
Cost, Benefit, Tonic, Phasic: What do response rates tell us about

dopamine and motivation?

Yael Niv1,2∗

1 Gatsby Computational Neuroscience Unit, UCL

17 Queen Square, WC1N 3AR, London, UK
2 Interdisciplinary Center for Neural Computation

The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Keywords: Tonic Dopamine, Phasic Dopamine, Motivation, Response rate, Energizing, Reinforcement

learning, Free operant, Cost/Benefit

Corresponding author and mailing address:
Yael Niv

Center for the Study of Brain, Mind and Behavior

3-N-12 Green Hall

Princeton University

Princeton, NJ 08544, USA

Email: yael@princeton.edu

Acknowledgments

This work was funded by a Hebrew University Rector Fellowship, and the Gatsby Charitable Foundation.

The author is grateful to the organizers and participants of the ‘Reward and decision making in cortico-

basal-ganglia networks’ meeting for much stimulating discussion and feedback, and to Rui Costa, Nathaniel

Daw, Peter Dayan, Daphna Joel and Geoffrey Schoenbaum for helpful comments on the manuscript.

∗Currently at the Center for the Study of Brain, Mind and Behavior, Princeton University.

1



Abstract

The role of dopamine in decision making has received much attention from both the experimental and
computational communities. However, because reinforcement learning models concentrate on discrete
action selection and on phasic dopamine signals, they are silent as to how animals decide upon the rate
of their actions, and they fail to account for the prominent effects of dopamine on response rates. We
suggest an extension to reinforcement learning models, in which response rates are optimally determined
by balancing the tradeoff between the cost of fast responding and the benefit of rapid reward acquisition.
The resulting behavior conforms well with numerous characteristics of free-operant responding. More
importantly, this framework highlights a role for a tonic signal corresponding to the net rate of rewards
in determining the optimal rate of responding. We hypothesize that this critical quantity is conveyed by
tonic levels of dopamine, explaining why dopaminergic manipulations exert a global affect on response
rates. We further suggest that the effects of motivation on instrumental rates of responding is mediated
through its influence on the net reward rate, implying a tight coupling between motivational states and
tonic dopamine. The relationships between phasic and tonic dopamine signalling, and between directing
and energizing effects of motivation, as well as the implications for motivational control of habitual and
goal-directed instrumental action selection, are discussed.

Browsing through any random selection of experimental psychology papers will reveal that the dependent

variable most commonly used to study animal behavior is response rate.1 The effects of experimental

manipulations as diverse as changes in the amount of reward that an animal can earn, alterations of the

requirements or conditions under which rewards or punishments are delivered, lesions of neural structures, or

the administration of drugs, are commonly discerned through changes in response rates. In terms of decision

making and action selection, response rates are, in fact, inseparable from responding itself: accompanying

any choice of which action to perform is a choice of how fast (or at what instantaneous rate) to perform

this action. It may come as a surprise, then, that normative models of responding, such as reinforcement

learning, which have done much to explain why it is appropriate for animals choose actions the way they do,

have completely ignored the choice of response rates.

Response rates have played a more prominent role in descriptive models. These aim to quantify the relation-

ships between experimental variables and response rates (eg. the Matching Law2), but not why, or in what

sense these relationships are appropriate in different scenarios. In the absence of normative models (which

deal exactly with these latter aspects) questions such as why does motivation influences response rates, and

how should dopamine affect rate selection, are left unanswered. In previous work,3–6 on which we focus this

review, we proposed to remedy this by extending the framework of reinforcement learning to the optimal

selection of response rates.

In our model,3,6 animals choose with what latency (ie, how fast, or with what instantaneous rate) to perform

actions by optimally balancing the costs of fast performance and the benefits of rapid reward acquisition.

Focusing on this tradeoff, the model highlights the net expected rate of rewards as the important determinant
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of the cost of delaying future rewards and the optimal rate of responding. We marshal evidence suggesting

that this quantity is signaled by tonic levels of dopamine, and argue that this, in fact, explains why higher

levels of dopamine are associated with faster performance, while low levels of dopamine induce lethargy.

