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a  b  s  t  r  a  c  t

A  central  goal  of  neuroscience  is  to understand  how  neural  dynamics  bring  about  the dynamics  of behav-
ior. However,  neural  and  behavioral  measures  are  noisy,  requiring  averaging  over trials  and  subjects.
Unfortunately,  averaging  can obscure  the  very  dynamics  that  we are  interested  in, masking  abrupt
changes  and artificially  creating  gradual  processes.  We  develop  a hidden  semi-Markov  model  for  pre-
cisely  characterizing  dynamic  processes  and  their  alteration  due  to experimental  manipulations.  This
method  takes  advantage  of multiple  trials  and  subjects  without  compromising  the  information  available
in individual  events  within  a trial.  We  apply  our model  to studying  the  effects  of  motivation  on  response
rates,  analyzing  data  from  hungry  and  sated  rats  trained  to  press  a lever  to obtain  food  rewards  on  a  free-
operant  schedule.  Our  method  can  accurately  account  for punctate  changes  in  the  rate  of responding
and  for sequential  dependencies  between  responses.  It  is  ideal  for  inferring  the statistics  of underlying
response  rates  and  the  probability  of  switching  from  one  response  rate  to  another.  Using  the model,
we  show  that  hungry  rats  have  more  distinct  behavioral  states  that  are  characterized  by high  rates  of
responding  and  they  spend  more  time  in these  high-press-rate  states.  Moreover,  hungry  rats  spend  less
time  in,  and  have  fewer  distinct  states  that  are  characterized  by a lack  of responding  (Waiting/Eating
states).  These  results  demonstrate  the  utility  of  our  analysis  method,  and  provide  a  precise  quantification
of  the  effects  of  motivation  on  response  rates.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Capturing the dynamics of animal behavior can be crucial to
understanding the underlying patterns of neural activity and how
these relate to overt behavior. In an experimental setting, animals
often rapidly switch between different modes of action. However,
such dynamics are rarely taken into account in commonly used
methods of analysis. Typically, behavior is averaged across a group
of subjects, resulting in a smooth curve that may  not reflect the
time-course of behavior of individual subjects in individual trials.
For example, in a learning experiment, Papachristos and Gallistel
(2006) showed that although individual mice exhibited abrupt
stepwise changes in anticipatory head poking rates, the average
group response was smooth, wrongly suggesting that learning pro-
ceeded gradually. In another study, the same phenomenon was
observed when contrasting individual and group-average pigeon
pecking rates (Gallistel et al., 2004). The authors concluded that
the learning rate that seemingly characterizes the group-average

∗ Corresponding author. Tel.: +1 609 258 1291; fax: +1 609 258 1113.
E-mail address: yael@princeton.edu (Y. Niv).

curve is meaningless with regard to the actual individual learning
process (see also Daw and Courville, 2008). Similarly, averaging the
behavior of an individual animal over multiple trials may  also hide
the true underlying characteristics of that behavior. For instance,
if an animal transitions abruptly from a low rate to a high rate of
responding within each trial, an average curve will inaccurately
depict a smooth increase in response rates, as long as the abrupt
change was timed differently on each trial (Matell et al., 2006).
Such gradual curves are useful for some purposes (e.g., Church,
1984; Roberts and Boisvert, 1998; Drew et al., 2003; Balci et al.,
2010), however, to accurately capture the dynamics of the behavior
and neural activity of individual animals, a more precise charac-
terization of single trial behavior is required. Here we describe a
method of analysis, based on the statistical framework of hidden
Markov models (HMMs; Rabiner, 1989) that can achieve such a pre-
cise quantification of non-continuous single trial dynamics, while
still taking advantage of multiple instances of behavior to extract
meaningful information from noisy data. In this paper we apply this
method to analyzing behavioral response rates.

Response rate is one of the most commonly used dependent
measures of behavior, utilized to examine the effect of a wide vari-
ety of experimental manipulations such as reinforcement schedule

0165-0270/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
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modifications, drug administration and neural lesions. Molar char-
acteristics of animal response rates as a function of the frequency
and magnitude of reinforcement have been described as adhering
to the Matching Law (Herrnstein, 1961, 1997), and the effects of
reinforcement on the dynamics of choice have been used to explain
overall response rates across trials (Sugrue et al., 2004; Corrado
et al., 2005). However, a basic understanding of how response rates
change within a trial, and how these changes are influenced by
experimental manipulations, is still lacking. In the current study,
we were interested in precisely characterizing how the motiva-
tional state of individual animals affected their response rates. It
is well accepted that the motivational state of an animal affects its
behavior. For example, a hungry animal would be more likely to
choose actions that are rewarded with food, and to perform these
actions at a higher rate than a sated one (Batten and Shoemaker,
1961). While previous studies have established that response rate is
affected by motivational factors such as palatability of food reward
(Carper, 1953; Guttman, 1953; Smith and Kinney, 1956) and time of
food or water deprivation (Batten and Shoemaker, 1961; Koch and
Daniel, 1945; Skinner, 1950; Smith and Capretta, 1956), we set out
to precisely quantify these effects of motivation on response rates
of hungry or sated rats lever-pressing for food on a free-operant
variable-interval schedule.1

2. Method

2.1. Subjects

Thirty-nine male Sprague Dawley rats (Harlan Laboratories,
Jerusalem, Israel) approximately three months old, weighing
329–473 g (mean 362 g) were housed 3–4 to a cage, in a vivarium
maintained on a 12-h light–dark cycle (lights on 15:00–3:00). All
behavioral training and testing occurred during the dark portion
of the cycle. Animals were allowed one month familiarization with
the vivarium before training began. Rats were then divided into two
groups. Group HUNGRY was maintained on a 22-h food restriction
schedule, with tap water available ad libitum in the home cage.
Standard lab chow was provided in the home cage for 2 h each day,
always after the daily session. Group SATED had continuous access
to standard lab chow in their home cage. All animal research was
carried out according to the guidelines of the Institutional Animal
Care and Use Committee of Tel Aviv University, and efforts were
made to minimize the number of animals used and their suffering.

