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The recognition that computational ideas from
reinforcement learning are relevant to the study of
neural circuits has taken the cognitive neuroscience
community by storm. A central tenet of these models
is that discrepancies between actual and expected out-
comes can be used for learning. Neural correlates of such
prediction-error signals have been observed now in mid-
brain dopaminergic neurons, striatum, amygdala and
even prefrontal cortex, and models incorporating pre-
diction errors have been invoked to explain complex
phenomena such as the transition from goal-directed
to habitual behavior. Yet, like any revolution, the fast-
paced progress has left an uneven understanding in its
wake. Here, we provide answers to ten simple questions
about prediction errors, with the aim of exposing both
the strengths and the limitations of this active area of
neuroscience research.

Introduction
Arguably, some of the most profound developments in
psychology and neuroscience in the last two decades
have stemmed from the use of normative ideas from
reinforcement learning in thinking about and studying
behavior and the brain. Building on a foundation laid by
learning theorists, neuroscientists have identified neural
substrates that conform to predictions of precise math-
ematical models of decision making. In this review we
focus on a central tenet of reinforcement learning
models: temporal difference prediction errors that
quantify the discrepancy between what was expected
and what is actually observed and that serve to stamp

in associations with antecedent events. This theoretical
concept was first given neural form in reports that
activity in midbrain dopamine neurons met criteria for
prediction errors [1,2]. A decade later, correlates of pre-
diction errors are coming up all over the brain [3–9].
However, the exact scope of the temporal difference
model and the prediction error hypothesis of dopamine,
as well as their implications for neuroscience and psy-
chology, are not always clear. The goal of this ‘dialogue
style’ review (which loosely follows a series of question
and answer e-mails between the authors) is to make
clear to those not versed in reinforcement learning
theory what temporal difference prediction errors are
and how this theory interacts with neuroscientific
research.

Q1: What is a prediction error and what is it good for?
Learning, in its most basic form, can be seen as the
process by which we become able to use past and current
events to predict what the future holds. In classical
conditioning animals learn to predict what outcomes
(e.g. food, water, or foot shock) are contingent on
which events (a bell ringing, clouds welling up in the
sky, etc.). In instrumental conditioning animals learn to
predict the consequences of their actions and can
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potentially use this knowledge to maximize the likeli-
hood of rewards and to minimize the occurrence of
punishments.

The most intuitive way to learn to predict future reward
and punishments is via error correction. The principle here
is simple: make the best prediction you can, observe actual
events and if your prediction was wrong, update your
knowledge-base so that future predictions are more accu-
rate. This is the basis of the extremely influential Rescorla-
Wagner [10] model of classical conditioning. For example,
imagine trying to predict how good a bottle of wine will be.
Opening a bottle of Bordeaux that has been aging in your
cellar, you are delighted with its sophisticated flavor.
Though you might have hoped for this, you were, presum-
ably, less than 100% certain that the wine had not passed
its prime. As a result, there is a difference between your
prediction – say, 70% chance of a good bottle of wine – and
reality. This error can be used to make your prediction
more accurate in the future. Of course not all Bordeaux are
alike, so rather than update your prediction to match
exactly the current situation – 100% – you might update
your prediction to some other probability, say 85%, reflec-
tive of the higher likelihood of a good 10-year-old Bordeaux.
Through this trial-and-error process of adjustment, over
many bottles of wine, you will eventually learn the correct
expected reward derived from different types and ages of
wine.

The key computational quantity that drives learning in
this example is the discrepancy between predictions and
outcomes, that is, the prediction error. Rescorla and
Wagner used this quantity in formulating their learning
rule [Equation 1]:

Vnew ¼ Vold þ hðoutcome� predictionÞ

¼ Vold þ hðR� VoldÞ

Here, R is a scalar quantity denoting the goodness of the
outcome (a pellet of food or a bottle of wine) and V is the
prediction associated with the observed stimulus (a tone
that precedes food or the label on the wine bottle), again in
units of predicted goodness, derived from past experience
with that stimulus. Rescorla and Wagner stipulated that
the overall prediction in a certain situation is the sum of all
the predictions from all available stimuli

P
stimuli V

stim
old .