We further leverage the normative framework to argue that motivation and dopamine are, in fact, tightly

linked in controlling response vigor, as the effect of motivation on response rates is mediated by a change in

the expected net rate of rewards.

In the following we first detail the basic characteristics of response rates which we expect our model to

reproduce. We then describe the new model in Section 2, emphasizing the tradeoffs that must be negotiated

optimally in order to maximize reward intake. In particular, we focus on the role of the expected rate of

reward in determining the opportunity cost of time and the optimal rate of responding. Section 3 relates this

signal to tonic levels of dopamine, and discusses the implications for understanding the role of dopamine

in action selection. In Section 4 we utilize this normative model of response rates to analyze the effects of

motivation on responding. We first discuss how both the directing and energizing effects of motivation are

manifest in the model. The results suggest a parcellation of motivational effects into outcome-dependent

and outcome-independent, leading to a new understanding of the susceptibility of goal-directed behavior on

the one hand, and habitual behavior on the other hand, to motivational manipulations. Finally, we argue that

the outcome-independent energizing effects of motivation on response rates are mediated through changes

in the expected net rate of rewards, implying a strong link between tonic dopamine and motivation. Last,

in Section 5 we discuss some open questions such as the extension of the model to Pavlovian behavior,

the relationship between phasic dopaminergic signals and motivation, and the neural locus of cost/benefit

tradeoff computations.

1 What do we know about response rates?

Action selection has most frequently been studied in instrumental conditioning paradigms, on which we

will focus here. In the commonly used free operant form of these,7 animals (typically rats, mice or pigeons)

perform an action (eg. pressing a lever, pecking a key) in order to obtain some coveted reinforcement (such

as food for a hungry animal). Importantly, rather than performing actions at discrete, predefined time-points

(as is typically modeled in reinforcement learning8), free operant responding is self paced, and animals are

free to choose their rate of responding.

Numerous experiments have shown that the schedule of reinforcement (eg. ratio or interval), the nature or

amount of the rewards used, and the motivational state of the animal profoundly affect the rate of instrumen-

tal responding. In general, responding is slower the longer the interval duration or ratio requirement,9–12

and faster for higher magnitude rewards or more desirable rewards.13,14 More refined characteristics of free

operant behavior include the observation of higher response rates on ratio schedules compared to yoked
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interval schedules15–17 and response allocation that matches payoff rates when two interval schedules are

concurrently available.2,18,19

The fact that response rates are affected by manipulations of the schedule of reinforcement suggests that

animals choose with which rate to perform different actions as an adaptation to the specifics of the task they

are solving. Furthermore, in most cases behavior in such schedules is well below ceiling rates, evidence that

response latencies are not constrained by decision times, motor or perceptual requirements, but rather the

particular response rate was selected as appropriate for the task at hand. In the following we will assume

that the choice of response rate is the result of an optimization process that is influenced by two opposing

goals: the desire to acquire rewards rapidly on the one hand, and to minimize effort costs on the other hand.

2 Optimal responding: Cost/benefit tradeoffs

Consider a situation in which a rat can choose between several actions: it can poke its nose into a (possibly

empty) food well, it can press a lever that may cause food to fall into the food well, it can pull a chain

that may cause water to pour into the food well and so forth (Figure 1a). The choice of which sequence of

actions to take, and at what rate (or with what latency) to take each action, can be seen as an optimization

problem, if we assume that the goal of the rat is to harvest rewards at as high a rate as possible, while

incurring minimal effort costs. Because for free-operant tasks the problem can be defined computationally

as a (semi-)Markov decision process, the optimal solution can be derived as a series of optimal decisions: the

rat should first choose the currently optimal action and execute it with the optimal latency, and then, based

on the consequences of this action (the resulting ‘state’ of the world, eg. whether the action resulted in food

falling into the food well or not), choose the next optimal action and latency, and so forth. The optimal

policy of which actions to choose in the different states†, and with what latency to perform the chosen

actions, can be found using reinforcement learning methods such as ‘value iteration’,8 or online ‘temporal

difference’ learning8,20 (for a full computational exposition of the model equations and solution, see refs

3,5). In order to gain insight into the optimal policy, we will now analyze the factors which affect a single

decision within the series of actions. In our model this consists of two parts: the rat must choose which

action to perform, and how fast (or with what latency) to perform it. It turns out that these two sub-decisions

depend on different characteristics of the task.

