sketched a framework very similar to this,

and reviewed the then current literature which pertained

to it. Our first goal is to update this analysis of the

literature. In particular, courtesy of a wealth of exper-

iments, just two years later we now know much more

about the functional organization of RL systems in the

brain, the pathways influencing the computation of pre-

diction errors, and time-discounting. A substantial frac-

tion of this work involves mapping the extensive findings

from rodents and primates onto the human brain, largely

using innovative experimental designs while measuring

the fMRI BOLD signal. This research has proven most

fruitful, especially in terms of tracking prediction error

signals in the human brain. However, in considering these

results it is important to remember that the BOLD signal

is a measure of oxyhemoglobin levels and not neural

activity, let alone dopamine. That neuromodulators can

act directly on capillary dilation, and that even the limited

evidence we have about the coupling between synaptic

drive or neural activity and the BOLD signal is confined

to the cortex (e.g. [25]) rather than the striatum or mid-
ad and The Ugly, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.08.003
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Box 1 Model-based and model-free reinforcement learning

Reinforcement learning methods can broadly be divided into two classes, model-based and model-free. Consider the problem illustrated in the

figure, of deciding which route to take on the way home from work on Friday evening. We can abstract this task as having states (in this case,

locations, notably of junctions), actions (e.g. going straight on or turning left or right at every intersection), probabilities of transitioning from one

state to another when a certain action is taken (these transitions are not necessarily deterministic, e.g. due to road works and bypasses), and

positive or negative outcomes (i.e. rewards or costs) at each transition from scenery, traffic jams, fuel consumed, etc. (which are again

probabilistic).

Model-based computation, illustrated in the left ‘thought bubble’, is akin to searching a mental map (a forward model of the task) that has been

learned based on previous experience. This forward model comprises knowledge of the characteristics of the task, notably, the probabilities of

different transitions and different immediate outcomes. Model-based action selection proceeds by searching the mental map to work out the long-

run value of each action at the current state in terms of the expected reward of the whole route home, and chooses the action that has the highest

value.

Model-free action selection, by contrast, is based on learning these long-run values of actions (or a preference order between actions) without

either building or searching through a model. RL provides a number of methods for doing this, in which learning is based on momentary

inconsistencies between successive estimates of these values along sample trajectories. These values, sometimes called cached values because

of the way they store experience, encompass all future probabilistic transitions and rewards in a single scalar number that denotes the overall future

worth of an action (or its attractiveness compared with other actions). For instance, as illustrated in the right ‘thought bubble’, experience may have

taught the commuter that on Friday evenings the best action at this intersection is to continue straight and avoid the freeway.

Model-free methods are clearly easier to use in terms of online decision-making; however, much trial-and-error experience is required to make the

values be good estimates of future consequences. Moreover, the cached values are inherently inflexible: although hearing about an unexpected

traffic jam on the radio can immediately affect action selection that is based on a forward model, the effect of the traffic jam on a cached propensity

such as ‘avoid the freeway on Friday evening’ cannot be calculated without further trial-and-error learning on days in which this traffic jam occurs.

Changes in the goal of behavior, as when moving to a new house, also expose the differences between the methods: whereas model-based

decision making can be immediately sensitive to such a goal-shift, cached values are again slow to change appropriately. Indeed, many of us have

experienced this directly in daily life after moving house. We clearly know the location of our new home, and can make our way to it by

concentrating on the new route; but we can occasionally take an habitual wrong turn toward the old address if our minds wander. Such

introspection, and a wealth of rigorous behavioral studies (see [15], for a review) suggests that the brain employs both model-free and model-based

decision-making strategies in parallel, with each dominating in different circumstances [14]. Indeed, somewhat different neural substrates underlie

each one [17].
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brain areas such as the ventral tegmental area, imply that

this fMRI evidence is alas very indirect.