In the idealized world of Rescorla and Wagner, the
update rule above is applied at the end of each condition-
ing trial, to all stimuli present in that trial. The learning
rate parameter 0< h �1 determines just how much each
specific experience affects the prediction for the future.
High learning rates mean that new experience is weighed
heavily in the future prediction (thus, learning from new
experience is faster, but forgetting the more distant past
also is faster), and low learning rates mean that much
experience needs to accumulate to profoundly affect pre-
dictions.

This simple but powerful learning rule is, perhaps, the
most influential model of conditioning to date, successfully
explaining phenomena such as blocking [11], overshadow-
ing [12] and conditioned inhibition [13,14] and predicting
others not known at the time, such as overexpectation
[15,16].

Q2: Reinforcement learning models of the dopamine
system have been associated with a slightly different
concept – a temporal difference prediction error. How is
this different from the Rescorla-Wagner prediction
error?
Ideas about temporal difference (TD) learning and TD
prediction errors stem from a line of research on reinforce-
ment learning within the fields of control theory and
computer science that was largely motivated by data from
classical conditioning (e.g. [17]; see [18] for a comprehen-
sive treatment and [19] for a detailed review). TD learning
takes into account that life is not naturally divisible into
discrete trials but, rather, consists of a continuous flow of
experience. Within this flow, predictive stimuli and
rewarding outcomes occur at different points in time,
and the goal, at each point in time, is to predict all future
outcomes given current and previous stimuli.

To see how this ambitious goal can be achieved, let’s
start by defining the prediction based on the stimulus at
time t (also called the ‘value’ of this stimulus) as the
expected sum of future outcomes:

predictionðtÞ ¼
¼E½outcomeðtþ 1Þþoutcomeðtþ2Þ þ outcomeðtþ 3Þ þ . . .�
¼E½outcomeðtþ1Þ�þE½outcomeðtþ2Þ�þE½outcomeðtþ3Þ�. . .

Of course we can say the same for the prediction based on
the stimulus at time t + 1:

predictionðtþ 1Þ ¼ E½outcomeðtþ 2Þ� þ E½outcomeðtþ 3Þ�

þ . . .

It then follows directly that:

predictionðtÞ ¼ E½outcomeðtþ 1Þ� þ predictionðtþ 1Þ;
meaning that if our predictions are correct, the prediction
based on the stimulus at time t should equal to the sum of
two quantities: (i) the expected immediate reward one
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timestep later (which might be zero) and (ii) the predicted
rewards from that time and onward. This also means that
if we predict a wrong amount at time t, then at time t + 1we
will realize we have a temporal difference prediction error
because the immediate reward plus future expectations
will be higher or lower than our original prediction. The
prediction error d at time t + 1 is, thus [Equation 2],

dðtþ 1Þ ¼ outcomeðtþ 1Þ þ predictionðtþ 1Þ
� predictionðtÞ:

This error can be used to improve the prediction we
made based on the stimulus at time t, that is, to learn the
value of that stimulus (shorthanded V(t)), as in the
Rescorla-Wagner model [Equation 3]:

VðtÞnew ¼
¼ VðtÞold þ h � dðtþ 1Þ
¼ VðtÞold þ h½outcomeðtþ 1Þ þ predictionðtþ 1Þ
�predictionðtÞ�:

To understand this intuitively, imagine a situation in
which several predictive events might follow one another.
For instance, going back to our bottle of wine, you might
have predicted a superb wine based on the age and label.
However, suppose you then notice that the cork is dry and
crumbling. Even though you have not even opened the
bottle, you can use this new state of affairs to change your
prediction. This is not possible using the Rescorla-Wagner
learning rule because it only looks at the difference be-
tween predictions and outcomes at the end of the trial. By
contrast TD learning is based on the difference between
consecutive predictions (99% superb wine upon seeing the
label, and merely a hopeful 30% upon realizing that it
might have turned to vinegar due to the bad cork). In
Equation (3), V(t) is the prediction at time point t (say,
when seeing the label), outcome (t + 1) is the outcome (still
no wine) at the next time point (trying to open the cork) and
prediction (t + 1) is the prediction at that time point (prob-
ably bad wine).