The choice of which action to perform depends on the utility of the rewards potentially available for each

of the actions, the probability that the action will indeed be rewarded, and the effort cost of performing the

action. For instance, if pressing the lever is rewarded with food with a probability of 20%, this would be

†The states we refer to here are states of the environment, such as whether there is food in the magazine, whether the lever is
extended and available for pressing, etc. These should not be confused with the motivational state of the animal, which will be
discussed in Section 4. For modeling simplicity, we assume that the animal’s motivational state is constant during the experimental
session.

4



preferable to an action that leads to the same outcome but with only 10% chance. What about a choice be-

tween actions that lead to different rewards? When comparing the worth of qualitatively different outcomes

such as food and water, the motivational state of the animal must come into consideration, as it determines

the utility of each outcome to the animal.4 A hungry rat may prefer to press the lever for food, while a thirsty

one might choose to pull the chain to obtain water. The choice of which action to perform also depends on

how costly the action itself is, in terms of effort: for instance, if pulling the chain necessitates much effort

to jump and reach it, the benefit of a small amount of water may not be worth this effort. To summarize,

the optimal choice of which action to perform can be detemined by comparing the available actions in terms

of the worth and probability of the potential reward for each action, and the effort cost of performing the

action.

The optimal choice of how fast to perform the chosen action is determined by an altogether different

cost/benefit tradeoff. First, we must assume that it is more costly for the rat to perform an action quickly

rather than slowly (otherwise rats would always perform actions at the fastest possible rate, which is clearly

not the case). Against what should this cost of fast performance be weighed, when deciding on the optimal

speed of an action? Completing the chosen action slowly, for instance moving toward the lever and pressing

it without haste, will of course delay the availability of the possible reward for this action. But, more impor-

tant, all future actions and rewards will be delayed. So the effort cost of behaving quickly should be weighed

against the cost of delaying all future rewards. Note that while the choice of which action to perform is af-

fected by parameters local to the different actions and their (potentially long-term) outcomes, the choice of

response rate influences the timing of all future actions, and is thus affected by global considerations.

How can the rat estimate the cost of delaying all future rewards? Average reward reinforcement learning

techniques reveal a simple solution.21,22 A specific policy of action choices and response latencies will lead

to an average rate of rewards obtained per unit time, at an average effort cost per unit time.23 The rate of

rewards minus costs — the influx of net benefit per unit time, which we will refer to as the net reward rate

— is exactly the worth of time under this policy,24–26 or the opportunity cost of wasted time.3,5 That is, in

every second in which the current policy of responding will not be performed, on average this amount of

net benefit will be lost. This means that when selecting a rate of performance, or a speed of execution for

each individual action, the lower cost of performing the action more slowly should be weighed against the

opportunity cost of the extra execution time, ie, the net reward rate which could have been obtained during

this time. The formal average-reward reinforcement learning solution ensures that such a choice of actions

and latencies will indeed lead to the highest possible net influx of benefit, and so will be the truly optimal

solution.