Functional organization: in terms of the mapping from

rodents to humans, reinforcer devaluation has been

employed to study genuinely goal-directed choice in

humans, that is, to search for the underpinnings of beha-

vior that is flexibly adjusted to such things as changes in

the value of a predicted outcome. The orbitofrontal

cortex (OFC) has duly been revealed as playing a particu-

lar role in representing goal-directed value [26�]. How-

ever, the bulk of experiments has not set out to

distinguish model-based from model-free systems, and

has rather more readily found regions implicated in

model-free processes. There is some indirect evidence

[27–29,30�] for the involvement of dopamine and dopa-

minergic mechanisms in learning from reward prediction

errors in humans, along with more direct evidence from an

experiment involving the pharmacological manipulation

of dopamine [31�]. These studies, in which prediction

errors have been explicitly modeled, along with others,

which use a more general multivariate approach [32] or an

argument based on a theoretical analysis of multiple,

separate, cortico-basal ganglia loops [33], also reveal roles

for OFC, medial prefrontal cortical structures, and even

the cingulate cortex. The contributions of the latter

especially have recently been under scrutiny in animal

studies focused on the cost-benefit tradeoffs inherent in

decision-making [34,35], and the involvement of dopa-

minergic projections to and from the anterior cingulate

cortex, and thus potential interactions with RL have been

suggested ([36], but see [37]). However, novel approaches

to distinguishing model-based and model-free control

may be necessary to tease apart more precisely the

singular contributions of the areas.

Computation of prediction errors: in terms of pathways, one

of the more striking recent findings is evidence that the

lateral habenula suppresses the activity of dopamine

neurons [38�,39], in a way which may be crucial for the

representation of the negative prediction errors that arise

when states turn out to be worse than expected. One

natural possibility is then that pauses in the burst firing of

dopamine cells might code for these negative prediction

errors. This has received some quantitative support [40],

despite the low baseline rate of firing of these neurons,

which suggests that such a signal would have a rather low

bandwidth. Further, studies examining the relationship

between learning from negative and positive con-

sequences and genetic polymorphisms related to the

D2 dopaminergic receptor have established a functional

link between dopamine and learning when outcomes are

worse than expected [41,42]. Unfortunately, marring this

apparent convergence of evidence is the fact that the

distinction between the absence of an expected reward

and more directly aversive events is still far from being

clear, as we complain below.
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Further data on contributions to the computation of the

TD prediction error have come from new findings on

excitatory pathways into the dopamine system [43]. Evi-

dence about the way that the amygdala [44,45�,46] and

the medial prefrontal cortex [47] code for both positive

and negative predicted values and errors, and the joint

coding of actions, the values of actions, and rewards in

striatal and OFC activity [48–55,9], is also significant,

given the putative roles of these areas in learning and

representing various forms of RL values.

In fact, the machine learning literature has proposed

various subtly different versions of the TD learning

signal, associated with slightly different model-free RL

methods. Recent evidence from a primate study [56�]
looking primarily at one dopaminergic nucleus, the sub-

stantia nigra pars compacta, seems to support a version

called SARSA [57]; whereas evidence from a rodent study

[58�] of the other major dopaminergic nucleus, the ventral

tegmental area, favors a different version called Q-learn-

ing (CJCH Watkins, Learning from delayed rewards,

PhD thesis, University of Cambridge, 1989). Resolving

this discrepancy, and indeed, determining whether these

learning rules can be incorporated within the popular

Actor/Critic framework for model-free RL in the basal

ganglia [59,1], will necessitate further experiments and

computational investigation.

A more radical change to the rule governing the activity of

dopamine cells which separates out differently the por-

tions associated with the outcome (the primary reward)

and the learned predictions has also been suggested in a

modeling study [60]. However, various attractive features

of the TD rule, such as its natural account of secondary

conditioning and its resulting suitability for optimizing

sequences of actions leading up to a reward, are not

inherited directly by this rule.

Temporal discounting: a recurrent controversy involves the

way that the utilities of proximal and distant outcomes are

weighed against each other. Exponential discounting,

similar to a uniform interest rate, has attractive theoretical

properties, notably the absence of intertemporal choice

conflict, the possibility of recursive calculation scheme

and simple prediction errors [1]. However, the more

computationally complex hyperbolic discounting, which

shows preference reversals and impulsivity, is a more

common psychological finding in humans and animals

[61].

The immediate debate concerned the abstraction and

simplification of hyperbolic discounting to two evaluative

systems, one interested mostly in the here and now, the

other in the distant future [62], and their apparent instan-

tiation in different subcortical and cortical structures

respectively [63,64]. This idea became somewhat

wrapped-up with the distinct notion that these neural
ad and The Ugly, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.08.003
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areas are involved in model-free and model-based learn-

ing. Further, other studies found a more unitary neural

representation of discounting [65], at least in the BOLD

signal, and recent results confirm that dopaminergic pre-

diction errors indeed show the expected effects of dis-

counting [58�]. One surprising finding is that the OFC

may separate out the representation of the temporal

discount factor applied to distant rewards from that of

the magnitude of the reward [54], implying a complex

problem of how these quantities are then integrated.

