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Abstract

Reinforcement learning models have long promised to unify computa-
tional, psychological and neural accounts of appetitively conditioned be-
havior. However, the bulk of data on animal conditioning comes from
free-operant experiments measuring how hard animals will work for rein-
forcement. Existing reinforcement learning (RL) models are silent about
these tasks, because they lack any notion of vigor. They thus fail to ad-
dress the simple observation that hungrier animals will work harder for
food, as well as stranger facts such as their sometimes greater produc-
tivity even when working for irrelevant outcomes such as water. Here,
we develop an RL framework for free-operant behavior, suggesting that
subjects choose how vigorously to perform selected actions by optimally
balancing the costs and benefits of quick responding. Motivational states
such as hunger shift these factors, skewing the tradeoff. This accounts
normatively for the effects of motivation on productivity, as well as many
other classic findings. Finally, we suggest that tonic dopamine may be in-
volved in the computation linking motivational state to optimal respond-
ing, thereby explaining the complex vigor-related effects of pharmaco-
logical manipulation of dopamine.

1 Introduction

A banal, but nonetheless valid, behaviorist observation is that hungry animals work harder
to get food [1]. However, associated with this observation are two stranger experimental
facts and a large theoretical failing. The first weird fact is that hungry animals will in some
circumstances work more vigorously even for motivationally irrelevant outcomes such as
water [2, 3], which seems highly counterproductive. Second, contrary to the emphasis theo-
retical accounts have placed on the effects of dopamine (DA) on learning to choose between
actions, the most overt behavioral effects of DA interventions are similar swings in undi-
rected vigor [4], at least part of which appear immediately, without learning [5]. Finally,
computational theories fail to deliver on the close link they trumpet between DA, behavior,
and reinforcement learning (RL; eg [6]), as they do not address the whole experimental
paradigm of free-operant tasks [7], whence hailed those and many other results.

Rather than the standard RL problem of discrete choices between alternatives at prespeci-
fied timesteps [8], free-operant experiments investigate tasks in which subjects pace their
own responding (typically on a lever or other manipulandum). The primary choice in these
tasks is of how quickly/vigorously to behave, rather than what behavior to choose (as typ-
ically only one relevant action is available). RL models are silent about these aspects, and
thus fail to offer a principled understanding of the policies selected by the animals.
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Figure 1: (a) Leverpress (blue) and consummatory nose poke (red) response rates of rats
leverpressing for food on a modified RI30 schedule. Hungry rats (open) clearly press the
lever at a higher rate than sated rats (filled). Data from [11], averaged over 19 rats in
each group. (b) The relationship between rate of responding and rate of reinforcement
(reciprocal of the interval) on an RI schedule, is hyperbolic (of the form y = B·x/(x+x0)).
This is an instantiation of Herrnstein’s matching law for one response (adapted from [9]).
(c) Total number of LPs per session averaged over five 30 minute sessions by rats pressing
for food on different FR schedules. Rats with nucleus accumbens 6-OHDA dopamine
lesions (red; right) press significantly less than control rats (blue; left), with the difference
larger for higher ratio requirements. Adapted from [12].

Here, we address these issues by constructing an RL account of behavior rates in free-
operant settings (Sections 2,3). We consider optimal control in a continuous-time MDP, in
which agents must choose both an action and how vigorously (i.e., at what rate) to emit
it. Our model treats vigor as being determined normatively, as the outcome of a battle
between the cost of behaving more expeditiously and the benefit of achieving desirable
outcomes more quickly. We show that this simple, normative framework captures many
classic features of animal behavior that are obscure in our and others’ earlier treatments
(Section 4). These include the characteristic time-dependent profiles of response rates on
tasks with different payoff scheduling [7], the hyperbolic relationship between response
rate and payoff [9], and the difference in response rates between tasks in which rewards are
allocated based on the number of responses emitted and those allocating rewards based on
the passage of time [10].

A key feature of this model is that response rates are strongly dependent on the expected
average reward rate, because this determines the opportunity cost of sloth. By influencing
the value of reinforcers — and through this, the average reward rate — motivational states
such as hunger influence the output response rates (and not only response choice). Thus,
in our model, hungry animals should optimally also work harder for water, since in typical
circumstances, this should allow them to return more quickly to working for food. Further,
we identify tonic dopamine with the representation of average reward rate, and thereby
suggest an account of a wealth of experiments showing that DA influences response vigor
[4, 5], thus complementing existing ideas about the role of phasic DA signals in learned
action selection (Section 5).

