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Abstract

How is reinforcement learning possible in a high-dimensional
world? Without making any assumptions about the struc-
ture of the state space, the amount of data required to effec-
tively learn a value function grows exponentially with the state
space’s dimensionality. However, humans learn to solve high-
dimensional problems much more rapidly than would be ex-
pected under this scenario. This suggests that humans em-
ploy inductive biases to guide (and accelerate) their learning.
Here we propose one particular bias—sparsity—that amelio-
rates the computational challenges posed by high-dimensional
state spaces, and present experimental evidence that humans
can exploit sparsity information when it is available.
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Introduction

Reinforcement learning (RL) in high-dimensional state
spaces is a notoriously difficult problem in machine learn-
ing (Sutton & Barto, 1998), primarily because of the curse
of dimensionality: The number of states grows exponentially
with dimensionality (Bellman, 1957), and thus if one were
naively to represent a separate value (expected reward) for
each state, one would require astronomical amounts of data to
effectively learn the value function (and thereby behave adap-
tively). Nonetheless, humans appear to learn rapidly from
small amounts of data. Thus, while substantial evidence has
accumulated that human behavior follows the predictions of
RL models (Dayan & Niv, 2008), these models may funda-
mentally underestimate the learning capabilities of humans.

Following work in other areas of cognition (Braun,
Mehring, & Wolpert, 2009; Kemp & Tenenbaum, 2009),
we suggest that rapid learning arises from the exploitation
of structured knowledge in the form of inductive biases. In
particular, our proposal is that humans employ a sparsity as-
sumption: that only one (or a small number) of dimensions
is relevant at any given time for predicting reward. For ex-
ample, when you are at a stoplight, only the color of the light
matters, not its shape, size, etc. In other domains (such as or-
dering food in a restaurant), you may know that dimensional
relevance is sparse, but not which particular dimensions are
relevant (does it matter which restaurant it is? which table I
am sitting at? who the chef is? who the waiter is?); for this
purpose, one requires a learning algorithm that can exploit
sparsity. We formalize this idea in terms of rational statistical
inference, and present new experimental evidence that human
behavior is consistent with such a model.

Central to our analysis is the idea that selective attention is
a direct consequence of Bayesian inference under the sparsity
assumption: Restricting attention to only a few dimensions is

akin to the belief that only those dimensions are relevant for
earning reward. This has the effect of reducing the space of
possible value functions to a much smaller subspace.

While Bayesian probability theory stipulates the ideal
observer model, in general it may not be computation-
ally tractable to perform the necessary calculations exactly
(Kruschke, 2006; Daw & Courville, 2008). We therefore
consider a “hybrid” model that combines the computational
efficiency of model-free RL with the statistical efficiency of
Bayesian inference. We compare the ideal observer and hy-
brid models to a naive RL model and show that models that
exploit structured knowledge better capture choice behavior
in our experiment.

The Computational Problem

For concreteness, we consider one particular example of the
general class of reinforcement learning problems for which
the sparsity assumption holds. This example is meant to cap-
ture the abstract structure of many problems facing humans in
the real world, where they must make choices between sev-
eral multidimensional stimuli under conditions where most
dimensions are unpredictive of reward. This example will
also serve as a formal description of the task that we asked
human subjects to perform, the results of which we report in
a later section.

The subject plays N trials, and observes M stimuli simulta-
neously on each trial. The ith stimulus on trial # is denoted by
a D-dimensional vector X,;, where each integer-valued com-
ponent x,;; indicates the property of the jth stimulus dimen-
sion (for instance, [color = green, shape = triangle, texture
= dots]). Each set of trials has a target dimension d (e.g.,
‘shape’) and target property f on that dimension (e.g., ‘cir-
cle’). The subject chooses a stimulus ¢, on each trial and
observes a binary reward r,,. The probability of reward given
choice and target is

0, if Xnepd = f

P(ra=1lend, f,Xn) = { 0y otherwise, M

In other words, the subject receives a reward with probability
0 if the chosen stimulus posseses the target property on the
target dimension, and with probability 0y otherwise.