2.2. Apparatus

Behavioral training and testing were conducted in four oper-
ant chambers (Campden Instruments, Loughborough, UK) fitted
with a recessed food magazine and two retractable levers. Only
the left lever was used in this experiment. The right lever remained
retracted at all times. Access to the food magazine was through
a hinged Perspex panel which activated a micro-switch when
opened. All rats in the HUNGRY group and 9 rats in the SATED group
received sucrose solution as reward. A peristaltic pump (RS Com-
ponents, Northants, UK) attached to a silicon tube inaccessible to
the rats, delivered approximately 0.25 ml  of 20% sucrose solution
(hand mixed) into the food magazine, over a period of 1 s. The 10
remaining rats in the SATED group received a single sucrose pellet
as reward. The operant chambers were housed in sound attenuat-
ing boxes, and ventilating fans were mounted on the side of each
box. The chambers could be illuminated by a house-light located
at the ceiling. Equipment programming and data recording were

1 In the particular variable-interval schedule used in the experiment, intervals
were distributed uniformly within a range of 15–45 s.

computer controlled by ABET software (Lafayette Instrument Co.,
Indiana, USA).

2.3. Procedure

2.3.1. Handling
On days 1–3, rats were individually handled for about 2 min

daily. For the HUNGRY group, a 22-h food restriction schedule
began one day prior to handling, and continued throughout sub-
sequent training and testing.

2.3.2. Magazine training
On days 4–5, rats were trained to consume sucrose solution or

pellets from the food magazine in the operant chamber, with the
lever retracted. The session began with the onset of the house-
light, which remained on for the entire session. Sucrose solution
or pellets were delivered into the food magazine on a random time
schedule, with a uniformly variable delay of 30–90 s (mean 60 s). On
day 4, the magazine flap was taped back so that the magazine was
constantly open and training continued until twenty-five rewards
were delivered. On day 5, the session ended after twenty outcomes
had been collected (as measured by the insertion of the rats’ head
into the food magazine), or until twenty-five outcomes had been
delivered.

2.3.3. Lever-press training
On days 6–14, rats were trained to lever-press in order to obtain

sucrose solution or pellets in a free operant variable interval pro-
cedure. We  chose a variable interval schedule as in this type of
schedule the rate of reward is relatively independent of the rate
of responding. Moreover, in the intervals between baiting times,
responses are entirely without consequence. Thus the schedule
exerts minimal constraints on response rate dynamics, providing
a suitable vehicle for measuring the effects of motivational state
on response rates. Due to technical limitations we could only use a
uniform distribution of interval durations, rather than the memory-
less exponential distribution (“random-interval” schedule).

The beginning of each session was signaled by the onset of the
house-light and the insertion of the left lever. On day 6, every press
on the lever delivered an outcome into the food magazine. Individ-
ual shaping was  used in this session to assist in acquisition of the
lever-press response. On days 7–14, the variable interval sched-
ule of reinforcement was  introduced, with an outcome delivered
only for the first lever-press after the programmed interval had
elapsed. The mean interval was  2 s on day 7, 15 s on day 8, and
30 s for the following seven training sessions. Reinforcement bait-
ing was  equally likely at any time starting from half the nominal
value of the schedule and ending at 150% of the nominal value of
the schedule.

All sessions terminated when thirty outcomes had been deliv-
ered, except the session on day 6 which ended when thirty
outcomes had been collected (as measured by insertion of the
rat’s head into the food magazine prior to the delivery of the next
outcome), or when forty outcomes had been delivered. The lever
was then withdrawn, and the house-light was  turned off. Day 12
included two training sessions, separated by at least 1 h, such that
overall, a total of ten lever-press training sessions were given over
nine days. Both lever presses and head insertions into the food
magazine were recorded.

Two rats required extra days for magazine training and/or lever
press training, and thus received only two sessions of training on
the 30 s variable interval schedule, instead of seven. One  rat in
group HUNGRY refused to consume the sucrose solution from the
food magazine and was  dropped from the study. This resulted in
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final Ns of 19 rats in the HUNGRY group and 19 rats in the SATED
group.

2.3.4. Lever-press testing
On days 15–18, rats underwent 5 testing sessions which were

identical to the final 7 training sessions. Day 15 included two  train-
ing sessions, separated by at least 1 h. In all testing sessions the
scheduled intervals between rewards were at least 15 s long, thus
rats were not forced to choose between consuming food and max-
imizing the amount of food received.