There has also been new work based on the theory [8]

that the effective interest rate for time is under the

influence of the neuromodulator serotonin. In a task that

provides a fine-scale view of temporal choice [66], dietary

reduction of serotonin levels in humans (tryptophan

depletion) gave rise to extra impulsivity, that is, favoring

smaller rewards sooner over larger rewards later, which

can be effectively modeled by a steeper interest rate [67].

Somewhat more problematically for the general picture of

control sketched above, tryptophan depletion also led to a

topographically mapped effect in the striatum, with

quantities associated with predictions for high interest

rates preferentially correlated with more ventral areas,

and those for low interest rates with more dorsal areas

[68].

The idea that subjects are trying to optimize their long-

run rates of acquisition of reward has become important in

studies of time-sensitive sensory decision-making [11,69].

It also inspired a new set of modeling investigations into

free operant choice tasks, in which subjects are free to

execute actions at times of their own choosing, and the

dependent variables are quantities such as the rates of

responding [70,71]. In these accounts, the rate of reward

acts as an opportunity cost for time, thereby penalizing

sloth, and is suggested as being coded by the tonic (as

distinct from the phasic) levels of dopamine. This cap-

tures findings associated with response vigor given dopa-

minergic manipulations [72,73,74�], and, at least

assuming a particular coupling between phasic and tonic

dopamine, can explain results linking vigor to predictions

of reward [75,76].

‘The Bad’: apparent but tractable
inconsistencies
Various research areas which come in close contact with

different aspects of RL, help extend or illuminate it in not

altogether expected ways. These include issues of aver-

sive-appetitive interactions, exploration and novelty, a

range of phenomena important in neuroeconomics [77,78]

such as risk, Pavlovian-instrumental interactions, and also

certain new structural or architectural findings. The exist-

ence of multiple control mechanisms makes it challen-

ging to interpret some of these results unambiguously,

since rather little is known for sure about the interaction

between model-free and model-based systems, or the way
Please cite this article in press as: Dayan P, Niv Y, Reinforcement learning: The Good, The B
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compete.

Appetitive–aversive interactions: one key issue that dogs

neural RL [79] is the coding of aversive rather than

appetitive prediction errors. Although dopamine neurons

are seemingly mostly inhibited by unpredicted punish-

ments [80,81], fMRI studies into the ventral striatum in

humans have produced mixed results, with aversive pre-

diction errors sometimes leading to above-baseline

BOLD [82,83], but other times below-baseline BOLD,

perhaps with complex temporal dynamics [84,23]. Dopa-

mine antagonists suppress the aversive prediction error

signal [85], and withdrawing (OFF) or administering

(ON) dopamine-boosting medication to patients suffer-

ing from Parkinson’s disease leads to boosted and sup-

pressed learning from negative outcomes, respectively

[86].

One study that set out to compare directly appetitive and

aversive prediction errors found a modest spatial separ-

ation in the ventral striatal BOLD signal [87], consistent

with various other findings about the topography of this

structure [88,89]; indeed, there is a similar finding in the

OFC [90]. However, given that nearby neurons in the

amygdala code for either appetitive or aversive outcomes

[44,45�,46], fMRI’s spotlight may be too coarse to address

all such questions adequately.

Aversive predictions are perhaps more complex than

appetitive ones, owing to their multifaceted range of

effects, with different forms of contextual information

(such as defensive distance; [91]) influencing the choice

between withdrawal and freezing versus approach and

fighting. Like appetitive choice behavior, some of these

behavioral effects require vigorous actions, which we

discussed above in terms of tonic levels of dopamine

[70,71]. Moreover, aversive predictions can lead to active

avoidance, which then brings about appetitive predictions

associated with the achievement of safety. This latter

mechanism is implicated in conditioned avoidance

responses [92], and has also been shown to cause increases

in BOLD in the same part of the OFC that is also

activated by the receipt of rewards [93].