2 Free-operant behavior

We consider the free-operant scenario common in experimental psychology, in which an
animal is placed in an experimental chamber, and can choose freely which actions to emit
and when. Most actions have no programmed consequences; however, one action (eg lev-
erpressing; LP) is rewarded with food (which falls into a food magazine) according to an
experimenter-determined schedule of reinforcement. Food delivery makes a characteristic
sound, signalling its availability for harvesting via a nose poke (NP) into the magazine.



The schedule of reinforcement defines the (possibly stochastic) relationship between the
delivery of a reward and one or both of (a) the number of LPs, and (b) the time since the
last reward was delivered. In common use are fixed-ratio (FR) schedules, in which a fixed
number of LPs is required to obtain a reinforcer; random-ratio (RR) schedules, in which
each LP has a constant probability of being reinforced; and random interval (RI) schedules,
in which the first LP after an (exponentially distributed) interval of time has elapsed, is
reinforced. Schedules are often labelled by their type and a parameter, so RI30 is a random
interval schedule with the exponential waiting time having a mean of 30 seconds [7].

Different schedules induce different patterns of responding. Fig 1a shows response metrics
from rats leverpressing on an RI30 schedule. Leverpressing builds up to a relatively con-
stant rate following a rather long pause after gaining each reward, during which the food
is consumed. Hungry rats leverpress more vigorously than sated ones. A similar overall
pattern is also characteristic of responding on RR schedules. Figure 1b shows the total
number of LP responses in a 30 minute session for different interval schedules. The hyper-
bolic relationship between the reward rate (the inverse of the interval) and the response rate
is a classic hallmark of free operant behavior [9].

3 The model

We model a free-operant task as a continuous MDP. Based on its state, the agent chooses
both an action (a), and the time (τ) at which to emit it. After time τ , the action is com-
pleted, the agent receives rewards and costs associated with its choice, and then selects new
outputs based on its new state. We define three actions a ∈ {LP, NP, other}, where we take
a = other to include the various miscellaneous behaviors such as grooming, rearing, and
sniffing which animals typically perform in the experiment. For simplicity we consider unit
actions, with the delay τ related to the vigor with which this unit is performed. To account
for consumption time (which is non-negligible [11, 13]), if the agent nose-pokes and food
is available, a predefined time teat passes before the next decision point (and the next state)
is reached.

Crucially, performing actions incurs costs as well as potentially gaining rewards. Following
Staddon [14], we assume one part of the cost of an action to be proportional to the vigor
of its execution, ie inversely proportional to τ . The constant of proportionality Kv depends
on both the previous and the current action, since switching between different action types
can require travel between different parts of the experimental chamber (say, the magazine
to the lever), and can thus be more costly. Each action also incurs a fixed ‘internal’ re-
ward or cost of ρ(a) per unit, typically with other being rewarding. The reinforcement
schedule defines the probability of reward delivery Pr(S, a, τ) for each state-action pair.
An available reward can be harvested by a = NP into the magazine, and we assume that
the subjective utility U(r) of the food reward is motivation-dependent, such that it is worth
more to a hungry animal than to a sated one.

We consider the simplified case of a state space comprised of all the parameters relevant to
the task. Specifically, the state space includes the identity of the previous action, an indica-
tor as to whether a reward is available in the food magazine, and, as necessary, the number
of previous LPs (for FR) or the elapsed time (for RI) since the previous reinforcement. The
transitions between the states are defined by the dynamics of the schedule of reinforcement,
and all rewards and costs are harvested at state transitions and considered as point events.
In the following we treat the problem of optimising a policy (which action to take and with
what vigor, given the state) in order to maximize the average rate of return (rewards minus
costs). An exponentially discounted model gives the same qualitative results.

