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Abstract

Reinforcement learning is a fundamental process by which or-

ganisms learn to achieve a goal from interactions with the environ-

ment. Using Artificial Life techniques we evolve (near-)optimal

neuronal learning rules in a simple neural network model of re-

inforcement learning in bumblebees foraging for nectar. The re-

sulting neural networks exhibit efficient reinforcement learning,

allowing the bees to respond rapidly to changes in reward con-

tingencies. The evolved synaptic plasticity dynamics give rise

to varying exploration/exploitation levels from which emerge the

well-documented choice strategies of risk aversion and probabil-

ity matching. These strategies are shown to be a direct result

of reinforcement learning, providing a biologically founded, par-

simonious and novel explanation for these behaviors. Our results

are corroborated by a rigorous mathematical analysis and their

robustness in real-world situations is supported by experiments

in a mobile robot.
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1 Introduction

Reinforcement learning (RL) is a process by which organisms learn from their

interactions with the environment to achieve a goal [28]. In RL, learning is

contingent upon a scalar reinforcement signal which provides evaluative infor-

mation about how good an action is in a certain situation, without providing

an instructive supervising cue as to which would be the preferred behavior in

the situation. Behavioral research indicates that RL is a fundamental means

by which experience changes behavior in both vertebrates and invertebrates,

as most natural learning processes are conducted in the absence of an explicit

supervisory stimulus [5]. A computational understanding of neuronal rein-

forcement learning is a necessary step towards an understanding of learning

processes in the brain, and can contribute widely to the design of autonomous

artificial learning agents.

RL has attracted ample attention in computational neuroscience, yet a

fundamental question regarding the underlying mechanism has not been suf-

ficiently addressed, namely, what are the optimal learning rules for

maximizing reward in RL? In this paper, we use Artificial-life (Alife)

techniques to derive the optimal neuronal learning rules that give rise

to efficient reinforcement learning in uncertain environments. We

further investigate the behavioral strategies, which emerge as a result of op-

timal RL.

RL has been demonstrated and studied extensively in foraging bees.

Real [23, 24] showed that when foraging for nectar in a field of blue and

yellow artificial flowers, bumblebees exhibit efficient RL, rapidly switching

their preference for flower type when reward contingencies were switched be-

tween the flowers. The bees also manifested risk averse behavior [15]: in a

situation in which blue flowers contained 2µl sucrose solution, and yellow

flowers contained 6µl sucrose in 1
3

of the flowers, and zero in the rest, ∼ 85%

of the bees’ visits were to the blue constant-rewarding flowers, although the

mean return from both flower types was identical. Risk-averse behavior has

also been demonstrated in other animals (see [15] for a review), and has tra-

ditionally been accounted for by hypothesizing the existence of a non-linear
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concave ”utility function” for reward. Such a subjective utility function for

nectar can result from a concave relationship between nectar volume and net

energy intake, between net energy intake and fitness, or between the actual

and perceived nectar volume [12, 27].

A foraging bee deals with a rapidly changing environment - parameters

such as the weather, the season, and competition all affect the availability of

rewards from different kinds of flowers. This implies an ”armed-bandit” type

scenario, in which the bee collects food and information simultaneously [9].

As a result there exists a tradeoff between exploitation and exploration, as the

bee’s actions directly affect the ”training examples” which it will encounter

through the trial-and- error learning process. Such a tradeoff is demonstrated

in Real’s experiment [23] by the ∼ 15% sampling of the variable flower which

ensures the bee that changes in the reward contingencies in that flower will

be detected.

A notable strategy by which bumblebees (and other animals) optimize

choice in such situations is probability matching. When faced with flow-

ers offering similar rewards but with different probabilities, bees choose the

different flower types by a ratio that matches the reward ratio of the flow-

ers [9, 16]. This seemingly ”irrational” behavior with respect to optimization

reward intake is explained as an Evolutionary Stable Strategy (ESS) for the

individual forager, when faced with competitors [29]. In a multi-animal com-

petitive setting, matching strategy produces an Ideal Free Distribution (IFD)

in which the average intake of food is the same at all food sources, and no

animal can improve its payoff by feeding at another source. Using Alife

techniques, Seth [26] evolved battery-driven agents which competed for two

different battery refill sources, and showed that indeed matching behavior

emerges in a multi-agent scenario, while when evolved in isolation, agents

choose only the high probability refill source.