Q3: What defines how far into the future our predictions
should go?
Of course, there must be some way to carve up time – it
makes no sense to try to predict the sum of all future
rewards from now until the day we die. There are two ways
to deal with this:
(i) Sometimes, as in the case of trying different bottles of

wine, it does make sense to break up the sequence of

events into discrete trials. For instance, in a labora-
tory experiment in which the subject is instructed to
treat each trial independently (or leads us to believe
that this is what she is doing), TD learning can be
applied with the goal of predicting the sum of all
rewards in a trial. Still, TD learning is more general
than the Rescorla-Wagner model because it accounts
properly for the timing of multiple stimuli and
rewards within the trial.

(ii) More generally, research shows that animals and
humans discount, or view as less valuable, rewards
that are far away in time. TD learning can account for
such temporal discounting by changing Equation (2)
to:

dðtþ 1Þ ¼ g½outcomeðtþ 1Þ þ predictionðtþ 1Þ�

� predictionðtÞ;

with 0 < g � 1 as an (exponential) discounting factor.

Discounting the value of future rewards limits the

horizon of prediction: rewards two years down the line

are worth nil and, so, contribute nothing to the sum of

future rewards that we want to predict, and the

steeper the discounting, the shorter the prediction

horizon. Similarly, the past predictive information is

limited by the steepness of the discounting function:

cues too far back cannot predict rewards obtained at

present.

Q4: What are the crucial differences between TD
learning and Rescorla-Wagner learning? Are there
situations when one reduces to the other?
The crucial difference lies in the distinction between a
discrete trial-level model and a continuous-time model of
learning. In Rescorla and Wagner’s model, the goal is to
predict the outcomeof a trial andprediction errors onlyarise
at a trial’s end. In TDmodels the goal is to predict the future
and any new information can lead to prediction errors.

Indeed, when only one or several simultaneous cues
predict reward, the prediction error at the time of the
reward will be similar in both models. However, even in
this case TD does not entirely reduce to the Rescorla-
Wagner model. This is because in Pavlov’s famous
[bell! food] experiment, Rescorla andWagnerwould have
it that there are prediction errors only at the time of food
arrival, whereas TD learning posits that there also is a
prediction error when the bell is sounded, that is, at the
time of the predictive cue. This is because before hearing
the bell there was no expectation of food [V(t) = 0], whereas
after hearing it, food is expected [V(t + 1) = 1]. This differ-
ence between successive values is sufficient to generate a
prediction error. Moreover, the presence of this signal
means that if another stimulus precedes the bell (say,
Pavlov entering the room or a light preceding the bell as
in second-order conditioning), the animal can learn to use
that stimulus to predict the occurrence of the bell (and
thereby the food reward). Second- (or higher) order con-
ditioning is important because it is the basis for the
motivating effects of money and other proxies for primary
reward. Furthermore, this characteristic of the TD predic-
tion error as compared with a Rescorla-Wagner prediction
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error will become crucial when we compare the predictions
of these models to neural activity.

Thus, the TD model of learning (i.e. learning according
to Equation 3) can explain not only all those phenomena
that were explained by the Rescorla-Wagner rule but also
phenomena such as second-order conditioning and con-
ditioned reinforcement, as well as within-trial effects of
the temporal relationship between stimuli and outcomes
[17].

Q5: The influential reward prediction error hypothesis
of dopamine arose from comparing monkey
electrophysiological data to the characteristics of a TD
prediction error [1]. Today, other forms of neural
recordings have targeted this same signal. What are the
basic criteria for establishing that a recorded signal is,
indeed, a TD prediction error?
Three criteria can be considered the ‘fingerprint’ of a
reward prediction error signal: a phasic increase to unex-
pected rewards (a positive prediction error), no change to
predicted rewards and a phasic decrease (a negative pre-
diction error) when an expected reward is omitted (or
vice-versa – decreases to positive errors and increases to
negative errors, e.g. [20]). Of course, to establish that a
signal is a TD prediction error rather than a Rescorla-
Wagner prediction error, one should also show that after
learning, the unexpected presentation of a stimulus that
predicts future reward elicits a prediction error signal.
These characteristics have been demonstrated repeatedly
for midbrain dopamine neurons. Indeed, the presentation
of a predictive cue elicits a burst of activity from these
neurons, the size of which is proportional to themagnitude,
probability and even delay of the predicted reward [21–23].

