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SUMMARY

Human behavior displays hierarchical structure:
simple actions cohere into subtask sequences, which
work together to accomplish overall task goals.
Although the neural substrates of such hierarchy
have been the target of increasing research, they
remain poorly understood. We propose that the
computations supporting hierarchical behavior may
relate to those in hierarchical reinforcement learning
(HRL), a machine-learning framework that extends
reinforcement-learning mechanisms into hierarchical
domains. To test this, we leveraged a distinctive
predictionarising fromHRL. Inordinary reinforcement
learning, rewardpredictionerrors arecomputedwhen
there is an unanticipated change in the prospects for
accomplishing overall task goals. HRL entails that
prediction errors should also occur in relation to task
subgoals. In three neuroimaging studieswe observed
neural responses consistent with such subgoal-
related reward prediction errors, within structures
previously implicated in reinforcement learning. The
results reported support the relevance of HRL to the
neural processes underlying hierarchical behavior.

INTRODUCTION

In recent years computational reinforcement learning (RL)

(Sutton and Barto, 1998) has provided an indispensable frame-

work for understanding the neural substrates of learning and

decision making (Niv, 2009), shedding light on the functions of

dopaminergic and striatal nuclei, among other structures (Barto,

1995; Montague et al., 1996; Schultz et al., 1997). However, to

date, ideas from RL have been applied mainly in very simple

task settings, leaving it unclear whether related principles might

pertain in cases of more complex behavior (for a discussion, see

Daw and Frank, 2009; Dayan and Niv, 2008). Hierarchically

structured behavior provides a particularly interesting test

case, not only because hierarchy plays an important role in

human action (Cooper and Shallice, 2000; Lashley, 1951), but
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also because there exist RL algorithms specifically designed to

operate in a hierarchical context (Barto and Mahadevan, 2003;

Dietterich, 1998; Parr and Russell, 1998; Sutton et al., 1999).

Several researchers have proposed that such hierarchical

reinforcement learning (HRL) algorithms may be relevant to

understanding brain function, and a number of intriguing

parallels to existing neuroscientific findings have been noted

(Botvinick, 2008; Botvinick et al., 2009; Diuk et al., 2010, Soc.

Neurosci., abstract, 907.14/KKK47 Badre and Frank, 2011;

Haruno and Kawato, 2006). However, the relevance of HRL to

neural function stands in need of empirical test.

In traditional RL (Sutton and Barto, 1998), the agent selects

among a set of elemental actions, typically interpreted as rela-

tively simple motor behaviors. The key innovation in HRL is to

expand the set of available actions so that the agent may now

opt to perform not only elemental actions, but also multiaction

subroutines, containing sequences of lower-level actions, as

illustrated in Figure 1 (for a fuller description, see Experimental

Procedures and Botvinick et al., 2009).

Learning in HRL occurs at two levels. At a global level, the

agent learns to select actions and subroutines so as to efficiently

accomplish overall task goals. A fundamental assumption of RL

is that goals are defined by their association with reward, and

thus, the objective at this level is to discover behavior that maxi-

mizes long-term cumulative reward. Progress toward this objec-

tive is driven by temporal-difference (TD) procedures drawn

directly from ordinary RL: following each action or subroutine,

a reward prediction error (RPE) is generated, indicating whether

the behavior yielded an outcome better or worse than initially

predicted (see Figure 1 and Experimental Procedures), and this

prediction error signal is used to update the behavioral policy.

Importantly, outcomes of actions are evaluated with respect to

the global goal of maximizing long-term reward.

At a second level, the problem is to learn the subroutines

themselves. Intuitively, useful subroutines are designed to

accomplish internally defined subgoals (Singh et al., 2005). For

example, in the task of making coffee, one sensible subroutine

would aim at adding cream. HRL makes the important assump-

tion that the attainment of such subgoals is associated with

a special form of reward, labeled pseudo-reward to distinguish

it from ‘‘external’’ or primary reward. The distinction is critical

because subgoals may not themselves be associated with

primary reward. For example, adding cream to coffee may bring
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Figure 1. Illustration of HRL Dynamics

At t1, a primitive action (a) is selected. Based on the consequent state, an RPE is computed (green arrow from t2 to t1), and used to update the action policy (p) for

the preceding state, as well as the value (V) of that state (an estimate of the expected future reward, when starting from that state). At t2 a subroutine (s) is selected

and remains active through t5. Until then, primitive actions are selected as dictated by s (lower tier). A PPE is computed after each (lower green arrows from t5 to

t2), and used to update the subroutine-specific action policy (ps) and state values (Vs). These PPEs are computed with respect to pseudo-reward received at the

end of the subroutine (yellow asterisk). Once the subgoal state of s is reached, s is terminated. An RPE is computed for the entire subroutine (upper green arrow

from t5 to t2), and used to update the value and policy, V and p, associated with the state in which s was initiated. A new action is then selected at the top level,

yielding primary reward (red asterisk). Adapted from Botvinick et al. (2009).
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one closer to that rewarding first sip, but is not itself immediately

rewarding. In an HRL context, accomplishment of this subgoal

would yield pseudo-reward, but not primary reward.

Once the HRL agent enters a subroutine, prediction error

signals indicate the degree to which each action has carried

the agent toward the currently relevant subgoal and its associ-

ated pseudo-reward (see Figure 1 and Experimental Proce-

dures). Note that these subroutine-specific prediction errors

are unique to HRL. In what follows, we refer to them as

pseudo-reward prediction errors (PPEs), reserving ‘‘reward

prediction error’’ for prediction errors relating to primary reward.