In the average reward case [15, 16], the Bellman equation for the long-term differential (or
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Figure 2: Data generated by the model captures the essence of the behavioral data: Lever-
press (blue,solid) and nose poke (red,dashed) response rates on (a) an RR10 schedule and
(b) a matched (yoked) RI schedule show constant LP rates which are higher for the ratio
schedule. (c) The relationship between the total number of responses (stars) and rate of re-
inforcement is hyperbolic (solid line: hyperbolic curve fit). The mean latency to leverpress
(dashed line) decreases as the rate of reinforcement increases.

average-adjusted) value of state S is:

V ∗(S)=max
a,τ



ρ(a)−
Kv(aprev , a)

τ
+U(r)Pr(S, a, τ)−τr+

Z

dS′P (S′|S, a, τ)V ∗(S′)

ff

(1)

where r is the long term average reward rate (whose subtraction from the value quantifies
the opportunity cost of delay). We associate the average reward rate with tonic levels of
DA in basal-ganglia structures relevant for action selection. We assume a causal version of
this, so pharmacological enhancement and suppression of DA are taken as implying higher
and lower r, respectively.

In this paper, we eschew learning, and examine the steady state behavior that arises when
actions are chosen stochastically (via soft-max) from the optimal one-step look-ahead
Q(S, a, τ) state-action values. For ratio schedules, the simple transition structure of the
task allows the Bellman equation to be solved analytically to determine the Q values. For
interval schedules, we use average-reward value iteration [15] with time discretized at a
resolution of 100ms. For simulations (eg of dopaminergic manipulations) where r was
assumed to change independent of any change in the task contingencies, we used value
iteration to find values approximately satisfying the Bellman equation (which is no longer
exactly solvable). Our overriding aim is to replicate basic aspects of free operant behav-
ior qualitatively, in order to understand the normative foundations of response vigor. We
do not fit the parameters of the model to experimental data in a quantitative way, and the
results we describe below are general, robust, characteristics of the model.

4 Basic results

Fig 2a depicts the behavior of our model on an RR10 schedule. In rough accordance with
the behavior displayed by animals (which is similar to that shown in Fig 1a), the LP rate
is constant over time, bar a pause for consumption. Fig 2b depicts the responses from the
model on a yoked random interval schedule, in which the intervals between rewards were
set to match exactly the intervals obtained by the agent trained on the RR10 schedule in
Fig 2a. The response rate is again constant over time, but it is also considerably lower
than that in the corresponding RR schedule, although the reward density is similar. This is
also observed experimentally, and although the apparent anomaly has been much discussed
in the associative learning literature, its explanation is not fully resolved [10]. Our model
suggests that it is the result of an optimal cost/benefit tradeoff.

We can analyse this difference by considering the Bellman equation. The optimizing τ
in eq. (1) in ratio schedules is dependent only on the average reward and the vigor cost



constant Kv , since Pr(S, a, τ) and P (S′|S, a, τ) do not in fact depend on τ . Thus the
optimal rate of leverpressing is 1/τ̂LP =

√

r/Kv(LP, LP). For an FRn or RRn schedule we
can write a closed form solution for the optimal average reward

r =

(

U(r) + nρ(LP) + ρ(NP)

2[(n − 1)
√

Kv(LP, LP) +
√

Kv(NP, LP) +
√

Kv(LP, NP)]

)2

(2)

and from this derive the optimal τ̂LP. For instance, assuming all Kv are identical and ρ(a)=
0 for all a, we have τ̂LP = 2(n + 1)Kv/U(r), with LP rates increasing (τLP decreasing)
for higher U(r) and decreasing for higher ratio requirements n or response costs Kv . In
interval schedules, however, this independence of τ̂LP from the value of the subsequent state
does not hold. There, the longer the pause between LPs, the higher the probability that the
next press will be rewarded. Since longer inter-response intervals also cost less, the optimal
rate of leverpressing is lower.

Fig 2c shows the average number of LPs in a 5 minute session for different interval sched-
ules. This shows the well documented hyperbolic relationship (cf Fig 1b). Further, the
mean latency 〈τLP〉 between successive LPs decreases as the probability of reinforcement
increases. This measure of response vigor is actually more accurate than the overall re-
sponse measure, as it is not contaminated by competition with other actions, or confounded
with the number of reinforcers per session for different schedules (and the time forgone
when consuming them). For this reason, although we (correctly; see [13]) predict that
inter-response latency should slow for higher ratio requirements, raw LP counts can actu-
ally increase, as in Fig. 1c, probably due to fewer rewards and less time spent eating[13].