2.4. Computational modeling of lever-press rates

To characterize the statistics of response rates across multiple
trials in a free operant experiment and their malleability due to
experimental manipulations such as motivation while still pre-
serving an accurate description of the abruptness of within-trial
behavioral changes, we propose to model behavior using a hid-
den Markov model (HMM;  Rabiner, 1989). In an HMM,  observed
behavior is assumed to be probabilistically generated by a set of
hidden states, for instance in our case, each corresponding to a
certain response rate. Transitions between these states are abrupt,
and occur with some fixed probability that depends on the current
state and the new state. The number of distinct states that best
describes the empirical observations, the response rates associated
with each state and the probability of transitioning from one state
to another can all be inferred by fitting the model to behavior using
a maximum-likelihood procedure (details below). The result is a
description of behavior that effectively pools behavior across trials,
sessions and/or subjects to extract its statistical properties, while
still allowing for (and correctly modeling) behavioral transitions
that do not conform to smooth curves.

2.4.1. An HMM  model of response rates
To examine how rat behavior varied overtime, both across

and within trials, we developed an HMM  in which hidden states
reflected underlying response rates, stochastically emitting obser-
vations in the form of inter-press-intervals (IPIs; Fig. 1). Each state
s was thus associated with a gamma  distribution over intervals,
defined by two parameters: its mean �s and standard deviation
�s. The gamma  distribution is suitable for modeling an initial low-
response refractory period followed by a constant probability of
response per unit time. In addition, since it can reflect the sum of
multiple exponentially distributed random variables, it is capable
of accounting for time intervals that include multiple successive
actions, as might be the case in our experiment (e.g., a rat may
consume food, groom or rest before preparing to press the lever
again).2

Each IPI constituted an observed data point presumed to be
emitted by the HMM’s hidden state. Following each IPI the model
could transition to a different state or stay in the same state. State
transitions followed the fixed transition probability matrix T, where
Tss′ is the probability of transitioning to state s′ given that the cur-
rent state is s. In addition, the delivery of reinforcement was  input to
the model (formally, an input–output HMM;  Bengio and Frasconi,
1995), with reward receipt inducing transition probabilities TRs′ to
state s′, irrespective of the current state. Technically speaking, the
model is a hidden semi-Markov model (HSMM), due to the non-
equal state dwell times between transitions.

2 An alternative analysis using a closely related interval distribution that approx-
imates a normally distributed lag-time followed by a Poisson process (Haccou and
Meelis, 1992; Conover et al., 2001) allowed a smaller number of free parameters but
did not fit our data as well as the gamma  distribution, and thus is not reported.

2.4.2. Model fitting
To fit the model to the observed behavior, we  used an

expectation-maximization (EM) algorithm (Dempster et al., 1977;
also called the Baum–Welsh algorithm, Baum et al., 1970). This
allowed us to find the maximum likelihood setting of the IPI mean
and standard deviation for each state (�s and �s, respectively), the
probabilities of occupying each state at the beginning of a testing
session (�s, henceforth ‘initial state probabilities’), the full matrix
of transition probabilities between states T, and the vector of tran-
sitions predicated on reinforcement TR. These parameters were fit
to the sequence of rewards and IPIs from the five test sessions,
separately for each rat.

Model-fitting proceeded as follows. Initialization: Initial state
probabilities and transition probabilities were initialized to uni-
form probability. The mean and standard deviation parameters
controlling the emission distributions were initialized at random
values. Following initialization, an expectation step and a max-
imization step (described below) were repeated in alternation.
Expectation step: In this step we  inferred the state and transition
probabilities given the observed data and the current model param-
eters. We first recursively computed ˛i

s, the joint probability of
occupying state s at the ith IPI and of the observed IPIs up to and
including that IPI, given the model parameters:

˛1
s = �sP(IPI1|�s, �s) (1)

˛i+1
s′ = ˙s˛

i
sTss′ (IPIi+1|�s′ , �s′ ) (2)

where P(IPIi|�s, �s) is the gamma  probability density function of
IPIi given mean �s and standard deviation �s.

Then, we recursively computed ˇi
s, the probability of all IPIs

observed after IPIi, given state s at the ith IPI and the model param-
eters:

ˇI
s = 1 (3)

ˇi
s = ˙s′ Tss′ ˇi+1

s′ P(IPIi+1
∣∣�s′ , �s′ ) (4)

In computing ˇi
s, the recursion starts with a value of 1 at

the last IPI (IPII) and progresses backwards (hence the name
“forward–backward algorithm”).

Finally, we  used ˛i
s and ˇi+1

s to compute �i
ss′ , the probability

of a transition from state s to state s’ between the ith IPI and the
following IPI given the observed data and the model parameters,
and �i

s, the probability of occupying state s at the ith IPI given the
observed data and the model parameters:

�i
ss′ = ˛i

sTss′ P(IPIi+1|�s′ , �s′ )ˇi+1
s′

˙s˙s′ ˛i
sTss′ P(IPIi+1|�s′ , �s′ )ˇi+1

s′
(5)

�i
s =

∑
s′

�i
ss′ (6)

Note that all equations were used similarly for time intervals
that followed reward delivery, except that transition probabilities
there were TRs.

Maximization step: This step involved setting new values for the
free parameters of the model so as to maximize the likelihood of the
observations given the model, based on the results of the expecta-
tion step. Initial state probability of state s was  set as the probability
of that state at the first IPI as inferred in the expectation step (Eq.
(7)). The probability of transition to state s′ given state s was  set as
the sum of the corresponding time-dependent transition probabil-
ities that were inferred in the expectation step, divided by the sum
of probabilities of occupying state s:

�s = �1
s (7)
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Fig. 1. Hidden semi-Markov model with two states. (A) Graphical model depiction of a sequence of states and observations. (B) State diagram showing all parameters fitted
to  the sequence of inter-press intervals of each rat. �s – mean of gamma emission distribution of state s, �s – standard deviation of gamma emission distribution of state s,
�s – probability of starting at state s, Tss′ – probability of transitioning to state s′ following state s, TRs – probability of transitioning to state s following reward receipt.