In a previous neural network (NN) model, Montague et al. [21] simulated

bee foraging in a 3D arena of blue and yellow flowers, based on a neuro-

controller modelled after an identified interneuron in the honeybee suboe-

sophogeal ganglion [10]. This neuron’s activity represents the reward value of

gustatory stimuli, and similar to Dopaminergic neurons in the Basal Ganglia
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of primates, is activated by unpredicted rewards and by reward predicting

stimuli, and is not activated by predicted rewards [11]. In their model, this

neuron is modeled as a linear unit P , which receives visual information re-

garding changes in the percentages of yellow, blue and neutral colors in the

visual field, and computes a prediction error. According to P ’s output the

bee decides whether to continue flight in the same direction, or to change

heading direction randomly. Upon landing, a reward is received according

to the subjective utility of the nectar content of the chosen flower [12], and

the synaptic weights of the networks are updated according to a special anti-

Hebbian-like learning rule in which the postsynaptic factor selects the direc-

tion of change [20]. As a result, the values of the weights come to represent

the expected rewards from each flower type.

While this model replicates Real’s foraging results and provides a basic

and simple NN architecture to solve RL tasks, many aspects of the model,

first and foremost the handcrafted synaptic learning rule, are arbitrarily spec-

ified and their optimality with respect to RL questionable. Towards this

end, we use a generalized and parameterized version of this model in order

to evolve optimal synaptic learning rules for RL (with respect to maximiz-

ing nectar intake) using a genetic algorithm [19]. In contrast to common

Alife applications which involve NNs with evolvable synaptic weights or ar-

chitectures [1, 6, 22], we set upon the task of evolving the network’s neuronal

learning rules. Previous attempts at evolving neuronal learning rules have

used heavily constrained network dynamics and very limited sets of learning

rules [2, 4, 7, 8], or evolved only a subset of the learning rule parameters [30].

We define a general framework for evolving learning rules, which essentially

encompasses all heterosynaptic Hebbian learning rules, along with other char-

acteristics of the learning dynamics, such as learning dependencies between

modules. Via the genetic algorithm we select bees based solely on their

nectar-gathering ability in a changing environment. The uncertainty of the

environment ensures that efficient foraging can only be a result of learning

throughout lifetime, thus efficient learning rules are evolved.

In the following section we describe the model and the evolutionary dy-

namics. Section 3 reports the results of our simulations: In 3.1 we describe
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the successful evolution of RL, and the conditions which need to be met to

facilitate such evolution. Section 3.2 describes the evolved synaptic update

rule, and its influence on the exploration/exploitation tradeoff of the forag-

ing bees. In section 3.3 we further analyze the foraging behaviors resulting

from the learning dynamics, and find that when tested in new environments,

our evolved bees manifest risk aversion and probability matching behaviors.

Although these choice strategies were not selected for, we rigorously prove

that risk-aversion and probability matching emerge directly from optimal

RL. Section 3.4 describes a minirobot implementation of the model, aimed

at assessing its robustness. We conclude with a discussion of the results in

section 4.

2 Methods

A simulated bee-agent flies in a 3D arena, over a 60x60 flower patch com-

posed of randomly scattered yellow and blue squares representing two types

of flowers. A bee’s life consists of 100 trials. Each trial begins with the

bee placed in a random location above the flower patch and with a random

heading direction. The bee starts its descent from a height of ∼ 10 units

above the flower patch, and advances in steps of 1 unit that can be taken in

any downward direction (360◦ horizontal, 90◦ vertical). The bee views the

world through a cyclopean eye (10◦ cone view), and in each timestep decides

whether to maintain the current heading direction or to reorient randomly,

based on the visual input. Upon landing (the field has no boundaries, and

the bee can land on a flower or outside the flower patch on ”neutral” ground),

the bee consumes any available nectar in one timestep, and another trial be-

gins. The evolutionary goal (the fitness criterion) is to maximize

nectar intake.