5 Drive and dopamine

Having provided a basic qualitative account of the patterns of free operant rates of behavior,
we turn to the main theoretical conundrum — the effects of drive and DA manipulations
on response vigor. The key to understanding these is the role that the average reward r
plays in the tradeoffs determining optimal response vigor. In effect, the average expected
reward per unit time quantifies the opportunity cost for doing nothing (and receiving no
reward) for that time; its increase thus produces general pressure for faster work. A direct
consequence of making the agent hungrier is that the subjective utility of food is enhanced.
This will have interrelated effects on the optimal average reward r, the optimal values V ∗,
and the resultant optimal action choices and vigors. Notably, so long as the policy obtains
food, its average reward rate will increase.

Consider a fixed or random ratio schedule. The increase in r (Eq. 2) will increase the
optimal LP rate 1/τ̂LP =

√

r/Kv(LP, LP), as the higher reward utility offsets higher pro-
curement costs. Importantly, because the optimal τ has a similar dependence on r even for
actions irrelevant to food, they also become more vigorous. The explanation of this effect
is presented graphically in Fig 3e. The higher r increases the cost of sloth, since every τ
time without reward forgoes an expected (τ · r) mean reward. Higher average rewards pe-
nalize late actions more than they do early ones, thus tilting action selection toward faster
behavior, for all pre-potent actions. Essentially, hunger encourages the agent to complete
irrelevant actions faster, in order to be able to resume leverpressing more quickly.

For other schedules, the same effects generally hold (although the analytical reasoning is
complicated by the fact that the optimal τs may in these cases depend not only on the new
average reward but also on the new values V ∗). Fig 3a shows simulated responding on an
RI25 schedule in which the internal reward ρ(other) has been set high enough to warrant
non-negligible base responding. Fig 3b shows that when the utility of food is increased
by 50%, the rate of leverpressing increases, at the expense of other actions. However,
Fig 3d shows that the latency to both actions has decreased. Thus, if other is selected,
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Figure 3: The effects of drive on response rates. (a) Responding on a RI25 schedule, with
high internal rewards (0.35) for a=other (open circles). (b) The effects of hunger: U(r)
was changed from 10 to 15. (c) The effect of an irrelevant drive (hungry animals working
for water rewards): r was increased by 4% compared to (a). (d) Latencies to responding (τ )
for LP and other in baseline (a;navy,left), increased hunger (b;yellow,middle) and irrele-
vant drive (c;maroon,right). (e) Q values for leverpressing at different latencies τ . In black
(top) are the unadjusted Q values, before subtracting r · τ . In red (middle,solid) and green
(bottom,solid) are the values adjusted for two different average reward rates. The higher
reward rate penalizes late actions more, thereby causing faster responding, as shown by
the corresponding soft-maxed action probability curves (dashed). (f) Simulation of DA
depletion: overall LP count over 30 minute sessions (each bar averaging 15 sessions), for
different FR requirements (bottom). In blue (left) is the control condition, and in maroon
(right) is simulated DA depletion, attained by lowering r by 60%. The effects of the de-
pletion seem more pronounced in higher schedules (compare to Fig 1c), but this actually
results from the interaction with the number of rewards attained (see text).

it is performed more vigorously than when the agent was sated. These simulations, then,
exhibit the two major effects of motivation: the ‘directing’ effect, by which the agent is
directed more forcefully toward the motivationally relevant action, and the ‘driving’ effect,
which increases vigor globally [17].

The general drive effect can be better isolated if we examine hungry subjects leverpressing
for water (rather than food), without competition from actions for food. We can view our
leverpressing MDP as a portion of a larger one, which also includes (for instance) visits to
a home cage where food is available. Without explicitly specifying all this extra structure, a
good approximation is to take hunger as again causing an increase in the global rate of rein-
forcement r, reflecting the increase in the utility of food received elsewhere. Fig 3c shows
the effect of estimating the average reward rate to be a scant 4% higher than in Fig 3a, and
deriving new Q values from the previous V ∗ with this new rate. Although no action is per-
formed for a motivationally relevant outcome, as above, the adjusted vigors of all behaviors
are faster (Fig 3d,maroon bars), as a result of the higher ‘drive’. Of course, without access
to food, every moment in this situation forgoes more expected average reward than it did
before, capturing how this part of the experiment is aversive to the subjects and how they
might wish to escape it for an area where food is available.