In order to make these points concrete, consider the video

game illustrated in Figure 2, which is based on a benchmark

task from the computational HRL literature (Dietterich, 1998).

Only the colored elements in the figure appear in the task display.

The overall objective of the game is to complete a ‘‘delivery’’ as

quickly as possible, using joystick movements to guide the truck

first to the package and from there to the house. It is self-evident

how this task might be represented hierarchically, with delivery

serving as the (externally rewarded) top-level goal and acquisi-

tion of the package as an obvious subgoal. For an HRL agent,

delivery would be associated with primary reward and acquisi-

tion of the package with pseudo-reward. (This observation is

not meant to suggest that the task must be represented hierar-

chically. Indeed, it is an established point in the HRL literature

that any hierarchical policy has an equivalent nonhierarchical

or flat policy, as long as the underlying decision problem satisfies

the Markov property.) Our neuroimaging experiments pro-

ceeded on the assumption that participants would represent

the delivery task hierarchically. However, as we discuss later,

the neuroimaging results themselves, together with results

from a behavioral experiment, provided convergent evidence
for the validity of this assumption. See Supplemental Experi-

mental Procedures, available online, for further discussion.

Consider now a version of the task in which the package

sometimes unexpectedly jumps to a new location before the

truck reaches it. According to RL, a jump to point A in the figure,

or any location within the ellipse shown, should trigger a positive

RPE because the total distance that must be covered in order to

deliver the package has decreased. (Note that we assume

temporal discounting, which implies that attaining the goal faster

is more rewarding. We also assume that current subgoal and

goal distances are always immediately known, as they were for

our experimental participants from the task display.) By the

same token, a jump to point B or any other exterior point should

trigger a negative RPE. Cases C, D, and E are quite different.

Here, there is no change in the overall distance to the goal,

and so no RPE should be triggered, either in standard RL or in

HRL. However, in case C the distance to the subgoal has

decreased. Thus, according to HRL, a jump to this location

should trigger a positive PPE. Similarly, a jump to location D

should trigger a negative PPE (note that location E is special,

being the only location that should trigger neither an RPE nor

a PPE). These points are illustrated in Figure 2 (right), which

shows RPE and PPE time courses from simulations of the

delivery task based on standard RL and HRL (for simulation

methods, see Experimental Procedures).

These points translate directly into neuroscientific predictions.

Previous research has revealed neural correlates of the RPE in

numerous structures (Breiter et al., 2001; Hare et al., 2008;

Holroyd and Coles, 2002; Holroyd et al., 2003; O’Doherty

et al., 2003; Ullsperger and von Cramon, 2003; Yacubian et al.,

2006). HRL predicts that neural correlates should also exist for

the PPE. To test this, we had neurologically normal participants
Neuron 71, 370–379, July 28, 2011 ª2011 Elsevier Inc. 371



Figure 2. Task and Predictions from HRL and RL

Left view is task display and underlying geometry of the delivery task. Right view shows prediction-error signals generated by standard RL and by HRL in each

category of jump event. Gray bars mark the time step immediately preceding a jump event. Dashed time courses indicate the PPE generated in C and D jumps

that change the subgoal’s distance by a smaller amount. For simulation methods, see Experimental Procedures.
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perform the delivery task from Figure 2 while undergoing EEG

and, in two further experiments, fMRI.

RESULTS

EEG Experiment
The EEG experiment included 9 participants, who performed the

delivery task for a total of 60 min (190 delivery trials on average

per participant). One-third of trials involved a jump event of

type D from Figure 2; these events were intended to elicit a nega-

tive PPE. Earlier EEG research indicates that ordinary negative

RPEs trigger a midline negativity typically centered on lead Cz,

sometimes referred to as the feedback-related negativity or

FRN (Holroyd and Coles, 2002; Holroyd et al., 2003; Miltner

et al., 1997). Based onHRL, we predicted that a similar negativity

would occur following the critical jumps (type D) in our task. To

provide a baseline for comparison, another third of the trials

involved jump events of type E.
Figure 3. Results of EEG Experiment

Left view shows evoked potentials at electrode Cz, aligned to jump events, averag

series labeled D-E shows the difference between curves D and E, isolating the PP

E subtracted (topography plotted on the same grid used in Yeung et al. [2005]).
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Stimulus-aligned EEG averages indicated that class D-jump

events triggered a phasic negativity in the EEG (p < 0.01 at Cz;

Figure 3, left), relative to the E-jump control condition. (Like the

ERP obtained in this study, the FRN sometimes takes the form

of a relative negativity occupying the positive voltage domain,

rather than absolute negativity. For germane examples, see

Nieuwenhuis et al., 2005; Yeung et al., 2005.) Like the FRN,

this negativity was largest in the fronto-central midline leads

(including Cz, see Figure 3, right), and although the observed

negativity peaked later than the typical FRN, its timing is consis-

tent with studies of equivalent complexity of feedback (Baker

and Holroyd, 2011).

fMRI Experiments
In our first fMRI experiment, a group of 30 new participants

performed a slightly different version of the delivery task, again

designed to elicit negative PPEs. As in the EEG experiment,

one-third of trials included a jump of type D (as in Figure 2),
ed across participants. D and E refer to jump destinations in Figure 2. The data

E effect. Right view is scalp topography for condition D, with baseline condition



Figure 4. Results of fMRI Experiment 1

Shown are regions displaying a positive correlation with the PPE, independent

of subgoal displacement. Talairach coordinates of peak are 0, 9, and 39 for the

dorsal ACC, and 45, 12, and 0 for right anterior insula. Not shown are foci in left

anterior insula (�45, 9, �3) and lingual gyrus (0, �66, 0). Color indicates

general linear model parameter estimates, ranging from 3.0 3 10�4 (palest

yellow) to 1.2 3 10�3 (darkest orange).