In the neural network controlling the bee’s flight (Figure 1a), which is

an extension of Montague et al’s network [21], three modules (”regular”,

”differential” and ”reward”) contribute their input via synaptic weights, to a

linear neuron P . The regular input module reports the percentage of the bee’s

field of view filled with yellow [Xy(t)], blue [Xb(t)] and neutral [Xn(t)]. The

5



Figure 1: (a) The bee’s neural network controller. The weights Wi(t) of
the regular and differential modules are modifiable. (b) The bee’s action
function. Probability of reorienting direction of flight as a function of P (t)
for different values of parameters m, b. (c) The “genome” sequence of
the simulated bee.

differential input module reports temporal differences of these percentages

[Xi(t)−Xi(t− 1)]. The reward module reports the actual amount of nectar

received from a flower [R(t)] in the nectar-consuming timestep1, and zero

during flight. Note that we do not incorporate any form of utility

function with respect to the reward. Thus P ’s continuous-valued output is:

P (t) = R(t) +
∑

i∈regular

WiXi(t) +
∑

i∈differential

Wi[Xi(t)−Xi(t− 1)] (1)

The bee’s action is determined according to the output P (t) using Montague

et al’s probabilistic action function [12, 21] (Figure 1b):

p(change direction) =
1

1 + exp[m · P (t) + b]
(2)

During the bee’s ”lifetime” the synaptic weights of the regular and differ-

ential modules are modified via a heterosynaptic Hebb learning rule of the

1In this timestep it is also assumed that there is no new input [Xi(t) = 0].
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form:

∆Wi(t) = η[AXi(t)P (t) +BXi(t) + CP (t) +D] (3)

where η is a global learning rate parameter, Xi(t) and P (t) are the pre-

synaptic and the post-synaptic values respectively, Wi their connection weight,

and A−D are real-valued evolvable parameters. In addition, learning in one

module can be dependent on another module (dashed arrows in Figure 1a),

such that if module M depends on module N , M ’s synaptic weights will be

updated according to equation (3) only if module N ’s neurons have fired2,

and if it is not dependent, the weights will be updated on every timestep.

Thus the bee’s ”brain” is capable of a non-trivial axo-axonic gating of

synaptic plasticity.

The simulated bee’s genome (Figure 1c) consists of a string of 28 genes,

each representing a parameter governing the network architecture and or its

learning dynamics. Fifteen genes specify the bee’s brain at time of ”birth”

(before the first trial): 7 boolean genes determine whether each synapse

exists or not; 6 real-valued genes (range [-1,1]) specify the initial weights

of the regular and differential module synapses3; and two real-valued genes

specify the action-function parameters m (range [5,45]) and b (range [0,5]).

Thirteen remaining genes specify the learning dynamics of the network: The

regular and differential modules each have a different learning rule specified

by 4 real-valued genes (parameters A−D of equation (3), range [-1,1]); The

global learning rate of the network η is specified by a real valued gene; and

four boolean genes specify dependencies of the visual input modules on each

of the other two modules.

The optimal gene values were determined using a genetic algorithm. A

first generation of bees was produced by randomly generating 100 genome

2A dependency on the reward module is satisfied when the reward neuron fires, i.e.
when this neuron fires, synapses of every module dependent on it can be updated. De-
pendencies between the regular and differential modules are satisfied neuron-wise, i.e.
according to the actual neurons which have fired in the module, the synapses connected
to the respective neurons in the other module can be updated. Synapses of a module
dependent on two other modules can only be updated when satisfying both dependency
conditions.