How do these drive effects relate to dopamine? Pharmacological and lesion studies show



that enhancing DA levels (through agonists such as amphetamine) increases general activity
[5, 18, 19], while depleting or antagonising DA causes a general slowing of responding
(eg [4]). Fig. 1c is representative of a host of results from the lab of Salamone [4, 12]
which show that lower levels of DA in the nucleus accumbens (a structure in the basal
ganglia implicated in action selection) result in lower response rates. This effect seems
more pronounced in higher fixed-ratio schedules, those requiring more work per reinforcer.
As a result of this apparent dependence on the response requirement, Salamone and his
colleagues have hypothesized that the presence of DA enables animals to overcome higher
work demands.

Building on ideas from [16], but reversing the identification there, we suggest that the
average reward rate is represented by tonic DA levels. Thus a higher tonic level of DA
represents a situation akin to higher drive, in which behavior is more vigorous, and lower
tonic levels of DA cause a general slowing of behavior. Fig. 3e shows the simulated re-
sponse counts for different FR schedules in two conditions. The control condition is the
standard model described above; DA depletion was modeled by decreasing tonic DA levels
(and therefore r) to 40% of their original levels. The results match the data in Fig. 1c.
Oddly, according to the model, the apparently small effect on the number of LPs for low
ratio schedules actually arises because of the large amount of time spent eating. Thus DA is
not really allowing animals to cope with higher work requirements, but rather the slowing
effect of DA depletion on response vigor is more prominent (in the crude measure of LPs
per session) when more time is spent leverpressing.

6 Discussion

The present model brings the computational machinery and neural grounding of RL models
fully into contact with the vast reservoir of data from free-operant tasks. Classic quanti-
tative accounts of operant behavior (such as Herrnstein’s matching law [9], and variations
such as melioration) lack RL’s normative grounding in sound control theory, and tend in-
stead toward descriptive curve-fitting. These theories — and frequently also the data anal-
yses they inspire — are rather heuristic descriptions of the structure of behavior, often
concentrating on fairly crude ‘molar’ measures such as the total number of leverpresses
over long durations. In addition to the normative starting point it offers for investigations
of response vigor, our theory provides a relatively fine scalpel for dissecting the temporal
details of behavior, such as the distributions of inter-response intervals at particular state
transitions. There is thus great scope for revealing reanalyses of many existing data sets.
In particular, the effects of generalized drive have proved mixed and complex [17]. Our
theory suggests that studies of interresponse intervals (eg Fig 3d) may reveal more robust
changes in vigor, uncontaminated by shifts of overall action propensity.

Response vigor and dopamine’s role in controlling it have appeared in previous RL models
of behavior [20, 21], but only as fairly ad-hoc bolt-ons — for instance, using repeated
choices between doing nothing versus something to capture response latency. Here, these
aspects are wholly integrated into the explanatory framework: optimizing response vigor
is treated as itself an RL problem, with a natural dopaminergic substrate. To account for
unlearned effects of motivational or dopaminergic manipulations, the main assumption we
make is that tonic levels of DA can be immediately sensitive to changes in the average
reward occasioned by changes in the motivational state, and that behavioral policies are
in turn immediately affected. Such sensitivity would be easy to embed in a temporal-
difference RL system, producing flexible adaptation of response vigor. By contrast, due
to the way they cache values, the action choices of such systems are characteristically
insensitive to motivational manipulations [22]. In animal behavior, ‘habitual actions’ (the
ones associated with the DA system) are indeed motivationally insensitive for choice, but
show a direct effect of drive on vigor [23].



With respect to DA, a major question remains as to whether phasic responses (which are
known to correlate with response latency [24]) play an additional role in determining re-
sponse vigor. In terms of the present theory, it is natural to assume that phasic responses
will affect response latency indirectly, by increasing tonic DA concentrations. However,
there is much work to be done on these issues, not least to reconcile the present account of
tonic DA with our previous suggestion (based on microdialysis findings) [16] that it might
track average punishment rather than reward.

The most critical avenues to develop this work will be an account of learning, and neu-
rally and psychologically more plausible state and temporal representations. On-line value
learning should be a straightforward adaptation of existing TD models of phasic DA based
on the continuous-time semi-Markov setting [25]. The representation of state is more chal-
lenging — the assumption of a fully observable state space automatically appropriate for
the schedule of reinforcement is not realistic. Indeed, apparently sub-optimal actions emit-
ted by animals, eg engaging in excessive nose-poking even when a reward has not audibly
dropped into the food magazine [11], may provide clues to this issue. Finally, it will be
crucial to consider the fact that animals’ decisions about vigor may translate only noisily
into response times, due for instance to the variability of internal timing [26].
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