Simulating a wide variety of free operant experiments using this model of optimal behavioral choice showed

that the well known characteristics of free operant behavior indeed qualitatively match the optimal solution:

simulated rats showed a higher response rate when the magnitude of reward was larger or the schedule

was more rewarding (lower interval or ratio requirement), response rates were lower on interval schedules
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compared to yoked ratio schedules, and when tested on two concurrent interval schedules the simulated rats

matched their response rates on each lever to their payoff rates.5

3 Opportunity costs and tonic dopamine

Optimal action selection based on online learning of the values of different actions has previously been

suggested as a model of action selection in the basal ganglia.27–30 In one version of these, called Actor/Critic

models, it has been suggested29 that ventral striatal areas (the so called ‘Critic’) learn to evaluate situations

or states of the world, by using a reward prediction error signal provided by dopaminergic neurons in the

ventral tegmental area. The dorsal striatum (the ‘Actor’), in turn, learns the values of different actions

in these states, based on a similar dopaminergic prediction error signal originating in the substantia nigra

pars compacta (for a review of the underlying neural data see ref31). These models have emphasized the

role of phasic dopaminergic firing patterns, which signal temporally local errors in the prediction of future

outcomes, in providing the basis of optimal learning of long-term values of actions and states.28,32

In addition to requiring this phasic prediction error signal to determine the optimal selection of actions and

rates, our model highlights the importance of a new signal which should indicate the expected net rate of

rewards, that is, the opportunity cost of time. In a certain class of problems to which this model is applicable,

the net reward rate is a global, slowly changing term, common to all the states and to all actions and rates

evaluated.23 That is, whether deciding how fast to perform the next lever-press, or the next nose-poke, and

regardless of whether a reward is currently available in the food well or not, the opportunity cost of time is

the same — the long term average reward rate forfeited in that time.

What could be the neural bearer of such a global, slowly changing signal? We hypothesize this to be the tonic

level of dopamine in basal ganglia and prefrontal areas.5 The tonic level of dopamine is suitable to indicate

the net rate of rewards on computational, neural and psychological grounds. Computationally, resulting

from the very definition of temporal difference reward prediction errors, a slow averaging over time of the

phasic dopaminergic prediction errors will exactly result in the correct average rate of reward. Neurally,

dopamine concentrations in target areas such as the striatum are relatively homogeneous,33 and a recent

investigation using fast scan cyclic voltammetry indeed showed that time averaging of phasic dopaminergic

activity in target areas results in a stable tonic level,34 well within the range expected from microdialysis

measurements.35

Finally, psychological theories of dopamine function have long focused on a putative role for dopamine in

modulating the vigor of behavior.36–43 The identification of tonic dopamine levels with the opportunity cost

of time explains, for the first time, why dopaminergic manipulations affect response rates as they do. Ac-

cording to our theory, artificially elevating the tonic level of dopamine increases the opportunity cost of time,
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with the effect of making the optimal response rates for all actions higher. Suppressing dopamine levels will

lead to a reduced cost of time, and slothful behavior. Indeed the most prominent effect of dopaminergic

interventions is an enhancement or reduction of overall response rates as a result of increased or decreased

dopaminergic transmission, respectively.42,44–52 Modeling dopamine manipulations as changes in the effec-

tive net reward rate, we can simulate and replicate many of these results.5

4 The effects of motivation on responding

Using this model of response rates, we can now analyze the effects of motivation on response selection.

Understanding how motivation influences behavior is complicated by the fact that animals utilize a number

of different action-selection systems, which are differentially sensitive to motivation, and with which we will

separately deal below. But first, let us consider in general how motivation can affect the optimal cost/benefit

tradeoff we have discussed above. One way to define motivational states, is as a mapping between outcomes

(or significant events in the world) and the utility they confer to the animal.4 For instance, food holds high

utility for a hungry rat, but a low utility for a sated or thirsty rat (Figure 1b). Using this simple definition, a

straightforward means by which motivation can affect action selection, is through the determination of the

utility of the outcomes of the different available actions. This corresponds to the traditional ‘directing’ role

ascribed to motivation, because by determining which are the most valuable outcomes motivation can direct

action selection toward those actions that will lead to these outcomes.

But this is not the only way that the motivational mapping can affect responding: the outcome utilities will

also affect the net rate of rewards (which is measured in units of utility per time). Because the net reward rate

serves as the opportunity cost of time, motivation will affect the optimal response rates of all chosen actions.