Neuron

Hierarchical Reinforcement Learning
and another third included a jump of type E. Type D jumps, by

increasing the distance to the subgoal, were again intended to

trigger a PPE. However, in the fMRI version of the task, unlike

the EEG version, the exact increase in subgoal distance varied

across trials. Therefore, type D jumps were intended to induce

PPEs that varied in magnitude (Figure 2). Our analyses took

a model-based approach (O’Doherty et al., 2007), testing for

regions that showed phasic activation correlating positively

with predicted PPE size.

A whole-brain general linear model analysis, thresholded at

p < 0.01 (cluster-size thresholded to correct for multiple compar-

isons), revealed such a correlation in the dorsal anterior cingulate

cortex (ACC; Figure 4). This region has been proposed to contain

the generator of the FRN (Holroyd and Coles, 2002, although see

Nieuwenhuis et al., 2005 and Discussion below). In this regard

the fMRI result is consistent with the result of our EEG experi-

ment. The same parametric fMRI effect was also observed bilat-

erally in the anterior insula, a region often coactivated with the

ACC in the setting of unanticipated negative events (Phan

et al., 2004). The effect was also detected in right supramarginal

gyrus, the medial part of lingual gyrus, and, with a negative coef-

ficient, in the left inferior frontal gyrus. However, in a follow-up

analysis we controlled for subgoal displacement (e.g., the

distance between the original package location and point D in

Figure 2), a nuisance variable moderately correlated, across

trials, with the change in distance to subgoal. Within this analysis

only the ACC (p < 0.01), bilateral anterior insula (p < 0.01 left,
p < 0.05 right), and right lingual gyrus (p < 0.01) continued to

show significant correlations with the PPE.

In a series of region-of-interest (ROI) analyses, we focused in

on additional neural structures that, like the ACC, have been

previously proposed to encode negative RPEs: the habenular

complex (Salas et al., 2010; Ullsperger and von Cramon, 2003),

nucleus accumbens (NAcc) (Seymour et al., 2007), and amyg-

dala (Breiter et al., 2001; Yacubian et al., 2006). (These analyses

were intended to bring greater statistical power to bear on these

regions, in part because their small size may have undermined

our ability to detect activation in them in our whole-brain

analysis, where a cluster-size threshold was employed.) The

habenular complex was found to display greater activity

following type D than type E jumps (p < 0.05), consistent with

the idea that this structure is also engaged by negative PPEs.

A comparable effect was also observed in the right, though not

left, amygdala (p < 0.05).

In the NAcc, where some studies have observed deactivation

accompanying negative RPEs (Knutson et al., 2005), no signifi-

cant PPE effect was observed. However, it should be noted

that NAcc deactivation with negative RPEs has been an incon-

sistent finding in previous work (for example, see Cooper and

Knutson, 2008; O’Doherty et al., 2006). More robust is the asso-

ciation between NAcc activation and positive RPEs (Hare et al.,

2008; Niv, 2009; Seymour et al., 2004). To test this directly, we

ran a second, smaller fMRI study designed to elicit positive

PPEs, specifically looking for activation within a NAcc ROI. A

total of 14 participants performed the delivery task, with jumps

of type C (in Figure 2) occurring on one-third of trials and jumps

of type E on another third. As described earlier, a positive PPE is

predicted to occur in association with type C jumps, and in this

setting significant activation (p < 0.05) was observed in the right

(though not left) NAcc, scaling with predicted PPE magnitude.

Behavioral Experiment
We have characterized the results from our EEG and fMRI exper-

iments as displaying a ‘‘signature’’ of HRL, in the sense that the

PPE signal is predicted by HRL but not by standard RL algo-

rithms (Figure 2). However, there is an important caveat that

we now consider. In our neuroimaging experiments we assumed

that reaching the goal (the house) would be associated with

primary reward. (The same points hold if ‘‘primary reward’’ is

replaced with ‘‘secondary’’ or ‘‘conditioned reinforcement.’’)

We also assumed that reaching the subgoal (the package) was

not associated with primary reward but only with pseudo-

reward. However, what if participants did attach primary reward

to the subgoal? If this were the case, it would present a difficulty

for the interpretation of our neuroimaging results because it

would lead standard RL to predict an RPE in association with

events that change only subgoal distance (including C and D

jumps in our neuroimaging task).

In view of these points, it was necessary to establish whether

participants performing the delivery task did or did not attach

primary reward to subgoal attainment. In order to evaluate this,

we devised a modified version of the task. Here, 22 participants

delivered packages as before, though without jump events.

However, at the beginning of each delivery trial, two packages

were presented in the display, which defined paths that could
Neuron 71, 370–379, July 28, 2011 ª2011 Elsevier Inc. 373



Figure 5. Results of Behavioral Experiment

Left view is an example of a choice display.

Subgoal 1would always beonanellipsedefinedby

the house and the truck. In this example subgoal 2

has smaller overall distance to the goal and larger

distance to the truck relative to subgoal 1 (labels

not shown to participants). Right view shows

results of logistic regression on choices and of the

comparison between two RL models. Choices

were driven significantly by the ratio of distances of

the goal of the two subgoals (left box, central mark

is the median, edges correspond to 25th and 75th

percentiles, whiskers to extreme values, outliers to

individual dots outside box and whiskers; each

colored dot represents a single participant’s data),

whereas the ratio of distances to subgoal did not

significantly explain participant’s choices (middle

box). Bayes factors favored the model with only

reward for goal attainment and no reward for

subgoal against the one with reward for subgoal

and goal attainment (right box).
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differ both in terms of their subgoal distance and the overall

distance to the goal (Figure 5, left). Participants indicated with

a key press which package they preferred to deliver.