Tss′ =
∑I−1

i=1�i
ss′∑I−1

i=1�i
s

(8)

Since no analytically closed expressions exist for maximum like-
lihood estimators of gamma distribution parameters, we estimated
these numerically (Choi and Wette, 1969). For each state, every IPI
was weighted by the probability of occupying that state at that
time interval (�s, inferred in the preceding expectation state). The
parameters of the gamma distribution of that state were then fitted
to this weighted set of IPIs:

�s = arg max
�s

P(IPI1:I |�s, �s, �1:I
s ) (9)

�s = arg max
�s

P(IPI1:I |�s, �s, �1:I
s ) (10)

200 iterations of the Expectation and Maximization steps were
performed for each model, which was sufficient for the estimates
of the model parameters given the data to converge. To avoid
local maxima, the fitting process was repeated 15 times for each
model and each rat, with different randomly initialized parame-
ters. Finally, we produced the most likely sequence of states for
describing the rat’s behavior using the Viterbi algorithm (Viterbi,
1967) given the model and its maximum likelihood parameters.

2.4.3. Model comparison
A major question of interest was the number of distinct states

(response rates) that characterize the rats’ behavior, and how this
is affected by motivational state. However, when fitting a hidden
(semi-) Markov model, the number of states must be set in advance.
We thus fitted separate models with 1, 2, 3 and 4 states to the
observations obtained from each rat, and selected the model that
best accounted for the data according to the Bayesian Informa-
tion Criterion (BIC; Schwarz, 1978). Adding states to the model
means adding free parameters: 8 free parameters are required in
a model with two states (Fig. 2), and that number grows exponen-

tially as a function of the number of states. In particular, a model
with n states involves 2n gamma  distribution parameters, (n − 1)
initial state occupancy probabilities, n(n − 1) transition probabili-
ties and (n − 1) reinforcement-induced transition probabilities. The
BIC criterion adjusts for the inherently better explanatory power of
models with more parameters, penalizing for the number of free
parameters such that simpler models are preferred and overfitting
of the data is minimized. In effect, the BIC score can be used to
determine whether the increase in likelihood of the data due to an
additional parameter is sufficiently large to justify the additional
parameter.

We tested the differences in the numbers of distinct states
between the SATED and HUNGRY groups for statistical significance
using a chi-squared randomization test (McDonald, 2009). Results
of both study groups were pooled together and 100,000 alternative
result sets were randomly drawn from the pool with replacement.
The chi-squared statistic was computed for each result set, with the
pooled results serving as the expected distribution. Statistical sig-
nificance level was  then computed by comparing the chi-squared
statistic of the actual result to this distribution.

3. Results

We  trained hungry and sated rats to press a lever for food
reward on a variable-interval schedule, in order to examine how
motivation affects their patterns of responding. To avoid averaging
over data between and within subjects and potentially obscur-
ing the very effects we would like to quantify, we  used an HSMM
model of lever-pressing. HSMMs  are particularly suitable for ana-
lyzing sequential stochastic behavioral responses. Furthermore,
using input variables, it is possible to incorporate into the mod-
els the effect of events such as reward receipt, thereby taking into
account the structure of the experiment without having to average
over multiple trials. In our model, the rat presses a lever according
to several discrete response rates, with each hidden state corre-
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Fig. 2. Inter-press interval histograms of the SATED and HUNGRY groups. IPIs were binned into 100 ms  bins.

sponding to a distribution over inter-press-intervals (IPIs). At each
step of the model, the current state emits one IPI and then tran-
sitions to the next state (including, possibly, to itself) according
to fixed transition probabilities. The occurrence of reinforcement
perturbs behavior by effecting a transition to any of the states
according to different, reinforcement-dependent transition prob-
abilities. The model was fit separately to the data from each rat,
allowing us to infer from each rat’s behavior the underlying hidden
states (i.e., the response rates characterizing behavior), the num-
ber of states sufficient to accurately describe the behavior, and how
often each state was occupied during the behavioral sessions.

How can motivation affect responding in our model? One option
is that hungry (motivated) rats press the lever at a higher rate
such that each of (or one of) the hidden states corresponding to
their behavior is associated with significantly shorter IPIs. A sec-
ond option is that motivation does not change the response rates
associated with each state, but rather, it affects the probability of
occupying each of the states such that hungry rats spend more time
in short IPI (fast lever-press) states. Finally, a third possibility is that
motivated rats show more distinct rates of responding, that is, that
higher motivation adds new states with even shorter IPIs to the
rat’s behavioral repertoire in the experiment.

3.1. Overall rate of responding

During testing, rats in the HUNGRY group showed a signif-
icantly higher (p < 10−8, one-way ANOVA) average rate of lever
pressing (mean 17.3 presses/min, SD 4.5) compared to the SATED
group (mean 7.6 presses/min, SD 2.8). Accordingly, the HUNGRY
group rats generally obtained rewards more quickly than the SATED
group did and since each testing session ended when the thirtieth
reward was earned, HUNGRY group testing sessions were signifi-
cantly shorter (p < 10−4, one-way ANOVA) than those of the SATED
group. The mean HUNGRY group session length was 976 s (SD 30)
while the SATED group sessions were on average 1164 s long (SD
177).