For instance, consider a rat pressing a lever for food pellets on a random interval 30 second schedule. On

average, the net rate of reward is equal to the utility of two pellets per minute, minus the costs per minute of

the actions emitted in order to obtain and harvest these pellets. If the rat is now made hungrier, the utility of

each of the pellets increases and with it the net reward rate, thus increasing the opportunity cost of time and

favoring faster responding. In this way, higher motivational states cause higher response rates, while lower

motivational states such as satiety decrease the rate of responding. This corresponds to the ‘energizing’ role

of motivation, and the much debated notion of ‘Generalized Drive’.53–55

In sum, motivation can exert a two-fold influence on responding in our model: a ‘directing’ effect on the

choice of which action to perform, and an ‘energizing’ effect on the rates with which all actions are per-

formed.3,5 Figure 1c,d illustrates these two effects, and their qualitative differences. The choice of action

depends on a comparison of the local utilities of the outcomes of different actions, and so the ‘directing’

effect of motivation is outcome specific (ie, motivation differentially affects different actions, based on their

consequent outcomes; Figure 1c). In contrast, the choice of response rate depends on the global opportunity
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cost of time, thus motivation exerts a similar ‘energizing’ affect on all prepotent actions, regardless of their

specific outcome (Figure 1d). This explains some hitherto paradoxical observations of ’Generalized Drive’,

such as the fact that hungrier rats will also work harder for water rewards.

Multiple action selection mechanisms

Although motivation can potentially influence action selection in two ways, different action selection mech-

anisms may be differentially sensitive to the ‘directing’ or ‘energizing’ effects of motivation.4 In addition

to the traditional distinction between Pavlovian and instrumental mechanisms for action control, a recent

series of sophisticated studies has teased apart two different types of instrumental control, namely, goal-

directed and habitual behavior, based exactly on their susceptibility to motivational influences.56 The evi-

dence points to two neurally distinct57 behavioral controllers which employ different computational strate-

gies to estimate what is the currently optimal behavior.58 The goal-directed system uses a forward model

(or action→outcome knowledge) to iterate forward to the expected consequences of a series of actions.

As such, its decision-making process is directly sensitive to the utilities of the outcomes consequent on

the different actions.59–62 Conversely, habitual decision making eschews the online simulation of poten-

tial consequences of actions, relying instead on estimates of the long-term values of actions, which have

been previously learned and stored. These value estimates summarize previous experience about the con-

sequences of actions, but do not represent the outcomes themselves. As a result, habitual responding is not

immediately sensitive to changes in action-outcome contingencies,60,63–65 and similarly can not react to a

change in outcome utilities without the relatively slow relearning of new values of actions.58

How do the two effects of motivation interact with the constraints of these instrumental action selection

systems? We can expect goal directed action selection, which chooses actions based on the utility of their

consequent outcomes, to express the ‘directing’ influence of motivation naturally, selecting those actions

that lead to desired outcomes based on the current motivational state of the animal. This is, in fact, the char-

acteristic hallmark of goal-directed behavior.56 Moreover, the effects of motivational shifts on goal-directed

responding have been shown to depend on a process of ‘incentive learning’ (in which animals experience the

utilities of different outcomes in different motivational states66–71), testifying that motivational states indeed

affect action selection through outcome utilities.

The habitual controller, however, can choose actions that are optimal for the current motivational state only

if the animal has learned and stored the long term values of different actions in this motivational state. This

means that a rat that has been extensively trained (to the point of habitization), in a state of hunger, to press

one lever for food and another for water, will not be able to adjust its behavior flexibly and will continue

to predominantly press the food lever, even when shifted to a motivational state of thirst. Only through

subsequent learning of the new values of the lever-press actions in terms of the utility of their consequent

outcomes in the new motivational state, will habitual behavior be sensitive to the ‘directing’ effects of
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motivation.58