Note that prediction errors should arise only at the
boundaries between situations that predict different
amounts of reward. For instance, you might experience a
prediction error when you see the label on a wine bottle, but
there are no further errorswhile youare looking for thewine
opener and getting ready to open the bottle. This is because
in the absence of new information, the predictions at times t
and t + 1 would be identical. Other quantities of interest
might not be phasic: the expected valueV(t) (that quantifies
the amount of reward predicted) should change from0 to the
cue-related value once the label is seen and stay at that level
until the final consumption of the wine (Figure 1).

Q6: The TD theory can account for both appetitive and
aversive outcomes by simply assuming that an aversive
event has a negative utility whereas a positive event
has a positive utility. Is this what is seen in
dopaminergic firing patterns?
That’s a good question that has been at the heart of an
interesting debate regarding the dopamine signal and has
yet to be resolved convincingly. According to one popular
view, dopamine serves to direct attention to salient events,
and it only seems like a prediction error because rewards
and reward-predicting stimuli are salient events (see, e.g.,
[24,25]). To test this hypothesis all eyes (or, should we say,
electrodes) have turned to aversive events such as shocks.
These are clearly salient, but carry a negative prediction,
so the salience hypothesis predicts a positive phasic

response to such stimuli, whereas the prediction error
hypothesis suggests the opposite.

Initial evidence showed that some dopaminergic
neurons responded to aversive events with a burst of firing
[26]. However, recent work in anesthetized animals
suggests that midbrain neurons that fire in response to
aversive events are not dopaminergic (although their
location and the shape of their action potentials are decep-
tively similar to that of dopaminergic neurons), whereas
dopaminergic neurons respond to aversive events with a
dip in firing [27,28]. As for awake animals, recordings in
monkeys have been inconclusive because only weakly
aversive stimuli such as air-puffs have been used [29].
Recent advances in dopamine recordings in awake rats,
when more strongly aversive stimuli can be applied, might
help resolve this controversy.

From a practical point of view, it is unclear whether dips
below the baseline firing rate of dopamine neurons – either
caused by omission of expected reward or by delivery of
unexpected punishment – can be used as a reliable signal
for learning. This is because the baseline firing rate of
dopamine neurons is low (3–8 spikes per second), leaving
little dynamic range for encoding of events ranging from a
slap on the wrist to the threat of a hungry lion by suppres-
sion of firing. An analogous aversive prediction error,
perhaps signaled by serotonin, has been proposed [30],
although recent data suggest that negative prediction
errors can be signaled by the duration of the suppression
of dopaminergic firing [31].

Q7: What about stimulus–stimulus learning? Is this
driven by prediction errors as well, perhaps of a
different type (event prediction errors rather than
reward prediction errors)?
A central premise of the TD model is that predictions are
about the sum of future rewards. This provides a powerful

Figure 1. The time course of the reward, value and prediction error signals in the

TD model. The first predictive stimulus is the label on the wine bottle, after which

wine is poured into the glass and finally consumed. Cue-related phasic neural

signals whose magnitude reflects the future predicted reward can be called

prediction error signals, but sustained neural signals corresponding to the value of

the predicted reward throughout the trial are designated value signals.
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framework for understandingmany aspects of conditioning
and decision making, but it is also severely limited. One
limitation is that the TDmodel (and similarly the Rescorla-
Wagner model) does not address learning of relationships
between events that do not have an affective component.
Instead, such stimulus–stimulus learning is addressed by
‘unsupervised learning’ models.