Fig. 2 shows IPI histograms of each of the study groups. The
histograms show a skewed distribution in which very short and
very long IPIs are rare. Thus the histograms suggest a gamma  dis-
tribution (or a composition of several such distributions) over IPIs,
prompting our choice to characterize response rates in the HSMM
model using a gamma distribution.

3.2. Model-based analysis of response rates

Fig. 3 illustrates the results of the model-fitting process for one
rat from the SATED group. The analysis indicated 2 distinct behav-
ioral states: one state with a mean of 4.15 presses/min and another
state with a mean of 24.28 presses/min (Fig. 3A). As shown in the
state diagram in Fig. 3B, reward receipt caused the model to tran-
sition to the low press rate state (PR1 = 1). Then, following a single
lever press the model was highly likely to transition to the high
press rate state (P12 = 0.89), and this rate was  typically maintained
for multiple lever presses (P22 = 0.95) until the next reward. Plot-
ting the behavior of the rat as a function of the time since the last
reward (Fig. 3C) shows a correspondence between the rat’s average
press rate and the probability that the model is in the high press
rate state.

Fig. 4 illustrates the model-fitting results for a different rat,
from the HUNGRY group. Here, the analysis detected three dis-
tinct behavioral states with mean lever press rates of 4.73, 17.63
and 118.04 presses/min. Similar to the results for the previous rat,
this rat’s model also transitioned to the low press rate state fol-
lowing every reward, and was unlikely to stay in this state for
more than a single inter-press interval. However, following the low
press rate state the model was equally likely to transition to either
the intermediate or the high press rate state, with frequent transi-
tions between these two states until the next reward was obtained.
Average lever press rate and state probabilities followed the same
pattern as a function of the time that elapsed since the last reward
(Fig. 4D). To further validate the inferred HSMMs, we  used each
model to generate a sequence of lever presses in response to the
same reward schedule that was used in the experiment. The simu-
lated data shown in Fig. 4C was generated using the model in Fig. 4B.
As expected, the results of the simulation are qualitatively similar
to the observed data that the model was inferred from (Fig. 4A).

Overall, the analysis indicated the presence of two distinct
behavioral states in 9 out of 19 rats in the SATED group and in 5 out
of 19 rats in the HUNGRY group. In contrast, three distinct behav-
ioral states were indicated in more rats in the HUNGRY group (13
rats) than rats in the SATED group (8 rats). Four distinct states were
indicated in only two rats in the SATED group and one rat in the
HUNGRY group. These differences between the study groups were
statistically significant (p < 0.05, chi-squared randomization test).

We next examined the mean lever-press rates characterizing
each of the states indicated for each rat (Fig. 5). In general, mean
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Fig. 3. Model-fitting results for one rat from the SATED group for which 2 distinct states were detected. (A) Observed press-rates and inferred states during the first half of
one  testing session. Circles denote reward receipt. The smoothed observed behavior curve, produced using a 15-s moving average, illustrates the correspondence between
the  data and the inferred behavioral states. (B) State diagram of the best fitting model (see Fig. 1B for corresponding parameters). (C) Average lever-press rate (line) and
proportion of time attributed to each of the two  states (background shading) as a function of time following reward receipt. Shades correspond to the average pressing rate
in  each state, according to scale shown on the left. (D) BIC scores for HSMMs with 1, 2, 3 and 4 states. Lower scores indicate a better fit of the model.

lever-press rates were higher for the HUNGRY group as compared
to the SATED group. Interestingly, as no states were character-
ized by mean lever press rates in the range of 5–10 presses/min, a
dichotomy emerged between very low and medium to high lever-
press-rate states. Low press-rate states were characterized by mean
lever-press rates lower than 5 presses/min. The probability of tran-
sitioning to one of these states following reward receipt was  above
0.99 for all rats, while the probability of maintaining one of these
states following a single lever press was on average 0.08 (SD 0.14).
We thus interpret these states as ‘Eating/Waiting’ states in which
rats consumed the available reward, and possibly engaged in other
activities such as grooming, while waiting prior to resuming lever-
pressing for the next reward. In contrast, we categorized ‘High-Rate
Pressing’ states as those states that were characterized by mean
lever press rates higher than 30 presses/min.3 The probability of
transitioning to one of these states following reward receipt was
negligible in all cases (<0.01), while the probability of maintaining
one of these states following a single lever press was, on average,
0.56 (SD 0.32), which is significantly higher than the corresponding
probability computed for the ‘Eating/Waiting’ states (p < 10−10,one-
way ANOVA).

Using this dichotomy, we classified the behavioral states indi-
cated by the HSMM analysis as either ‘Eating/Waiting’ or ‘High-Rate
Pressing’ states, and counted these separately for each of the study
groups. Notably, fewer ‘Eating/Waiting’ states and more ‘High-Rate
Pressing’ states were indicated for the HUNGRY group rats com-
pared to the SATED group (p < 0.05, chi-squared randomization

3 This threshold was  chosen to avoid the mass of medium press-rate states that
characterized both study groups similarly.

test). Only a single ‘Eating/Waiting’ state was  indicated for each
rat of the HUNGRY group, compared to an average of 1.32 ‘Eat-
ing/Waiting’ states for rats of the SATED group. In contrast, an
average of 0.89 ‘High-Rate Pressing’ states per rat were indicated
for the HUNGRY group rats, compared to 0.32 ‘High-Rate Pressing’
states for rats of the SATED group.