We reasoned that if goal attainment were associated with

primary reward, then (assuming ordinary temporal discounting)

the overall goal distance associated with each of the two pack-

ages should influence choice. More importantly, if we were

correct in our assumption that subgoal attainment carried no

primary reward, then choice should not be influenced by subgoal

distance, i.e., the distance from the truck to each of the two

packages.

Participants’ choices strongly supported both of these

predictions. Logistic regression analyses indicated that goal

distance had a strong influence on package choice (M = �7.6,

p < 0.001; Figure 5, right; larger negative coefficients indicate

a larger penalty on distances). However, subgoal distance

exerted no appreciable influence on choice (p = 0.43), and the

average regression coefficient was near zero (�0.16). The latter

observation held even in a subset of trials where the two delivery

options were closely matched in terms of overall distance (with

ratios of overall goal distance between 0.8 and 1.2).

These behavioral results strongly favor our HRL account of

delivery task, over a standard RL account. (The behavioral

data are consistent with a standard RL model that attaches no

reward to subgoal attainment, but as noted earlier, such a model

offers no explanation for our neuroimaging results.) To further

establish the point, we fit two computational models to individual

subjects’ choice data: (1) an HRL model, and (2) a standard RL

model in which primary reward was attached to the subgoal

(see Experimental Procedures). The mean Bayes factor across

subjects—with values greater than one favoring the HRL

model—was 4.31, and values across subjects differed signifi-

cantly from one (two-tailed t test, p < 0.001; see Figure 5, right).

DISCUSSION

We predicted, based on HRL, that neural structures previously

proposed to encode TD RPEs should also respond to PPEs—
374 Neuron 71, 370–379, July 28, 2011 ª2011 Elsevier Inc.
prediction errors tied to behavioral subgoals. Across three

experiments using a task designed to elicit PPEs, without elicit-

ing RPEs, we observed evidence consistent with this prediction.

Negative PPEs were found to engage three structures previously

reported to show activation with negative RPEs: ACC, habenula,

and amygdala; and activation scaling with positive PPEs was

observed in right NAcc, a location frequently reported to be

engaged by positive RPEs.

Of course the association of these neural responses with the

relevant task events does not uniquely support an interpretation

in terms of HRL (see Poldrack, 2006). However, aspects of either

the task or the experimental results do militate against the most

tempting alternative interpretations. Our behavioral study

provided evidence against primary reward at subgoal attain-

ment, closing off an interpretation of the neuroimaging data in

terms of standard RL. Given previous findings pertaining to the

ACC, the effect we observed in this structure might be conjec-

tured to reflect response conflict or error detection (Botvinick

et al., 1999; Krigolson and Holroyd, 2006; Yeung et al., 2004).

However, additional analyses of the EEG data (see Figure S2

and Supplemental Experimental Procedures) indicated that the

PPE effect persisted even after controlling for response accu-

racy and for response latency, each commonly regarded as an

index of response conflict.

Another alternative that must be addressed relates to spatial

attention. Jump events in our neuroimaging experiments

presumably triggered shifts in attention, often complete with

eye movements, and it is important to consider the possibility

that differences between conditions on this level may have

contributed to our central findings. Although further experiments

may be useful in pinning down the precise role of attention in our

task, there are several aspects of the present results that argue

against an interpretation based purely on attention. Note that,

in previous EEG research, exogenous shifts of attention have

been associated with a midline positivity, the amplitude of which

grows with stimulus eccentricity (Yamaguchi et al., 1995).

(A midline negativity has been reported in at least one study

focusing on endogenous attention (Grent-’t-Jong and Woldorff
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[2007]), but the timing of this potential differed dramatically from

the difference wave in our EEG study, peaking at 1000–1200 ms

poststimulus, hundreds ofmilliseconds after our effect ended.) In

fact we observed such a positivity in our own data, in Cz, when

we compared jump events (D and E) against occasions where

the subgoal stayed put, an analysis specifically designed to

uncover attentional effects (Figure S3). In contrast the PPE effect

in our data took the form of a negative difference wave (Figure 3),

consistent with the predictions of HRL and contrary to those

proceeding from previous research on attention.

Our fMRI results also resist an interpretation based on spatial

attention alone. As detailed in the Supplemental Experimental

Procedures, we did find activation in or near the frontal eye fields

and in the superior parietal cortex—regions classically associ-

ated with shifts of attention (Corbetta et al., 2008)—in an analysis

contrasting all jump events with trials where the subgoal

remained in its original location (Figure S4). However, as re-

ported above, activity in these regions did not show any signifi-

cant correlation with our PPE regressor (Figure 4).

If one does adopt an HRL-based interpretation of the present

results, then several interesting questions follow. Given the pre-

vailing view that TD RPEs are signaled by phasic changes in

dopaminergic activity (Schultz et al., 1997), one obvious ques-

tion is whether the PPE might be signaled via the same channel.