Novelty, uncertainty and exploration: the bulk of work in RL

focuses on exploitation, that is on using past experience to

optimize outcomes on the next trial or next period. More

ambitious agents seek also to optimize exploration, taking

account in their choices not only the benefits of known

(expected) future rewards, but also the potential benefits

of learning about unknown rewards and punishments (i.e.

the long-term gain to be harvested due to acquiring

knowledge about the values of different states). The

balancing act between these requires careful accounting

for uncertainty, in which the neuromodulators acetyl-

choline and norepinephrine have been implicated
ad and The Ugly, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.08.003
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[94,95]. Uncertainty is also related to novelty, which

seems to involve dopaminergic areas and some of their

targets [96�,97,98]. Uncertainty and novelty can support

different types of exploration, respectively, directed

exploration, in which exploratory actions are taken in

proportion to known uncertainty, and undirected explora-

tion, in which novel unknown parts of the environment

are uniformly explored. Tracking uncertainty has been

shown to involve the PFC in humans [99] and complex

patterns of activity in lateral and medial prefrontal cortex

of monkeys [100], and has also been associated with

functions of the amygdala [101].

Model-free and model-based systems in RL adopt rather

different approaches to exploration, although because

uncertainty generally favors model-based control [14],

the model-free approaches may be concealed. Indeed,

we may expect that certain forms of explicit change and

uncertainty could act to transfer habitized control back to

a model-based system [102]. Model-based exploration

probably involves frontal areas, as exemplified by one

recent imaging study which revealed a particular role for

fronto-polar cortex in trials in which nonexploitative

actions were chosen [103]. Model-free exploration has

been suggested to involve neuromodulatory systems such

as dopamine and norepinephrine, instantiating computa-

tionally more primitive strategies such as dopaminergic

exploration bonuses [98].

Uncertainty should influence learning as well as explora-

tion. In particular, learning (and forgetting) rates should

be higher in a rapidly changing environment and slower in

a rather stationary one. A recent fMRI study demon-

strated that human subjects adjust their learning rates

according to the volatility of the environment, and

suggested that the anterior cingulate cortex is involved

in the online tracking of volatility [104]. In animal con-

ditioning tasks involving a more discrete form of surprise

associated with stimuli, substantial studies have shown a

role for the central nucleus of the amygdala and the

cholinergic neurons in the substantia innominata and

nucleus basalis in upregulating subsequent learning

associated with that stimulus [94]. More recent work

has shown that there is a crucial role for the projection

from the dopaminergic (putatively prediction error cod-

ing) substantia nigra pars compacta to the central nucleus

in this upregulation [105], and that the involvement of the

central nucleus is limited to the time of surprise (and that

of the cholinergic nuclei to the time of subsequent

learning; [106]). This accords with evidence that some

amygdala neurons respond directly to both positive and

negative surprising events ([45�], a minimum require-

ment for a surprise signal) and to unpredictability itself

[101].

Risk, regret and neuroeconomics: the relatively straightfor-

ward view of utility optimization that permeates neural
Please cite this article in press as: Dayan P, Niv Y, Reinforcement learning: The Good, The B
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RL is challenged by various findings in and around the

fields of experimental economics, behavioral economics,

and neuroeconomics [107,77]. These study the psycho-

logical and neural factors underlying a range of situations

in which behavior departs from apparent normative

ideals. One example of this concerns the sensitivity of

choice behavior to risk associated with variability in the

outcomes. There are extensive economic theories about

risk, and indeed evidence from functional neuroimaging

that variability may be coded in specific cortical and

subcortical regions such as the insular cortex, OFC and

the ventral striatum [108–112]. However, how risk should

influence action selection in model-free and model-based

control is not completely clear, partly because variability

can have both an indirect influence on values, for instance

via a saturating utility function for rewards [113], and

direct effects through a risk-sensitive learning process

[114,115]. Although nonlinear utilities for rewards will

affect both types of controllers, the effects of risk through

sampling biases [114] or through a learning rule that is

asymmetrically sensitive to positive and negative errors

[115] depend on the specific implementation of learning

in a model-free or model-based controller, and thus can

differ between the two.

A second neuroeconomic concern is regret, in which a form

of counterfactual thinking [116] or fictive learning [117] is

induced when foregone alternatives turn out to be better

than those that were chosen [118,119]. Imaging studies

have suggested a role for the OFC and other targets of the

dopamine system in processing fictive learning signals

[120,121,117]. Here, also, there may be separate instan-

tiations in model-based and model-free systems, as

accounting for counterfactuals is straightforward in the

former, but requires extra machinery in the latter.

A third issue along these lines is framing, in which

different descriptions of a single (typically risky) outcome

result in different valuations. Subjects are more reluctant

to take chances in the face of apparent gains than losses,

even when the options are actually exactly the same. A

recent imaging study [122] reported a close correlation

between susceptibility to framing and activity in the

amygdala, and a negative correlation with activity in

OFC and medial PFC.