In addition to exhibiting a higher number of distinct high press
rates, the models indicated that rats from the HUNGRY group also
spent more time pressing the lever at these high rates (Fig. 6).
On average, the HUNGRY group rats spent 52% (SD 12) of the
testing sessions in states with a mean press rate higher than 10
presses/min. This was  significantly higher than the 32% (SD 17) the
SATED group rats spent in such states (p < 0.001, one-way ANOVA).
The difference in time spent at states with press rate higher than
30 presses/min is even more pronounced (19% SD 20 vs. 1% SD 3;
p < 0.001, one-way ANOVA).

3.3. Model validation

Analysis using HSMMs  is particularly useful for detecting abrupt
changes between different behavioral states. However, one limita-
tion of this method of analysis is its underlying assumption that
subjects’ behavior does actually change abruptly. It is therefore
important to examine the results that this method would produce
if given a set of observations that are generated from a gradually
changing process. The goal of this analysis was  to show that if the
true generative process underlying the rats’ lever-pressing behav-
ior was  a gradually changing one, our analysis method would have
given different results.

We used the empirical mean lever-press-rate curves following
reward receipt to stochastically generate sequences of inter-
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Fig. 4. Results for one rat from the HUNGRY group for which 3 distinct states were indicated. (A) Observed lever-press rates and inferred states during first half of one
testing  session. Circles mark rewards. The smoothed observed behavior curve, produced using a 15-s moving average, illustrates the correspondence between the data and
the  inferred behavioral states. (B) State diagram of the best fitting model. (C) Data generated using the fitted HSMM in a generative mode. (D) Average lever-press rate (line)
and  proportion of time in each inferred state (background shading) as a function of time following reward receipt. Shades correspond to average pressing rate in each state
according to scale shown on the left. (E) BIC scores for HSMMs  with 1, 2, 3 and 4 states. Lower scores indicate a better fit of the model.

press intervals that reflect gradually changing behavior. Empirical
response-rate curves were separately computed for rats that
showed two and three distinct behavioral states (Fig. 7), to examine
the possibility that a difference in the shape or scale of these curves
was the actual reason for the different number of states detected
by our HSMM analysis. Ten data sets were generated from each of
these curves by simulating lever-presses as generated by a Pois-
son process whose rate changes as a function of time following
reward according to the empirical average curve. Similarly to the
actual experiment, rewards were made available following a vari-
able interval uniformly distributed in the range of 15–45 s, each
session ended when the thirtieth reward was administered, and
each data set consisted of five sessions.

We  then applied the same HSMM analysis to the simulated data
sets. All ten data sets based on the 2-state rats curve and nine out
of the ten data sets based on the 3-state rats curve were found to
have only two distinct behavioral states. Three behavioral states
were detected in the single remaining data set. Thus, although the
proposed HSMM analysis method does not reliably differentiate
between rats changing their behavior gradually and rats alternating
between two distinct behavioral states (for instance, by suggesting
a large number of intermediate states for rats that change their
behavior gradually), the results suggest that the finding of three
or more distinct behavioral states cannot be simply attributed to

the gradually changing behavior described by either one of the
averaged curves. Rather, the fact that our analysis detected more
than two  states suggests that multiple distinct clusters of IPIs were
present in the data, at least to some extent.

We  further tested our method of analysis with data generated
explicitly from two distinct behavioral states. The probability of
occupying each state, as a function of time after reward, was deter-
mined according to the empirical mean lever-press-rate curve.
However, instead of using the two-state curve from Fig. 7 to deter-
mine the lever-press rates for the two  states, the three-state curve
was used. Nevertheless, the analysis still correctly detected only
two distinct states in all of the ten data sets that were generated.
This shows that the higher press rates that characterized the three-
state rats were not sufficient to bias the analysis in favor of detecting
more than two states.

Another potential confound for our analysis is the type of
food reward that rats received. Some of the rats in the SATED
group received sucrose solution as reward while others received
sucrose pellets. In contrast, all rats in the HUNGRY group received
sucrose solution. To test this, we  divided the SATED group into
two sub-groups on the basis of the type of reward they received.
Fig. 8 shows that both rat performance, as measured by mean
session length, and the number of distinct states detected, were
not significantly affected by type of reward. In fact, if anything,
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Fig. 5. Top: Mean lever press rates characterizing inferred behavioral states. Results
are  presented for individual rats arranged by number of states and study group.
Error bars represent the standard deviation of the inferred gamma  distribution. Error
bars above 200 were truncated. Bottom: Histogram of inferred behavioral states as
a  function of mean lever press rate.

results for the HUNGRY group who received sucrose solution were
nominally more similar to those of the pellets sub-group rather
than the sucrose solution sub-group of the SATED rats.

In addition, the total number of lever presses and the mean
testing session time differed between the SATED and the HUN-
GRY group. The number of lever presses is particularly important
because it determined the number of IPIs, and consequently, the
number of data points the HSMMs  were fitted to. To examine
whether either of these factors had a significant effect on the num-
ber of states detected by the analysis, number of lever presses
and mean session length were compared within each of the study
groups between rats that showed two distinct behavioral states
and rats that showed three distinct states. Fig. 9 shows that no sig-
nificant differences were found in either variable, suggesting that
neither of these variables substantially affected the results. To fur-
ther ensure that our main findings were not a result of differences
in session length and that they do not reflect differences that are
specific to the later part of each session, we fitted HSMMs to the
behavioral data obtained from the first 10 min  of each session. The
main findings of this analysis were similar to those of the full data
set analysis: HUNGRY group rats showed more distinct behavioral
states than the SATED group rats (p < 0.05, chi-squared randomiza-
tion test). In addition, we again found more ‘High-Rate Pressing’
states and fewer ‘Waiting/Eating’ states for the HUNGRY group

Fig. 6. Mean lever press rates (shade) and proportion of time spent (extent) in each
behavioral state for each individual rat. Rats in the SATED group spend more time in
‘Eating/Waiting’ states and less time in ‘High-Rate Pressing’ states than rats in the
HUNGRY group.

compared to the SATED group (p < 0.05, chi-squared randomization
test).