To illustrate why TD learning cannot account for
stimulus–stimulus learning, assume the situation in
Figure 1 in which stimulus A (wine label) is followed by
stimulus B (dark red liquid in a glass) and then by the
consumption of good wine (reward utility = 1). After train-
ing the values of each of the stimuli (in terms of predicted
future reward) will be 1, and so there will be a prediction
error only when A appears unexpectedly (for instance,
when you find that long-lost bottle in your cellar). Now
assume that in separate ‘conditioning’, stimulus C (cold,
frothy pale liquid) predicts a nice refreshing beer (uti-
lity = 1). The value of C after training will be the same
as that of A and B. Now imagine a ‘swap’ trial in which you
see A (wine label) followed by the pouring of C (pale liquid)
and finally the flavor of beer. Most people would notice the
unexpected occurrence of C – theymight react behaviorally
to it and might subsequently expect beer rather than wine.
However, such a sequence of events would theoretically
generate no TD reward prediction-error at the time of C or
at the time of the reward because C predicts a reward with
a scalar utility and a temporal delay that is equal to that
predicted by B.

That an obviously surprising and unpredicted event fails
to generate a prediction error exposes the limitation of the
TD model: this model aims to predict the scalar utility of
future rewards, not the identity of the reward (wine or beer)
or the precise stimuli (B or C) that precede it. Because
animals and humans presumably can learn which specific
rewardor stimulus followswhich, it is clear thatTDlearning
must be only one of several mechanisms for learning in the
brain [32]. It is important to judge the TD learning mech-
anism according to its goals: it is a good way to learn to
predict the value of future rewards, but only that.

Q8: Correlates of prediction errors in functional imaging
studies are frequently found not in the midbrain but,
rather, in areas such as the striatum, amygdala, and
orbitofrontal cortex [5,6,9,33]. Do all these areas signal
prediction errors?
This is a tricky issue that has caused much confusion.
Imaging studies have indeed found blood-oxygen-level-

dependent (BOLD) signals that correlate with a precise,
computationally derivedTDprediction error in a variety of
brain areas. Furthermore, a handful of single-unit record-
ing studies have reported that activity in other brain areas
– amygdala, striatum, orbitofrontal cortex and elsewhere
– is reliably modulated by whether rewards or punish-
ments are expected [3,4,7,20,34,35] (also see [8] for an
excellent review of these data).

However, current thought has it that the BOLD signal
does not directly reflect firing activity in an area but,
rather, correlates with the local field potential and
local processing, which are driven by subthreshold
activity and synaptic inputs to the area [36–38]. Thus,
perhaps it is appropriate to view the imaging results as
reflecting the information that an area is receiving
and processing, whereas single-unit activity reflects
the information that an area is transmitting to down-
stream regions. Moreover, dopamine can influence
BOLD signals directly through its effects on local blood
vessels [38,39] and on neuronal oscillations in target
areas [40].

These considerations can explain why BOLD signals in
striatal and prefrontal cortical areas, which are the
primary recipients of dopaminergic inputs, resemble a
prediction error. However, care must be taken when
inferring that this signal reflects dopaminergic activity:
striatal BOLD correlates just as well with prediction
errors for aversive outcomes, with no sign change (i.e. a
positive prediction error to an unexpected aversive event!)
[41–43]. This is not what is seen in dopaminergic record-
ings, reminding us that the BOLD signal can be modu-
lated by all afferent activity, be it dopaminergic or
otherwise.

Accordingly, prediction errors are generally not seen in
single-unit activity in areas that correlate with prediction
errors in imaging studies. For example, neurons in ventral
striatum seem to signal the value of rewards and cues that
predict reward rather than prediction errors [44–48].
Similarly, activity in orbitofrontal cortex shows no evi-
dence of prediction error signaling in a task that was
effective at demonstrating such signaling in rat dopamine
neurons*.

A second issue is that neural activity can differ for
expected and unexpected outcomes for a host of reasons
other than signaling of reward prediction errors. For
example, attention declines as events become expected.
Changes in neural activity might reflect attentional
modulation rather than prediction error signaling
[49–51]. The real test is whether the neural activity
meets all of the criteria laid out above for prediction
error signaling. To date, single-unit studies that have
examined encoding of prediction errors in nondopami-
nergic areas have only demonstrated a subset of the
criteria, normally in a very small percentage of the
neural population.