Finally, there is an accumulating wealth of work on social

utility functions, and game–theoretic interactions be-

tween subjects [123], including studies in patient popu-

lations with problems with social interactions [124].

There are interesting hints for neural RL from studies

that use techniques such as transcranial magnetic stimu-

lation to disrupt specific prefrontal activity, which turns

out to affect particular forms of social choice such as the

ability to reject patently unfair (though still lucrative)

offers in games of economic exchange [125]. However,

these have yet to be coupled to the nascent more com-
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plete RL accounts of the complex behavior in pair and

multi-agent tournaments [126,127].

Pavlovian values: although it is conventional in RL to

consider Pavlovian or classical conditioning as only being

about the acquisition of predictions, with instrumental

conditioning being wholly responsible for choice, it is

only through a set of (evolutionarily programmed)

responses, such as the approach that is engendered by

predictions of reward, that Pavlovian predictions become

evident in the first place. Indeed, Pavlovian responses can

famously out-compete instrumental responses [128]. This

is of particular importance in omission schedules or nega-

tive automaintenance, when subjects continue respond-

ing based on predictions of future rewards, even when

their actions actually prevent them from getting those

rewards.

Other paradigms such as Pavlovian-instrumental transfer,

in which Pavlovian predictors influence the vigor of

instrumental responding, are further evidence of non-

normative interactions among these two forms of learn-

ing, potentially accounting for some of the effects of

manipulating reward schedules on effort [52,51]. Part

of the architecture of this transfer involving the amgydala,

the striatum and dopamine that has been worked out in

rodent studies [17] has recently been confirmed in a

human imaging experiment [129]; however, a recent

surprise was that lesions in rats that disconnected the

central nucleus of the amygdala from the ventral teg-

mental area actually enhanced transfer [130], rather than

suppressing it, as would have been expected from earlier

work (e.g. [131]).

The Pavlovian preparatory response to aversive predic-

tions is often withdrawal or disengagement. It has been

hypothesized that this is a form of serotonergically

mediated inhibition [132,133] that acts to arrest paths

leading to negative outcomes, and, in model-based terms,

excise potentially aversive parts of the search tree [134].

Compromising serotonin should thus damage this reflex-

ive inhibition, leading to systematic problems with evalu-

ation and choice. The consummatory Pavlovian response

to immediate threat is panic, probably mediated by the

peri-acqueductal gray [135,91]; such responses have

themselves recently been observed in an imaging study

which involved a virtual threatening ‘chase’ [136].

Appetitive and aversive Pavlovian influences have been

suggested as being quite pervasive [137], accounting for

aspects of impulsivity apparent in hyperbolic discounting,

framing and the like. Unfortunately, the sophisticated

behavioral and neural analyses of model-free and model-

based instrumental values are not paralleled, as of yet, by

an equivalently worked-out theory for the construction of

Pavlovian values. Moreover, Pavlovian influences may

affect model-based and model-free instrumental actions
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differently, suggesting even more relatively untapped

complexity.

Structural findings: finally, there are some recent fascinat-

ing and sometimes contrarian studies into the way that

striatal pathways function in choice. One set

[138�,139,140] has revealed a role for the subthalamic

nucleus (STN) in slowing down choices between strongly

appetitive options, perhaps to give more time for the

precise discrimination of the best action from merely

good ones [141]. It could again be that the impulsivity

created when the STN is suppressed arises from a form of

Pavlovian approach [137]. Others have looked at serial

processes that shift action competition and choice up a

ventral to dorsal axis along the striatum [142,143], perhaps

consistent with the suggested spiraling connectivity

through dopaminergic nuclei [144,145].

‘The Ugly’: crucial challenges
The last set of areas of neural RL suffer a crucial disparity

between their importance and the relative dearth of

systematic or comprehensive studies. Hopefully, by the

next review, this imbalance will be at least partially

redressed.

In terms of model-based control, a central question con-

cerns the acquisition and use of hierarchical structures. It

seems rather hopeless to plan using only the smallest

units of action (think of the twitches of a single muscle),

and so there is a great interest in hierarchies in both

standard [146] and neural RL [147]. Unfortunately, the

crucial problem of acquiring appropriate hierarchical

structure in the absence of supervision is far from being

solved. A second concern has to do with a wide class of

learning scenarios in which optimal learning relies on

detection of change and, essentially, learning of a ‘new’

situation, rather than updating the previously learned

one. A prime example of this is the paradigm of extinction

in which a cue previously predictive of reward is no longer

paired with the rewarding outcome. Behavioral results

show that animals and humans do not simply ‘unlearn’ the

previous predictive information, but rather they learn a

new predictive relationship that is inhibitory to the old

one [148]. How this type of learning is realized within a

RL framework, whether model-based or model-free, is at

present unclear, though some suggestions have been

made [149]. The issues mentioned above to do with

uncertainty and change also bear on this.