Ideal Observer Model

Given uncertainty about the target dimension and property,
an ideal observer would use Bayes’ rule to infer the posterior
over the target dimensions and property and then calculate the



value of the stimulus by taking the expectation of reward with
respect to the posterior:

Va(e) =YY P(ra=llew = c.d, £, X0)P(d, f|Dy_1,F1n—1),
d f
)

where D,_1 = {Xi:n—1,€1:4—1}. The intuition behind the
ideal observer model is that the observer weights the expected
reward in each possible state of the world (i.e., target dimen-
sion and property) by the probability of the world being in
that state given past observations. A key characteristic of this
model is that a complete posterior distribution is maintained
over states of the world, rather than a point estimate. The
posterior distribution used by the ideal observer is given by
Bayes’ rule:

P(daf|@n—17rl:n—l) < P(rli}’l—l|@n—17d7f)P(daf)7 (3)

where the prior is assumed to be uniform and the likelihood
is given by:

n—1
P(rlin—l‘@n—ladaf):HP(rt|Cl‘adaf7Xt)' (4)
t=1

Note that this model describes an ideal observer, not an ideal
actor: we assume that subjects are “weakly” rational in their
decision rule (see the softmax choice function described be-
low), even if they update their value function optimally.

Reinforcement Learning Models

‘We now consider several alternative models based on RL. The
intuition behind these models is that what ultimately matters
for the choice value is the expectation under the posterior; so
incrementally updating an estimate of this expectation from
experience will eventually converge to the optimal choice val-
ues, even though these updates do not make optimal use of
information on each trial. The various RL models differ prin-
cipally in their construction of the value function.

Naive RL Model

The naive RL model represents a separate value for every pos-
sible stimulus-dimension-property combination. Specifically,
the choice value estimate is given by:

Va(c) = vn(Xne)- 5)

This estimate is updated according to the learning rule:
Vi1 (Xne, ) = Va(Xnc, ) + Ay, (©)

where a is a learning rate and A is the prediction error:
An = 12— Vi(e). @)

Although the optimal solution is learnable by this model, its
highly unconstrained structure means that learning will be
very slow.

Function Approximation Models

One reason why the naive RL model may be ineffective in this
task is that it lacks the ability to generalize across different
combinations of features. Intuitively, if you knew the target
dimension and property, then the value of a stimulus should
be independent of the properties on the non-target dimension.
However, the naive RL model yokes these together, such that
learning operates on configurations of properties and hence
fails to exploit this invariance. For example, the naive RL
model learns a different value for green triangles with dots
and for green triangles with waves, although the texture di-
mension may be completely incidental and not predictive of
reward.

A more structured RL model that generalizes across con-
figurations can be obtained by constructing the value function
as a linear combination of D basis functions ¢:

D
Vi (C) = Z Wn(dyxncd)¢d> )
d=1

where the weight matrix W,, determines how the basis func-
tions are combined, with one weight for each dimension-
property pair. Each basis function ¢, is a scalar. This type
of model is known as a function approximation architecture
(Sutton & Barto, 1998). RL learning is used to update the
weights according to:

W1 (daxncd) = Wn (d7xncd) + oAy, )

where the prediction error A, is computed the same way as
in the naive RL model (Eq. 7). This update can be under-
stood as performing gradient ascent on the value function by
optimizing the weight parameters (Williams, 1992).

We will consider a family of basis functions parameterized
by n:
_ P(d|Dy1,r10 )"

Y P(d| Dy, rip1)

The basis function can be thought of as an “attentional fo-
cus” that encodes the subject’s beliefs about what dimension
is currently relevant. Thus, rather than maintaining the full
posterior over target dimension and property (which may be
quite computationally expensive), with the function approx-
imation model the subject maintains the marginal posterior
over target dimension (i.e., the probability of a dimension
being the target, averaging over different target properties),
which is then used to weight separate value functions, one for
each dimension. When reward feedback is received, credit
(or blame) is assigned to each value function in proportion to
its posterior probability.! We refer to this model as the hybrid
model, because it combines properties of RL learning and the
ideal observer.