ACC activity in association with negative RPEs has been

proposed to reflect phasic reductions in dopaminergic input

(Holroyd and Coles, 2002), and the habenula has been proposed

to provide suppressive input to midbrain dopaminergic nuclei

(Christoph et al., 1986; Matsumoto and Hikosaka, 2007). Thus,

the implication of the ACC and habenula in the present study,

as well as the involvement of the NAcc—another structure that

has been proposed to show activity related to dopaminergic

input (Nicola et al., 2000)—provides tentative, indirect support

for dopaminergic involvement in HRL. At the same time, it should

be noted that some ambiguity surrounds the role of dopamine in

driving reward-outcome responses, particularly within the ACC

(for a detailed review, see Jocham andUllsperger, 2009). Indeed,

some disagreement still exists concerning whether the dorsal

ACC is responsible for generating the FRN (compare Holroyd

et al., 2004; Nieuwenhuis et al., 2005; van Veen et al., 2004).

Thus, the present findings must be interpreted with appropriate

circumspection. Above all, it should be noted that our

HRL-based interpretation does not necessarily require a role

for dopamine in generating the observed neural events. Indeed,

if the PPE were conveyed via phasic dopaminergic signaling,

this would give rise to an interesting computational problem

because proper credit assignment would require discrimination

between PPE and RPE signals (for discussion, see Botvinick

et al., 2009).

Another important question for further research concerns the

relation between the present findings and recent data concern-

ing the representation of action hierarchies in the dorsolateral

prefrontal cortex (Badre, 2008; Botvinick, 2008). Neuroimaging

and neuropsychological studies have lately given rise to the

idea that the prefrontal cortex may display a rostrocaudal func-

tional topography, which separates out task representations

based on some measure of abstractness (Badre et al., 2009;

Christoff et al., 2009; Grafman, 2002; Kouneiher et al., 2009).
One speculation, which could be tested through further

research, is that HRL-like mechanisms might be responsible

for shaping such representations and gating them into working

memory in an adaptive fashion (see Botvinick et al., 2009;

Reynolds and O’Reilly, 2009).

One final challenge for future research is to test predictions

from HRL in settings involving learning-driven changes in action

selection. As in many neuroscientific studies focusing on RL

mechanisms, our task looked at prediction errors in a setting

where behavioral policies were more or less stable. It may

also prove useful to study the dynamics of learning in hierarchi-

cally structured tasks, as a further test of the relevance of

HRL to neural function (see Diuk et al., 2010, Soc. Neurosci.,

abstract, 907.14/KKK47; Badre and Frank, 2011).
EXPERIMENTAL PROCEDURES

An HRL Model of the Delivery Task

To make our computational predictions explicit, we implemented both a stan-

dard and a hierarchical RL model of the delivery task, based on the approach

laid out in Botvinick et al. (2009). Simulations were performed in MATLAB (The

MathWorks, Natick, MA); the relevant code is available for download from

http://www.princeton.edu/�matthewb.

For the standard RL agent, the state on each step t, labeled st, was repre-

sented by the goal distance (gd), the distance from the truck to the house,

via the package, in units of navigation steps. For the HRL agent the state

was represented by two numbers: gd and the subgoal distance (sd), i.e., the

distance between the truck and the package. Goal attainment yielded a reward

(r) of one for both agents, and subgoal attainment a pseudo-reward (r) of one

for the HRL agent. On each step of the task, the agent was assumed to act

optimally, i.e., to take a single step directly toward the package or, later in

the task, toward the house. TheHRL agent was assumed to select a subroutine

(s) for attaining the package, which also resulted in direct steps toward this

subgoal (for details of subtask specification and selection, see Figure 1 and

Botvinick et al., 2009; Sutton et al., 1999).

For the standard RL agent, the state value at time t, V(t), was defined as ggd ,

using a discount factor g = 0.9. Thus, the RPE on steps prior to goal attainment

was:

RPE = rt + 1 +gVðst + 1Þ � VðstÞ=g1+gdt+ 1 � ggdt : (1)

The HRL agent calculated RPEs in the same manner but also calculated

PPEs during execution of the subroutine s. These were based on a subrou-

tine-specific value function (see Botvinick et al., 2009; Sutton et al., 1999),

defined as VsðstÞ=gsdt .

Thus, the PPE on each step prior to subgoal attainment was:

PPE = rt + 1 +gVsðst +1Þ � VsðstÞ=g1+ sdt +1 � gsdt : (2)

To generate the data shown in Figure 2, we imposed initial distances (gd, sd)

equaling 949 and 524. Following two task steps in the direction of the package,

at a point with distances 849 and 424, in order to represent jump events

distances were changed to 599 and 424 for jump type A, 1449 and 424 for

type B, 849 and 124 for type C, 849 and 724 for type D, and 849 and 424 for

type E. Dashed data series in Figure 2 were generated with jumps to 849

and 236 for type C and 849 and 574 for type D.

EEG Experiment

Participants

All experimental procedures were approved by the Institutional Review Board

of Princeton University. Participants were recruited from the university

community, and all gave their informed consent. Nine participants were

recruited (ages 18–22 years, M = 19.7, 4 males, all right handed). All received

course credit as compensation, and in addition received a monetary bonus

based on their performance in the task.
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Task and Procedure

Participants sat at a comfortable distance from a shielded CRT display in

a dimly lit, sound-attenuating, electrically shielded room. A joystick was held

in the right hand (Logitech International, Romanel-sur-Morges, Switzerland).

The computerized task was coded using MATLAB (The MathWorks) and the

MATLAB Psychophysics Toolbox, version 3 (Brainard, 1997). On each trial,

three display elements appeared: a truck, a package, and a house (Figure S1A).