Finally, to ensure that additional behavioral states were not
detected simply due to systematic fluctuations in behavior across
or within sessions, such as may  be caused by less stable behav-
ior in the first test sessions or by satiation developing over the
course of a session, we compared the time spent by rats in the
different states between the first and second halves of each session
and between sessions (two-way ANOVA). No significant differences
were found between halves or sessions, regardless of the number of
states detected (p > 0.05). Thus, we  conclude that the main results
of our analysis do not reflect such systematic fluctuations.

Fig. 7. Mean lever press rate following reward receipt, computed separately for rats
with 2 and 3 inferred states. Separate analyses of response rates between the 30 and
35, the 35 and 40 and 40, and the 45 s marks (not shown) indicated that press-rates
did not significantly change after the 30 s mark (one-way ANOVA, p > 0.05). Error
bars represent standard deviation.
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of  the number of inferred behavioral states, shown separately for the SATED and
HUNGRY groups.

4. Discussion

We  introduced a new method for analyzing response rate
dynamics, which is especially suited to characterizing processes
that have sequential structure and involve abrupt changes. To illus-
trate the strengths of this approach, we examined the effect of
food deprivation on rats’ rate of lever-pressing for food reward
in a uniformly-distributed variable-interval schedule. Generally,
food-restricted rats pressed the lever more often than rats that
had continuous access to food. Analysis using HSMMs  revealed that
behavior was  largely comprised of two  or three distinct behavioral
states, associated with different rates of lever-pressing. Food-
restricted rats showed more distinct states with high lever press
rates and fewer distinct states with low lever press rates. Addition-
ally, food-restricted rats also tended to maintain high press-rate
states for longer periods of time as compared to rats that had access
to ad libitum food chow in their home cage.

Based on these results, we  can conclude that hungry rats
had more distinct modes of high-rate lever-pressing and fewer
distinct modes of waiting than sated rats. Notably, rats in the food-
restricted group had only one type of ‘Waiting’ state. This state was
characterized by a lever press rate of around 4 presses/min, corre-
sponding to a 15 s IPI which, perhaps coincidentally, is exactly the
period of time that rats had to wait for the next reward to be pos-
sibly available. In contrast, some rats that had continuous access to
food showed more than a single distinct ‘Waiting’ state, and some
of these states were characterized by mean IPIs that were signifi-
cantly longer than 15 s, indicating that despite the consequence of
a lower reward rate, these rats opted for longer periods of waiting
and shorter periods of lever-pressing compared to food-restricted
rats.

As demonstrated in the present study, the main advantage
of using HMMs  and HSMMs  in data analysis lies in their ability
to capture abrupt switches between distinct behavioral states. In
addition, behavioral patterns that might be lost due to averaging
can be revealed using our proposed method. Avoiding averaging
over multiple trials does not mean that the structure of the exper-
iment must be ignored: events such as trial start or reward receipt
can easily be incorporated as input variables in the causal structure
of the model. In addition, the sequential structure of HMMs allows
them to detect distinct clusters of observations not only according
to the value of the observations but also according to the timing
of each observation in relation to other observations. This property
allows a more sensitive analysis of the data that takes into account
sequential aspects of the observed behavior. For instance, one long
IPI per inter-reward-interval may  not carry much weight in a tradi-
tional analysis, but if this IPI is consistently observed immediately
following reward, it is sufficient to justify inference of a distinct
behavioral state in our analysis. Similarly, a few short IPIs will have
much more effect on the HSMM analysis if they follow each other in
succession as compared to randomly interspersed within or among
trials, a structural difference that would be lost in averaging.

Several approaches have previously been proposed for avoid-
ing averaging over multiple trials and detecting abrupt changes
in behavior (Church et al., 1994; Cheng and Westwood, 1993;
Schneider, 1969; Gallistel et al., 2001, 2004). The most powerful
and generally applicable of these approaches is Gallistel et al.’s
change point-algorithm, which identifies behavioral change-points
by analyzing deviations from linearity in cumulative behavior plots
and weighing the probabilistic evidence in favor of each potential
change point. Our approach improves on the change-point algo-
rithm in several respects. First, the change-point algorithm detects
changes in behavior rather than behavioral states. Thus, in contrast
to our approach it is agnostic as to whether two  relatively simi-
lar behavioral states that are detected at different parts of the data
set should be regarded as different states or as two instances of
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the same state. Second, the change-point algorithm truncates the
data at each behavioral change point before determining the loca-
tion of the next one, so that data that comes before the previous
change point is ignored when the next one is inferred. In contrast,
in our approach the whole data set is used to infer the existence
and timing of each behavioral state, as well as the change-points
between them. Therefore, patterns of responses that repeat them-
selves at different parts of the data set but are not distinct enough
for a local algorithm to detect, may  nevertheless be detected by
our algorithm, thereby revealing changes in behavior that would
otherwise go unnoticed. Finally, rather than using a user-specified
decision criterion for the detection of behavioral changes that is
varied so as to produce the desired number of change-points, here
we use the Bayesian Information Criterion which provides us with
a principled way of determining the number of behavioral states,
and enables us to infer a mathematical model of the process that
generated the data.