Does this mean that habitual behavior is initially totally insensitive to motivational manipulations? We argue

to the contrary.4 Because motivation also exerts a global effect on response rates, which is independent of

the specific outcomes of the different actions, motivational states can ‘energize’ both habitual and goal-

directed behavior. Assuming that the animal can estimate at least the direction in which the net reward

rate will change in the new motivational state (which depends on whether the current motivational state is

lower or higher than previously, and whether the animal has reason to expect the availability of outcomes

that are relevant to this state), the rate of responding, whether habitual or goal-directed, can be adjusted

appropriately so as to approximate the optimal solution. Our model thus predicts that habitual behavior

should be sensitive to the ‘energizing’ aspects of motivation, while goal-directed behavior should be affected

by both the ‘energizing’ and the ‘directing’ aspects.4

5 Discussion

Building on and extending previous normative models of action selection, we have suggested a model of

optimal selection of response rates in free operant tasks. Our analysis focused on the critical tradeoffs that

need to be negotiated in order to reap rewards at the highest possible rate and the lowest possible cost.

This revealed that, different from the decision of which action to perform that is determined by outcome-

specific considerations, decisions regarding response rates are determined by global considerations as the

consequence of slow performance is to delay all future outcomes. This insight provided the basis for a novel

outlook on the effects of motivation on the one hand, and of dopamine on the other hand, on instrumental

responding.

In our model the global quantity used to evaluate the cost of delaying all future rewards, that is, the oppor-

tunity cost of time, is the net rate of rewards. We suggest that this quantity is reported by the tonic level of

dopamine, which explains why high levels of dopamine are associated with generally high response rates,

and lower levels of dopamine induce lethargy. Consequently, dopamine has a dual effect on behavior: an

effect on action choice through learning, based on phasic aspects of dopaminergic signalling, and an effect

on rate selection, mediated by tonic levels. Different from other roles that have been suggested for tonic

dopamine,72–74 our analysis is the first to suggest a normative role, and to imply that the tonic level of

dopamine is a quantity which represents specific aspects of the task and of the animal’s performance in it.

From this follow computationally specific predictions: our model predicts that tonic levels of dopamine will

be higher when performing a more rewarding or a less costly task, and lower when working harder or for

fewer rewards.

We have further argued that motivation also exerts a two-fold effect on responding. By determining the
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mapping between outcomes and their utility, motivation ‘directs’ action selection to those actions which

are expected to yield the most valued outcomes, and ‘energizes’ all ongoing behavior through affecting the

overall reward rate. However, due to the computational limitations of the habitual system, only the goal-

directed system is susceptible to the ‘directing’ effect of motivation. The ‘energizing’ effect, in contrast, can

influence both habitual and goal-directed behavior. It is this latter effect that we hypothesize to be mediated

by tonic levels of dopamine, suggesting a strong link between motivation and dopaminergic control.75 The

direct prediction, which has yet to be tested, is that higher motivational states will be associated with higher

tonic levels of dopamine (providing the animal has reason to believe that motivation-relevant outcomes are

forthcoming).

Incentive motivation and dopamine

In our model, response rates are determined based on the vigor cost of the action and the overall net reward

rate, but importantly, without regard for the outcome contingent on the specific action. However, behavioral

results from discrete trial experiments show that specific outcome expectancies do affect response latencies,

with responding to cues predictive of higher reward being typically faster than responding to less valuable

cues.76–79 Furthermore, although in our model the speed of responding is generally associated with the tonic

level of dopamine, dopaminergic recordings have shown a linear relationship between reaction times and

phasic dopaminergic responding.80,81

If the tonic average reward signal is indeed computed by slow averaging of the phasic prediction error sig-

nals, then this result is perhaps not surprising. Cues associated with higher reward expectancies induce

larger phasic reward prediction signals,82,83 which would transiently elevate dopamine tone,81,84,85 influ-

encing vigor selection and resulting in faster responding. This explanation is a slightly different outlook

on ideas about ‘incentive motivation’, according to which different outcomes exert a motivational effect on