These objects occupied the vertices of a virtual triangle with vertices at pixel

coordinates 0 and 180, 150 and 30, and 0 and 180, relative to the center of

the screen (resolution 1024 3 768) but assuming a random new rotation and

reflection at the onset of each trial. The task was to move the truck first to

the package and then to the house. Each joystick movement displaced the

truck a fixed distance of 50 pixels. For reasons given below the orientation

of the truckwas randomly chosen after every such translation, and participants

were required to tailor their joystick responses to the truck’s orientation, as if

they were facing its steering wheel (Figure S1A). For example if the front of

the truck were oriented toward the bottom of the screen, rightward movement

of the joystick would move the truck to the left. This aspect of the task was

intended to ensure that intensive spatial processing occurred at each step

of the task, rather than only following subgoal displacements.

Responses were registered when the joystick was tilted beyond half its

maximum displacement (Figure S1A). Between responses the participant

was required to restore the joystick to a central position (Figures S1A and

S1B). When the truck passed within 30 pixels of the package, the package

moved inside the truck icon and remained there for subsequent moves.

When the truck containing the package passed within 35 pixels of the house,

the display cleared, and a message reading ‘‘10¢’’ appeared for a duration of

300 ms (participants were paid their cumulative earnings at the end of the

experiment). A central fixation cross then appeared for 700 ms before the

onset of the next trial.

On every trial, after the first, second, or third truck movement, a brief tone

occurred, and the package flashed for an interval of 200 ms, during which

any joystick inputs were ignored. On one-third of such occasions, the package

remained in its original location. On the remaining trials, at the onset of the

tone, the package jumped to a new location. In half of such cases, the distance

between the package’s new position and the truck position was unchanged by

the jump (case E in Figure 2 of the main text). In the remaining cases the

distance from the truck to the package was increased by the jump, although

the total distance from the truck to the house (via the package) remained the

same (case D in Figure 2). In these cases the jump always carried the package

across an imaginary line connecting the truck and the house, and always

resulted in a package-to-house distance of 160 pixels. In all three conditions

the package would be on an ellipse defined by the locations of the old subgoal,

the house, and the position of the truck at the time of the jump. By the definition

of an ellipse, overall distance to the house was preserved.

At the outset of the experiment, each participant completed a 15min training

session, which was followed by the hour-long EEG testing session. Partici-

pants completed 190 trials on average (range 128–231). Trials were grouped

into blocks, each containing six trials: two trials in which the position of the

package did not change, two involving type E jumps, and two type D jumps.

The order in which trials of a particular type occurred was pseudorandom

within a block. Participants were given an opportunity to rest for a brief period

between task blocks.

Data Acquisition

EEG data were recorded using Neuroscan (Charlotte, NC) caps with 128

electrodes and a Sensorium (Charlotte, VT) EPA-6 amplifier. The signal was

sampled at 1000 Hz. All data were referenced online to a chin electrode, and

after excluding bad channels were rereferenced to the average signal across

all remaining channels (Hestvik et al., 2007). EOG data were recorded using

a single electrode placed below the left eye. Ocular artifacts were detected

by thresholding a slow-moving average of the activity in this channel, and trials

with artifacts were not included in the analysis. Less than four trials per subject

matched this criterion and were excluded from the analysis (less than two per

condition).

Data Analysis

Epochs of 1000 ms (200 ms baseline) were extracted from each trial, time

locked to the package’s change in position. The mean level of activity during
376 Neuron 71, 370–379, July 28, 2011 ª2011 Elsevier Inc.
the baseline interval was subtracted from each epoch. Trials containing type

D jump were separated from trials containing jumps of type E, and ERPs

were computed for each condition and participant by averaging the corre-

sponding epochs. The ERPs shown in Figure 3 (main text) were computed

by averaging across participants. The PPE effect was quantified in electrode

Cz (following Holroyd and Coles, 2002).

The PPE effect was quantified for each subject by taking the mean voltage

during the time window from 200 to 600 ms following each jump, for the two

jump types. A one-tailed paired t test was used to evaluate the hypothesis

that type D jumps elicited a more negative potential than type E jumps. For

comparability with previous studies, topographic plots are shown for elec-

trodes FP1, FP2, AFz, F3, Fz, F4, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4,

T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, O1, Oz, and O2 (as in Yeung

et al. [2005], F7 and F8were an exception, given that the used cap did not have

these electrode locations).

fMRI Experiments

Participants

Participants were recruited from the university community and all gave their

informed consent. For the first fMRI experiment, 33 participants were recruited

(ages 18–37 years, M = 21.2, 20 males, all right handed). Three participants

were excluded: two because of technical problems and one who was unable

to complete the task in the available time. For the second experiment,

15 participants were recruited (ages 18–25 years, M = 20.5, 11 males, all

were right handed). One participant was excluded for failure to complete the

task in the available time. All participants received monetary compensation

at a departmental standard rate. Participants in the second experiment also

received a small monetary bonus based on task performance.

Task and Procedure

An MR-compatible joystick (MagConcept, Redwood City, CA) was used. The

task was identical to the one used in the EEG experiment, with the following

exceptions. For the first experiment initial positions of the iconswere randomly

assigned to the screen respecting a minimal distance of 150 pixels between

icons. For the second experiment initial positions of the icons were rotations

or reflections, varied randomly, of a preestablished arrangement of icons of

a predetermined triangle with vertices truck (0, 200), package (151, �165),

and house (0, �200) (coordinates are in pixels, referenced to the center of

the screen). On type D jumps, the destination of the package was chosen

randomly from all locations satisfying the conditions that they (1) increase

truck-to-package distance, but (2) leave total path length to the goal (house)

unchanged. The forced delay involved in the task interruption (tone, package

flashing) totaled 900 ms. At the completion of each delivery, the message

‘‘Congratulations!’’ was displayed for 1000 ms (Figure S1D), followed by

a fixation cross that remained on screen for 6000 ms.