Different settings of M lead to several special cases of in-
terest:

da (10)

INote that the subject need not maintain and update the full pos-
terior; any procedure that estimates the marginal posterior directly
is consistent with this formulation.



e 1 = 0: uniform weighting of dimensions (diffuse focus).

e 1 = 1: exact posterior weighting of dimensions (optimal
focus).

e 1 — oo: maximum a posterior (MAP) weighting (myopic
focus).

Other intermediate scenarios are also possible. Thus, the
value of 1 tells us how much information about the poste-
rior distribution the subject is using to focus attention, with
1 = 1 being optimal focus and 1 = 0 completely ignoring
information from the posterior and attending equally to all
dimensions.> When 7 is larger than 1, the subject discards
posterior uncertainty by focusing on the mode of the distri-
bution, and is therefore overconfident in her beliefs about the
relevant dimension.

One way to interpret the function approximation model is
as a neural network in which the basis functions represent
attentional units focusing on different sensory channels, and
the weights represent synaptic connections between the at-
tentional units and a reward prediction unit (Figure 1). The
synaptic weights are updated using RL learning (Eq. 9). This
interpretation resonates with ideas in computational neuro-
science that view the dorsolateral prefrontal cortex as en-
coding attentional or task-related biases that interact with a
striatal reward prediction system (Braver, Barch, & Cohen,
1999; Rougier, Noelle, Braver, Cohen, & O’Reilly, 2005;
Todd, Niv, & Cohen, 2009). The prediction error A driv-
ing the weight updates is thought to be signaled by midbrain
dopaminergic afferents to the striatum (Schultz, Dayan, &
Montague, 1997)

reward Striatum Reward prediction

(value) unit

Midbrain

Prefrontal cortex Attentional units

Extrastriate cortex Sensory units

Figure 1: Neural network interpretation of the hybrid
model.

Method

We now describe a behavioral experiment designed to quanti-
tatively evaluate these models. Our experiment was inspired

21t is important to note that diffuse focus is not the same as the
naive RL model. For all values of 1, the function approximation
model is still able to generalize across different configurations, un-
like the naive RL model.

by the intra-dimensional/extra-dimensional set-shifting task
(Dias, Robbins, & Roberts, 1996; Owen, Roberts, Polkey,
Sahakian, & Robbins, 1991), in which subjects are asked to
discriminate between visual stimuli on the basis of a partic-
ular (but unknown) dimension which they must learn from
feedback, as well as the Wisconsin card-sorting task (Milner,
1963; Stuss et al., 2000). We have adapted this task to a multi-
armed bandit setting, such as has been used in many previ-
ous studies of reinforcement learning (e.g., Daw, O’Doherty,
Dayan, Seymour, & Dolan, 2006; Schonberg, Daw, Joel, &
O’Doherty, 2007).

Participants and Stimuli

Sixteen Princeton University undergraduate students partic-
ipated in the experiment and received 12 dollars reimburse-
ment. The stimuli were triplets of stimuli varying along three
dimensions: color (red, yellow, green), shape (circle, triangle,
square), and texture (waves, dots, lattice). An example triplet
is shown in Figure 2.

Figure 2: Example experimental stimuli.

Procedure

For each game, the target dimension and property are chosen
randomly and with equal probability. On each trial, the sub-
ject was presented with a random triplet and asked to choose
one of the stimuli. The stimuli on each trial were generated
by a random permutation of the property assignments. Af-
ter making the choice, the subject received feedback about
whether or not her choice resulted in a reward. If the sub-
ject chose the stimulus with the target dimension/property
pair, she received a reward with probability 0.75. Other-
wise, reward was delivered with probability 0.25. The tar-
gets changed on each game (lasting 10-30 trials), and subjects
were informed when a new game was beginning.

Choice Probabilities

To map from values to choices, we define a policy T, that
specifies the probability 7, (c) of making choice ¢ on trial n.
Here we use the “softmax” policy defined by

eﬁVn(C)

() = Y B’

1D
where B is an inverse temperature parameter, which allows us
to model stochasticity in the subject’s responses.