Of course other brain areasmight ultimately be found to
signal prediction errors or contribute to signaling of pre-
diction errors by dopamine neurons. Clearly, dopamine

* Calu, D.J. et al. (2007) Orbitofrontal cortex does not signal reward prediction
errors. Society for Neuroscience Abstracts 749.16/FFF32.
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neurons base the computation of a prediction error on
information coming from various sources. For example,
information about expected values V(t) has been proposed
to be conveyed to dopamine neurons by striatal afferents,
whereas information regarding primary rewards might
arise from the pedunculopontine nucleus [52] as well as
the lateral habenula [20,53,54].

Q9: We have been talking about using TD errors to learn
to predict the future, but these predictions would be
rather useless if they could not influence behavior that
preempts these future consequences. What is the
relationship between prediction errors and action
selection?
Although Pavlovian prediction learning is important (for
instance, it supports innate approach behaviour to appe-
titive stimuli and withdrawal from aversive stimuli, which
are no doubt helpful for survival), instrumental action
selection is, in some ways, the hallmark of intelligence.
This is because instrumental action is aimed at bringing
about those rewarding outcomes that are available in the
environment. Fortunately, TD prediction errors can assist
in that as well. By supplying positive or negative evalua-
tive signals even long before an actual outcome is realized,
TD errors can solve the ‘credit-assignment problem’ of how
to correctly apportion credit for reward to the different past
actions. That is, the error signal can be used in lieu of the
actual reward signal to ‘reinforce’ actions that lead to
better states of the environment (in terms of future pre-
dicted rewards) and ‘punish’ those that lead to worse states
[55,56].

Several suggestions exist for how action selection and
prediction errors can be combined. According to one
popular model, a critic learns to evaluate situations by
using TD learning, whereas an actor maintains an action
plan or policy in which the tendency to perform different
actions is increased or decreased based on the prediction
error signal that follows each action [57,58]. Other
models suggest that predictive values are learned not
for stimuli but, rather, for actions taken in the presence of
different stimuli. The distinctions between these models
are subtle, but they do have different properties. For
instance, they suggest slightly different forms for the
TD prediction error. Researchers have only recently
started to examine which one of these models, if any,

is implemented in the brain, and results so far are
equivocal [23,59].

Q10: So, what does all this mean regarding the role of
TD learning and dopamine in the brain? Is all learning
and action selection dependent on these?
Definitely not! Although dopamine has an important role
in conditioning, the kind of reinforcement learning that it
is thought to support is most strongly associated with
habitual learning and action selection. Goal-directed beha-
vior, which probably uses representations of contingencies
and rewards for forward-looking planning, might not be
dependent on learning via dopamine and TD prediction
errors [32,60,61]. Furthermore, wholly different categories
of learning, such as perceptual, stimulus–stimulus and
episodic learning, do not use TD prediction errors. So,
the bottom line is that dopamine clearly holds an import-
ant role in learning and behavior. By using precise com-
putational models, we can appreciate fully what this role
is, as well as what it isn’t (Box 1).

Box 1. What are some of the outstanding questions

regarding prediction error encoding in the brain?

Do dopamine neurons really signal temporal difference prediction

errors?

The evidence for this idea is strong; however, this is only a

simplified model of dopamine function, and it is almost certainly

ultimately incomplete. First, dopamine signals might serve more

than one function and might have different roles in different target

areas. Furthermore, there are alternatives to the view presented

here, based in part on apparent exceptions in which dopamine

neurons respond to novel cues or seem to generalize their

responses to cues that do not predict reward. Finally, basic

experimental predictions still remain untested. For example,

transfer of a cue-evoked response from a primary-conditioned

stimulus to a second-order cue in the absence of primary rewards

remains to be shown. This would validate the idea that cue-evoked
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Author note
This manuscript grew out of a set of e-mail questions Geoff
sent Yael after theymet at a reward circuitsmeeting held at
Lake Arrowhead in California in 2006. The answers to the
questions were so useful that they were often printed and
passed around the laboratory. This generated further dis-
cussion and ideas and, ultimately, more questions. Because
these dialogues were extraordinarily useful to the authors,
they thought they also might be helpful to others.
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