The first fMRI experiment consisted of three parts: a 15 min behavioral

practice outside the scanner, an 8 min practice inside the scanner during

structural scan acquisition, and a third phase of approximately 45 min, where

functional data were collected. During functional scanning, 90 trials were

completed, in 6 runs of 15 trials each. At the beginning and end of each run,

a central fixation cross was displayed for 10,000 ms. The average run length

was 7.5 min (range 5.7–11).

The task and procedure in the second fMRI experiment were identical to

those in the first, with the following exceptions. Type D jumps were replaced

with type C jumps (see Figure 2 in the main text). In these cases, the distance

between truck and package always decreased to 120 pixels. The message

‘‘10¢’’ appeared for 500 ms, indicating the bonus earned for that trial. Immedi-

ately following this, a fixation cross appeared for 2500ms, followed by onset of

the next trial. The average run length was 6.8 min (range 4.7–10.7).

Image Acquisition

Image acquisition protocols were the same for both experiments. Data were

acquired with a 3 T Siemens Allegra (Malvern, PA) head-only MRI scanner,

with a circularly polarized head volume coil. High-resolution (1 mm3 voxels)

T1-weighted structural images were acquired with an MP-RAGE pulse

sequence at the beginning of the scanning session. Functional data were

acquired using a high-resolution echo-planar imaging pulse sequence (3 3

3 3 3 mm voxels, 34 contiguous slices, 3 mm thick, interleaved acquisition,

TR of 2000 ms, TE of 30 ms, flip angle 90�, field of view 192 mm, aligned
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with the anterior commissure-posterior commissure plane). The first five

volumes of each run were ignored.

Data Analysis

Data analysis was similar for both experiments. Data were analyzed using AFNI

software (Cox, 1996). The T1-weighted anatomical images were aligned to the

functional data. Functional data were corrected for interleaved acquisition

using Fourier interpolation. Head motion parameters were estimated and

corrected allowing six-parameter rigid body transformations, referenced to

the initial image of the first functional run. A whole-brain mask for each partic-

ipant was created using the union of a mask for the first and last functional

images. Spikes in the data were removed and replaced with an interpolated

data point. Data were spatially smoothed until spatial autocorrelation was

approximated by a 6 mm FHWM Gaussian kernel. Each voxel’s signal was

converted to percent change by normalizing it based on intensity. The mean

image for each volume was calculated and used later as baseline regressor

in the general linear model, except in the ROI analysis where the mean image

of the whole brain was not subtracted from the data. Anatomical images were

used to estimate normalization parameters to a template in Talairach space

(Talairach and Tournoux, 1988), using SPM5 (http://www.fil.ion.ucl.ac.uk/

spm/). These transformations were applied to parameter estimates from the

general linear model.

General Linear Model Analysis

For each participant we created a design matrix modeling experimental events

and including events of no interest. At the time of an experimental event, we

defined an impulse and convolved it with a hemodynamic response. The

following regressors were included in the model: (a) an indicator variable

marking the occurrence of all auditory tone/package flash events; (b) an indi-

cator variable marking the occurrence of all jump events (spanning jump types

E and D in Experiment 1 and types E and C in Experiment 2); (c) an indicator

variable marking the occurrence of type D jumps (C jumps in Experiment 2);

(d) a parametric regressor indicating the change in distance to subgoal

induced by each D (or C) jumps, mean centered; (e and f) indicator variables

marking subgoal and goal attainment; and (g) an indicator variable marking

all periods of task performance, from the initial presentation of the icons to

the end of the trial. Also included were head motion parameters, and first- to

third-order polynomial regressors to regress out scanner drift effects. In Exper-

iment 1, a global signal regressor was also included (comparable analyses

omitting the global signal regressor yielded statistically significant PPE effects

in the ACC, bilateral insula, and lingual gyrus, in locations highly overlapping

with those reported in the main text).

Group Analysis (Experiment 1)

For each regressor and for each voxel, we tested the sample of 30 subject-

specific coefficients against zero in a two-tailed t test. We defined a threshold

of p = 0.01 and applied correction for multiple comparison based on cluster

size, using Monte Carlo simulations as implemented in AFNI’s AlphaSim. We

report results at a corrected p < 0.01.

Follow-up Analysis (Experiment 1)

Our experimental prediction related to the change in distance between truck

and package induced by type D-jump events, i.e., the change in distance to

subgoal, or PPE effect. However, jump events also varied in the degree to

which they displaced the package (i.e., the distance from its original position

to its post-jump position), and this distance correlated moderately with the

increase in subgoal distance. Therefore, it was necessary to evaluate whether

the regions of activation identified in our primary GLM analysis might simply be

responding to subgoal displacement (and possible attendant visuospatial or

motor processes), rather than the increase in distance to subgoal. To this

end, we looked at each area identified in the primary GLM, asking whether

the area continued to a show significant PPE effect even after this regressor

was made orthogonal to subgoal displacement. In order to avoid bias in this

procedure, we employed a leave-one-out cross-validation approach, as

follows. For every subgroup of 29 participants (from the total sample of 30),

we reran the original GLM, identifying voxels that: (1) showed the PPE effect

at significance threshold of p = 0.05 (cluster-size thresholded to compensate

formultiple comparisons); and (2) fell within 33mmof the peak-activation coor-

dinates for one of the six clusters identified in our primary GLM (dorsal anterior

cingulate, bilateral anterior insulae, left lingual gyrus, left inferior frontal gyrus,

and right supramarginal gyrus). The resulting clusters were used as ROIs for
the critical test. Focusing on the one subject omitted from each 29 subject

subsample, we calculated the mean coefficient within each ROI for the PPE

effect, after orthogonalizing the PPE regressor to subgoal displacement (and

including subgoal displacement in the GLM). This yielded 30 coefficients per

ROI. Each set was tested for difference from zero, using a two-tailed t test.