responding by virtue of their incentive value.56,86,87

Pavlovian responding

We have accounted for the role of dopamine, and that of motivation, in controlling habitual and goal-directed

instrumental responding. What about the third class of behavior, namely, Pavlovian responding? The an-

swer to this is not straightforward. On the one hand, phasic dopamine reward prediction errors have been

implicated in optimal learning of Pavlovian predictive values, as well as instrumental values. On the other

hand, Pavlovian responding itself is not necessarily normative — rather than a flexible, optimal, adaptation

to a task, it seems as if Pavlovian responding is adaptive only on an evolutionary timescale. Within an

animal’s behavioral repertoire, Pavlovian responses are characterized by their inflexibility, and tasks can be
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constructed in which they are strictly suboptimal. For instance, Pavlovian behavior persists even in circum-

stances (such as omission schedules) in which the occurrence of the Pavlovian response prevents the delivery

of a reward. It therefore seems that Pavlovian responses are an inevitable consequence of the predictive value

of cues.88 A normative model is thus limited in its applicability to Pavlovian responding.

There is another sense in which our model is ill-suited for Pavlovian behavior: a critical simplification of our

model is that once a decision is made regarding the next optimal action and the latency with which to perform

it, the validity of this decision does not change while the action is executed. That is, we have assumed that

the state of the world (eg, whether a reward is available in the food well or not) does not change while an

animal is executing an action. Though this is true in free-operant schedules, our framework can not be used,

without modification, to model tasks in which this assumption is invalid, such as in instrumental avoidance

conditioning (in which an aversive outcome occurs if a response is not performed fast enough). More

generally, the model can not incorporate Pavlovian state changes, eg, stimuli appearing and disappearing,

and rewards that are given regardless of the animal’s actions.

Having said this, we can still derive some insight from the model as to the effect Pavlovian cues or rewards

should have on instrumental behavior in a simplified setting. Consider the case of a rat performing an ap-

petitive free operant task, to which we now add a ‘free’ reward that is delivered independent of the animal’s

actions, and does not require any harvesting actions (for instance, brain stimulation reward delivered with

some fixed probability at every second). Extending our framework to this case is straightforward, and we can

analyze the effect of this free reward on ongoing instrumental behavior. According to the optimal solution,

and consistent with common sense, such a reward should have no effect on any ongoing instrumental behav-

ior: any action and rate of responding that were optimal in the original task, are still optimal in the modified

setting. This implies that the effective net reward rate used to determine the optimal rate of instrumental

responding should be the same in both tasks, that is, that the net rate of rewards controlling instrumental

behavior should comprise of only those rewards that are instrumentally earned.

However, to infer which rewards are earned instrumentally and which would have been delivered regardless

of one’s actions is not at all a trivial problem, especially when behavior is habitual. Indeed, although

animals show sensitivity to the contingencies between actions and rewards and reduce responding on a lever

if rewards are offered at the same rate whether the lever is or is not pressed (a ‘contingency degradation’

treatment59,61,89,90), responding in such cases is not completely eliminated, evidence for some confusion on

the part of the animal. As a result of such overestimation of agency in obtaining Pavlovian rewards, the net

instrumental reward rate would be overestimated, leading to instrumental response rates that are higher than

is optimal.

A more obvious example is the phenomenon of Pavlovian to instrumental transfer (PIT) in which the onset of

a cue that has been associated previously with Pavlovian rewards, enhances the rate of ongoing instrumental

behavior. This is clearly not optimal: the Pavlovian cue does nothing to change the tradeoff determining the
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optimal response rate. Nonetheless, PIT has been demonstrated in a wide host of settings.91–95 It seems,

then, that similar to the suboptimality of Pavlovian responding in general, Pavlovian effects on instrumental

responding are suboptimal. Our model suggests that this is the result of erroneous inclusion of Pavlovian

rewards in the expected net rate of instrumental rewards. Interestingly, there is an outcome-specific and an

outcome-nonspecific component to PIT.95 Based on our model and some suggestive experimental results,40

it is tempting to propose that, like effects of motivation on behavior, the outcome-nonspecific effect of

Pavlovian cues is indeed mediated by the tonic level of dopamine.