Parameter Estimation and Model Comparison

We fit the parameters of each model with MAP estimation
using gradient descent and calculated the Laplace approxi-
mation (Kass & Raftery, 1995) to the log marginal likelihood



(evidence) for each model m according to:

=

En=In| P(o,)
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where ®,, is the set of parameters for model m, ®,, is the
MAP estimate of the parameters, G,, is the number of param-
eters (length of ®,,), and H,, is the Hessian matrix of sec-
ond derivatives of the negative log-posterior evaluated at the
MAP estimate. We then calculated the log Bayes Factor rela-
tive to chance (where all choices are equiprobable) according
to E, — NIn(1/3). A larger Bayes Factor indicates greater
support for a model. Note that the chance (null) model has
no parameters. In addition to comparing models based on
Bayes Factors, we also calculated predictive log-likelihood
on a held-out game using a leave-one-out cross-validation
procedure.

For all the models, we fit an inverse temperature 3, plac-
ing on it a Gamma(2,2) prior. This served to ameliorate a
well-known degeneracy in models with both a temperature
and learning rate, such that these parameters tend to trade-
off against each other (inverse temperature becoming very
large and learning rate very small). For the RL models, we
fit a learning rate o, placing on it a Beta(1.2,1.2) prior, which
slightly biases the fits away from the parameter boundaries.
For the ideal observer model, we also allowed 0; and 6 to
vary across subjects, since we only told subjects that the tar-
get would be rewarding more often than non-targets, placing
on 0; a Beta(12,4) prior and on 6y a Beta(4,12) prior; these
priors were chosen to have as their expected value the true—
but unknown—values of 8; and 6. Finally we placed a Uni-
form(0,10) prior on 1.

Results

Figure 3 presents the log Bayes Factors for each model,
summed across subjects, along with the cross-validation re-
sutls. Zero represents the null (chance) model in both cases.
Clearly all the models do better than chance, but the naive RL
model appears to perform substantially worse than the others.
Overall, the hybrid model appears to best match behavior on
this task. Figure 4 displays a the of log Bayes Factors for the
ideal and hybrid models, showing that there are also individ-
ual differences in which model is favored for each subject.
Additional insight into these models can be gained by in-
specting aggregate learning curves (the probability of choos-
ing the optimal stimulus as a function of trials within a game).
As shown in Figure 5, the naive RL model appears to consis-
tently underestimate the speed of learning exhibited by sub-
jects, whereas both the ideal observer and hybrid models hew
closely to the empirical learning curve. One peculiarity of
the learning curve is that subjects appear to learn faster than
the ideal observer. We believe that this is an artifact of the

softmax choice probability function: the inverse temperature
parameter appears to be too low early in a game and slightly
too high later in a game. No single value of the inverse tem-
perature would be able to capture this pattern. We have also
fit a model with a non-stationary inverse-temperature, but in
the interest of parsimony we only report the simpler station-
ary model.

Log Bayes Factor | Held-out log-likelihood
Ideal 5425 5620
Hybrid 5892 6208
Naive 3307 3312

Figure 3: Model comparison results. Highest scores are
shown in bold.

Log Bayes Factor (Hybrid)

oL . . . . .
0 100 200 300 400 500 600

Log Bayes Factor (Ideal)

Figure 4: Comparison of Log Bayes Factors for ideal and
hybrid models. Points above the diagonal are favored by the
hybrid model. The red shaded region indicates the confidence
interval outside of which one model is more likely than the
other with p < 0.05.

Another question we can ask is whether subjects who be-
have more in accordance with the ideal observer or hybrid
model earn more reward overall. Figure 6 does indeed show
this relationship (measured as the correlation between reward
earned and the log Bayes Factors for ideal relative to the hy-
brid model), suggesting that subjects who more effectively
exploit the structure of the task tend to perform better. The
correlation is significant at p < 0.01. There is also a corre-
lation with total reward (p < 0.02) for the hybrid model log
Bayes Factor relative to the null model.

Figure 7 shows the parameter estimates for | on a log-
scale, demonstrating that subjects cluster around 0, corre-
sponding to exact posterior weighting (optimal focus). This
was supported by a sign test which failed to reject (p=0.45)
the null hypothesis that In(n) was drawn from a distribution
with 0 median. Thus, within the family of possible basis func-
tions, Bayesian attentional weighting best describes human
behavior on this task.
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Figure 5: Learning curves. Probability of choosing the opti-
mal stimulus as a function of trial within a game. The circles
represent the empirical choice probability. The model-based
curves are computed from the softmax equation with values
fitted to choice behavior. Error bars are standard errors.