More algorithmically similar to our approach is Smith et al.’s
(2004) use of a state-space algorithm to infer the trial in which
learning was achieved. There, responses are modeled as observa-
tions that are stochastically emitted by a hidden state that depends
on a continuous learning-state parameter. Similarly to our study,
Smith et al. demonstrate how a state-space algorithm is useful for
analyzing the behavior of individual animals. However, a signifi-
cant limitation of their method is that the rate of change of the
learning-state parameter at any single time-point is probabilisti-
cally constrained by the average rate of change over the whole
time course. For that reason, the algorithm is biased towards detec-
tion of gradual learning curves and is limited in its ability to detect
abrupt changes that occur on single trials. Modeling behavior using
an HMM  with discrete hidden states, as we have done here, is more
sensitive to such abrupt changes and thus suitable for dynamic
processes that are not well-characterized by gradual dynamics.

The advantages that HMM-based analysis carries for behavioral
data are also applicable to the analysis of neural data. For example,
when analyzing spike trains, individual spikes or inter-spike-
intervals can be modeled as observations stochastically emitted
by a hidden state. This allows direct inference of the properties
of different states of neural activity and characterization of abrupt
transitions between them. Indeed, similar state-space methods
were successfully used in the past for analyzing neural data (Gat
et al., 1997; Brown and Barbieri, 2006; Chen et al., 2009). Aug-
menting these methods with a model selection procedure as we
have done here can be useful for inferring the appropriate number
of discrete states of neural activity.

On the other hand, a significant limitation of analysis using
HMMs  is that the reliability of detection of a hidden state depends
on the number of observations that correspond to that state. For this
reason, if behavior changes gradually (as in our simulated dataset)
it is difficult to predict how many states will eventually be detected,
as more data will allow more intermediate-rate behavioral states to
surface. It is therefore important to establish the sensitivity of the
analysis using artificially generated data sets that simulate gradu-
ally changing behavior that corresponds in scale and length to the
actual data observed in the experiment.

Indeed, tests on simulated data sets showed that given the size
of our data set, our method of analysis is not sensitive enough
to distinguish gradually changing behavior from abrupt switch-
ing between two distinct behavioral states. However, our analyses
detected at least three distinct behavioral states for most rats. In
addition, peak lever-press rates as well as number of lever presses
and experiment length could not, on their own, account for the
differences in the number of states that our analysis detected for
different rats. Tests on simulated data showed that three states
were never detected for data generated from gradually increas-
ing press rates, or from two distinct states, but rather only if

the data were indeed generated from three (or more) distinct
states.

Considering these results, our findings indicate that the
observed IPIs of at least some of the rats must have formed distinct
clusters, which could reasonably be interpreted as representing
distinct behavioral states with abrupt changes between them. The
hidden behavioral states that we detect, and the punctate changes
between them, correspond nicely to the predictions of a recently
proposed reinforcement learning model of free-operant behavior
in which a distinct response rate policy is learned for each state of
a Markov decision process (Niv et al., 2007). In that model, however,
motivation is expected to affect more strongly the rate of pressing
in discrete states of the environment, rather than the number of dis-
crete rates of responding (Niv et al., 2006). It should be noted though
that the HSMMs  that were revealed by our method of analysis char-
acterize rat behavior only in the specific task environment that
our experiment involved. For example, state parameters and state
transition probabilities would likely be different had the reward
schedule been different.

Our study holds some resemblance to studies of timing behavior.
Timing studies typically use fixed-interval reinforcement schedules
so that the timing of reward is fully predictable and subjects may
adjust their behavior accordingly. Since we were not interested in
timing, we used a variable-interval reinforcement schedule. Nev-
ertheless, since intervals between rewards were uniformly and not
exponentially distributed, rats could have deduced that a reward
was more likely when more time had passed since the last reward.
This would predict response rates that increase with time, until
reward receipt. We  saw no evidence for such a response pattern.
Instead, after an initial increase, response rates tended to plateau,
suggesting that rats did not time their behavior optimally. That said,
some timing behavior might be evidenced by the fact that response
rates were lower in the first 15 s following reward, when the next
reward was  not yet available.

In sum, we have characterized the effects of a rat’s motivational
state on its response rate: hungrier rats demonstrated more dis-
tinct high-press-rate behavioral states, and spent more time in
these states compared to sated rats. We  have also demonstrated the
advantages of using an HMM  to analyze behavioral data that has
sequential structure. Future directions for research include quan-
tifying the effect of motivation on response rate in a generalizable
way, as was  previously done for the effects of reinforcement quan-
tity and frequency. The main challenge here is to recognize and
quantify the multiplicity of factors that may  affect the motiva-
tional state of an animal, such as age, type of reward and treatment
schedule. A different line of research involves pinpointing the con-
ditions under which the effects of motivation on response rate are
outcome-specific versus outcome-independent (Niv et al., 2006).
Finally, investigating the patterns of neural activity that correspond
to the inferred behavioral states may  help clarify the neuronal
mechanisms that link motivation and response rates. In any case,
hidden Markov models provide a useful tool for understanding ani-
mal  behavior, and can be used to augment current methods of
neural data analysis.
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