Where is the tradeoff resolved?

Finally, where in the brain is the tradeoff controlling response rate resolved is currently an open question.

As this computation can be shared by both habitual and goal-directed controllers of instrumental behavior, it

might not reside in either of these two neural systems. One potential candidate is the anterior cingulate cortex

(ACC), and its projections to the nucleus accumbens, and to midbrain dopaminergic neurons.96,97 The ACC

has been implicated in monitoring conflict in cognitive tasks, specifically at the level of response selection,

possibly as an index of task difficulty as part of a cost/benefit analysis underlying action selection.98 Recent

investigations using tasks specifically designed to probe cost/benefit tradeoffs,48,99 confirmed that animals

do indeed weigh up the amount of effort required for obtaining a reward on each of the available options, in

order to decide which course of action to take.96 In these same tasks, lesions to the ACC (but not to other

medial frontal areas) affected animals’ cost/benefit tradeoff, and caused them to prefer a low-effort/low-

reward option to the high-effort/high-reward option preferred by non-lesioned rats.96,97,100,101 Although a

similar effect is seen with 6-hydroxydopamine lesions of the nucleus accumbens,48,99 there are differences

between the effects of ACC and accumbal dopaminergic lesions,96 suggesting that the ACC and nucleus

accumbens dopamine may fulfill different roles in the decision making process, with nucleus accumbens

dopamine computing and signaling the opportunity cost of time, and the ACC integrating this with expected

immediate costs and benefits to determine the tradeoff for or against each possible action. Results to the

opposite direction, showing excessive nose-poke responding in a go/no-go task after ACC lesions,102 indeed

suggest that ACC lesions do not merely tilt the balance toward less effortful options (as is suggested for

accumbal dopamine depletions), but rather disrupt the instrumental cost/benefit analysis such that a less

sophisticated Pavlovian default response pattern is chosen. That is, in a lever pressing task in which the

action is not the Pavlovian default, ACC lesions cause the animal to cease pressing, while in an appetitive

approach task the Pavlovian default of approaching the nose port dominates as a result of the lesion.
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Conclusions

To conclude, from a detailed analysis of the factors affecting response rates we have gained not only a

normative understanding of free operant behavior, but also a new outlook on the effects of dopamine and

motivation on responding. The tight coupling we suggest between motivation and dopamine is perhaps

surprising: dopamine had been related to motivation in early theories, only to be dissociated from signaling

reward motivation per se in contemporary normative models. However, we are not advocating to abandon

ideas about reward prediction errors, and relapse to the ‘anhedonia hypothesis’ of dopamine. Rather, we

suggest to take normative models of dopamine one step forward, to account for tonic as well as phasic

signalling, two distinct modes of transmission which can carry separate computational roles.
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Figure 1: Two behavioral consequences of a motivational shift a. A simulated rat, trained in an operant
chamber, can perform several actions: it can press a lever for a 20% chance of obtaining cheese, it can pull a
chain for a 20% chance of obtaining water, or it can groom itself (with possibly an internal reward). b. Even
when relatively sated, the cheese and water have slightly higher utilities than grooming. A shift to hunger,
however, markedly enhances the utility of cheese, compared to the other utilities that are left unchanged. c.
One effect of the shift from satiety to hunger is to ‘direct’ the rat to choose to press the lever (in order to
obtain cheese) more often, at the expense of either grooming or chain pulling (which are still performed,
albeit less often). d. A second orthogonal consequence of the motivational shift is that all actions are now
performed faster. Measurements of the latencies to perform individual actions in the simulation reveal that
not only is the rate of lever-pressing enhanced, but, when performed, grooming and chain-pulling are also
executed faster. This ‘energizing’ effect of the motivational shift is thus not specific to the action leading to
the favored outcome, and can be regarded an outcome-independent effect. Figure modified from ref 4.

22