In terms of model-free control, there are various pressing

anomalies (on top of appetitive/aversive opponency)

associated with the activity of dopamine cells (and the

not-necessarily equivalent release of dopamine at its

targets; [150]). One concerns prediction errors inspired

by conditioned inhibitors for reward and punishment

predictors. While the predictive stimuli we have contem-

plated so far are stimuli that predict the occurrence of
ad and The Ugly, Curr Opin Neurobiol (2008), doi:10.1016/j.conb.2008.08.003
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some outcome, a conditioned inhibitor is a stimulus that

predicts that an otherwise expected outcome will not
happen. How the former (conditioned excitors) and the

latter (conditioned inhibitors) interact to generate a single

prediction and a corresponding prediction error is not yet

clear either neurally or computationally. A fascinating

electrophysiological study [151] targeting this issue

suggests that the answer is not simple.

A second anomaly is the apparent adaptive scaling of

prediction errors depending on the precise range of such

errors that is expected, forming an informationally effi-

cient code [152]. As with other cases of adaptation, it is not

clear that downstream mechanisms (here, presumably

dopamine receptors) have the information or indeed

the calculational wherewithal to reverse engineer cor-

rectly the state of adaptation of the processes controlling

the activity of dopamine cells. This opens up the possib-

ility that there might be biases in the interpretation of the

signal, leading to biases in choice. Alternatively, this

adaptation might serve a different computational goal,

such as adjusting learning appropriately in the face of

forms of uncertainty [153].

A timely reminder of the complexity of the dopamine

system came from a recent study suggesting a new sub-

class of dopamine neurons with particularly unusual neu-

rophysiological properties, that selectively target the

prefrontal cortex, the basolateral amygdala and the core

of the accumbens [154]. It is important to remember that

most of our knowledge about the behaviorally relevant

activity of dopamine neurons comes from recordings

during Pavlovian tasks or rather simple instrumental

scenarios — basic questions about dopaminergic firing

patterns when several actions are necessary in order to

obtain an outcome, when there are several outcomes in a

trial, or in hierarchical tasks are still unanswered. Lammel

et al.’s [154] results add to previous subtle challenges to

the common premise that the dopaminergic signal is

unitary (e.g. when taking together [56�,58�]). Future

physiological studies and recordings in complex tasks

are needed to flesh out what could potentially be a more

diverse signal than has so far been considered. The role of

dopamine in the prefrontal cortex, which has only played

prominently in relatively few models (notably [155]), and

indeed its potential effects on the model-based controller,

might also need to be rethought in light of these findings.

A final area of unfortunate lack of theory and dearth of

data has to do with timing. The activity pattern of

dopamine cells that most convincingly suggests that they

report a prediction error is the well-timed dip in respond-

ing when an expected reward is not provided [156,40].

The neural mechanisms underlying this timing are most

unclear; in fact there are various quite different classes of

suggestion in the RL literature and beyond. What is worse

is that this form of interval timing is subject to substantial
Please cite this article in press as: Dayan P, Niv Y, Reinforcement learning: The Good, The B
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scalar noise [157], to a degree that could make accurate

prediction learning, and accurately timed dips in dopa-

mine responding, quite challenging to achieve.

Conclusions
As should be apparent from this review, neural RL is a

vibrant and dynamic field, generating new results at a near-

overwhelming rate, and spreading its wings well beyond its

initial narrow confines of trial-and-error reward learning.

We have highlighted many foci of ongoing study, and also

some orphaned areas mentioned in the previous section.

However, our best hope is that the sterling efforts to link

together the substantial theoretically motivated and infor-

mative animal studies to human neuroimaging results,

along with new data from cyclic voltammetric measure-

ments of phasic dopamine concentrations [158], imminent

results on serotonin, and even nascent efforts to activate

DA cells in vivo using new optogenetic methods such as

targetted channel rhodopsin, will start to pay off in the

opposite direction by deciding between, and forcing

improvements to, RL models.
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