ROI Analysis

For the first fMRI experiment, we defined NAcc based on anatomical bound-

aries on a high-resolution T1-weighted image for each participant; habenula,

using peak Talairach coordinates (5, 25, 8), guided by Ullsperger and von

Cramon (2003), surrounded by a sphere with a radius of 6 mm (Salas et al.,

2010); and amygdala, drawn using the Talairach atlas in AFNI. For the second

experiment we defined NAcc in the sameway as for the first experiment. Mean

coefficients were extracted from these regions for each participant. Reported

coefficients for all ROIs are from general linear model analyses without

subtraction of global signal. The sample of 30 (or 14 for the second experiment)

subject-specific coefficients was tested against zero in a two-tailed t test, with

a threshold of p < 0.05.

Behavioral Experiment

Participants

A total of 22 participants were recruited from the Princeton University commu-

nity (ages 18–22 years, 11 male). All provided informed consent and received

a nominal payment.

Task and Procedure

The experiment was composed of three phases. In the first phase, participants

completed ten deliveries, with the procedure matching that used in our fMRI

studies. However, no jump events occurred in this or later phases of the exper-

iment. The second phase consisted of ten further delivery trials. However,

here, at the onset of each trial, the participant was required to choose between

two packages (Figure 5). The location of the truck and the house was chosen

randomly. The location of one package, designated subgoal one, was

randomly positioned along an ellipse with the truck and house as its foci and

a major-to-minor axis ratio of 5/3. The position of the other package, subgoal

two, was randomly chosen, subject to the constraint that it fall at least 100

pixels from each of the other icons.

At the onset of each trial, each package would be highlighted with a change

of color, twice (in alternation with the other package), for a period of 1.5 s.

Highlighting order was counterbalanced across trials. During this period the

participant was required to press a key to indicate his or her preferred package

when that package was highlighted. After the key press, the chosen subgoal

would change to a new color. At the end of the choice period, the unchosen

subgoal was removed, and participants were expected to initiate the delivery

task. The remainder of each trial proceeded as in phase one.

The third and main phase of the experiment included 100 trials. One-third of

these, interleaved in random order with the rest, followed the profile of phase

two trials. The remaining trials began as in phase two but terminated immedi-

ately following the package-choice period.

Data Analysis

To determine the influence of goal and subgoal distance on package choice,

we conducted a logistic regression on the choice data from phase three.

Regressors included (1) the ratio of the distances from the truck to subgoal

one and subgoal two, and (2) the ratio of the distances from the truck to the

house through subgoal one and subgoal two. To test for significance across

subjects, we carried out a two-tailed t test on the population of regression

coefficients.

To further characterize the results, we fitted two RL models to each partic-

ipant’s phase-three choice data. One model assigned primary reward only to

goal attainment and so was indifferent to subgoal distance per se. A second

model assigned primary reward to the subgoal as well to the goal.

Value in the first case was a discounted number of steps to the goal, and in

the second case it was a sum of discounted number of steps to the subgoal

and to the goal. Choice was modeled using a softmax function, including

a free inverse temperature parameter. The fmincon function in MATLAB was

employed to fit discount factor and inverse temperature parameters for both

models and reward magnitude for subgoal attainment for the second model.

We then compared the fits of the two models calculating Bayes factor for

each participant and performing a two-tailed t test on the factors.
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Yacubian, J., Gläscher, J., Schroeder, K., Sommer, T., Braus, D.F., and

Büchel, C. (2006). Dissociable systems for gain- and loss-related value predic-

tions and errors of prediction in the human brain. J. Neurosci. 26, 9530–9537.

Yamaguchi, S., Tsuchiya, H., and Kobayashi, S. (1995). Electrophysiologic

correlates of visuo-spatial attention shift. Electroencephalogr. Clin.

Neurophysiol. 94, 450–461.

Yeung, N., Botvinick, M.M., and Cohen, J.D. (2004). The neural basis of error

detection: conflict monitoring and the error-related negativity. Psychol. Rev.

111, 931–959.

Yeung, N., Holroyd, C.B., and Cohen, J.D. (2005). ERP correlates of feedback

and reward processing in the presence and absence of response choice.

Cereb. Cortex 15, 535–544.
Neuron 71, 370–379, July 28, 2011 ª2011 Elsevier Inc. 379


	A Neural Signature of Hierarchical Reinforcement Learning
	Introduction
	Results
	EEG Experiment
	fMRI Experiments
	Behavioral Experiment

	Discussion
	Experimental Procedures
	An HRL Model of the Delivery Task
	EEG Experiment
	Participants
	Task and Procedure
	Data Acquisition
	Data Analysis

	fMRI Experiments
	Participants
	Task and Procedure
	Image Acquisition
	Data Analysis
	General Linear Model Analysis
	Group Analysis (Experiment 1)
	Follow-up Analysis (Experiment 1)
	ROI Analysis

	Behavioral Experiment
	Participants
	Task and Procedure
	Data Analysis


	Supplemental Information
	 Acknowledgments
	References