Discussion

In this paper we have posed a problem that humans face in ev-
eryday life: how to learn value functions in high-dimensional
state spaces. The crucial assumption that makes this possible
is that only one or a few dimensions is relevant at any given
time. By employing this sparsity assumption in the machin-
ery of Bayesian inference, the effective dimensionality of the
problem is reduced. This can be understood as a kind of se-
lective attention that is learned through experience.

Our experimental results demonstrate that humans can ex-
ploit sparsity information when it is available. We compared
an ideal observer and a family of sophisticated RL algorithms
against a naive RL model that ignores sparsity information. In
essence, this ignorance prevents the agent from generalizing
across stimulus configurations, the key ingredient to efficient
learning. Our computational analysis of behavior on this task
suggests that humans combine reinforcement learning with
Bayesian inference, rather than using a purely Bayesian strat-
egy. This makes sense if the brain’s learning algorithms are
designed to deal with high-dimensional problems for which
exact Bayesian inference is intractable. The hybrid model
represents a tractable compromise between the statistical in-
efficiency of naive RL and the computational inefficiency of
the ideal observer.

The idea that selective attention can be framed as the out-
come of Bayesian inference has been explored by several au-
thors (Dayan, 2009; Rao, 2005; Yu, Dayan, & Cohen, 2009).
Most relevant to our work is the competitive combination
model of Dayan, Kakade, and Montague (2000), in which
stimuli are assumed to vary in how reliably they predict re-
ward. Dayan et al. (2000) showed that selective attention
to particular stimuli falls naturally out of inference over the
causal relationships between stimuli and reward in such a
model. Our work is conceptually similar, with the exten-
sion that we model inference over dimensions, rather than

Total reward

300

250 . . .
-150 -100 -50 0

5‘0 100
Log Bayes Factor (Ideal — Hybrid)

Figure 6: Individual differences in earned reward. On the
x-axis is plotted the log Bayes Factors of the ideal model rela-
tive to the hybrid model, and on the y-axis is plotted the total
reward earned. A least-squares line is superimposed on the
scatter plot.

MAP

Exact
T

Uniform

Figure 7: Boxplot of In(1)) estimates.

just stimuli. As emphasized by Dayan et al. (2000), the se-
lectivity of attention in our model is based on proceses of
statistical inference, rather than resource constraints. This
point is particularly important to explaining how attention is
learned;, resource-limitation models, without further elabora-
tion, do not speak to this issue.

The central role of selective attention has been exten-
sively explored in the category learning literature, notably by
Nosofsky (1986) and Kruschke (1992). The basic idea is that
learned attentional weights amplify or attenuate specific stim-
ulus dimensions in a way that facilitates category discrimina-
tion. Recently, Kruschke (Kruschke, 2006) has attempted to
connect these ideas to a form of approximate Bayesian infer-
ence he dubs “locally Bayesian learning” (LBL). Much as in
our work, attention arises in LBL as a consequence of weight-
ing different hypotheses about the currently relevant stimulus
dimension in response to new evidence. Our hybrid model
embodies a similar idea, but by using parameterized family of



basis functions to implement attentional weighting it covers
a spectrum of possible inductive influences on reinforcement
learning.

While our work was partly inspired by earlier neural net-
work models (Braver et al., 1999; Rougier et al., 2005), our
goal in this paper was to step away from implementational
details and interrogate computational- and algorithmic-level
concerns. Future work will need to examine more system-
atically how the algorithmic ideas presented here map onto
neural mechanisms. We are currently investigating this ques-
tion with functional magnetic resonance imaging.

In conclusion, the main theoretical and experimental con-
tribution of this paper is showing that the human RL system is
more sophisticated than previous computational models have
given it credit for. This may not, after all, be that surprising;
many years of machine learning research have shown that the
naive assumptions of previous models simply do not scale
up to high-dimensional real world problems. It remains to
be seen what other hidden sophistications in the RL system
await discovery.
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