3The synaptic weight of the reward module is clamped to 1, effectively scaling the other
network weights.
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strings. Each bee performed 100 trials independently (no competition) and

received a fitness score according to the average amount of nectar gathered

per trial. To form the next generation, fifty pairs of parents were chosen (with

returns) with a bee’s fitness specifying the probability of it being chosen as

a parent. Each two parents gave birth to two offsprings, which inherited

their parents’ genome4 after performing recombination and adding random

mutations. Mutations were performed by adding a uniformly distributed

value in the range of [-0.1,0.1] to 2% of the real-valued genes, and reversing

0.2% of the boolean genes. Recombination was performed via a uniform

crossover of the genes (p = 0.25, genewise). One hundred offsprings were

created, and once again tested in the flower field. This process continued for

a large number of generations.

3 Results

3.1 Evolution of Reinforcement Learning

To promote the evolution of learning, bees were evolved in an ”uncertain”

world: In each generation one of the two flower types was randomly assigned

as a constant-yielding high-mean flower (containing 0.7µl nectar), and the

other a variable-yielding low-mean flower (1µl nectar in 1
5
th of the flowers and

zero otherwise). The reward contingencies were switched between the two

flower types in a randomly chosen trial during the second or third quarter of

each bee’s life. Evolutionary runs under this condition typically show one of

two types of fitness curves: successful runs defined as runs in which reward-

dependent choice behavior is successfully evolved, are characterized by two

distinct evolutionary jumps (Figure 2a). Unsuccessful runs which produce

behavior that is not dependent on rewards, show only the first jump (Figure

2b).

In order to assess the conditions for evolving reward-dependent choice be-

havior (which is indicative of successful reinforcement learning), we also ex-

amined a variety of different environmental settings: When bees were evolved

4There is no Lamarkian inheritance - learned weights are not passed on to offsprings.
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Figure 2: Typical fitness scores of a successful run (a) and an unsuccessful
run (b) of 500 generations. Solid line - mean fitness, dotted line - maximum
fitness in each generation.

in an environment in which reward contingencies were not switched between

the two flower types, reward-dependent behavior was not produced5. This is

not surprising, as in a constant environment the flower preferences yielding

high fitness are constant and can be inherited in the genome, so there is no

need for further learning through lifetime.

Next we examined a setting in which reward contingencies are not switched

during a bee’s lifetime, but only between generations. In these conditions an

offspring cannot directly inherit the high-fitness-yielding preferences from its

parents, as the environment into which it is born may be different from that

in which its parents lived. In this scenario we managed to evolve success-

ful reward-dependent behavior. Thus a first condition for the evolution of

reward-dependent learning behavior is that reward contingencies must be

unpredictable in each generation. This induces the bees to learn to cope

with a changing environment. In evolutionary runs in which we not only

also switched reward contingencies between generations, but also switched

5This was checked by subjecting the evolved bees to tests in environments with different
rewarding regimes.
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the reward contingencies between the two flower types once during the bees’

lifetime, successful reward-dependent behavior evolved much faster. We also

found that it is necessary that the timing of the inter-lifetime change in

reward contingencies be stochastic (with respect to the trial in which the

change occurs), so as not to allow for the evolution of time-related strate-

gies of synaptic weight adjustment, supressing the evolution of reinforcement

learning.

We further examined the conditions on the rewarding regimes of the two

flower types: In an environment in which both flowers were constant re-

warding (but with different amounts of nectar), reward dependent choice

behavior was successfully evolved. Thus the uncertainty between 
ower types

is a sufficient condition, and uncertainty within a 
ower type (as is the case in

most of the simulations hereafter reported, in which one flower is a variably-

rewarding flower) is not neccessary for the evolution of reward dependent

choice behavior. Moreover, in environments in which both flower types were

variably-rewarding types, we were not able to evolve reward-dependent choice

behavior. Apparently, in our framework, such excessive uncertainty of the

environment is too difficult for the evolutionary process to solve, and the

underlying consistencies cannot be discovered and exploited by the evolving

bees.

3.2 Exploration/Exploitation Tradeoff

Under the above described conditions in which one flower type is a high-mean

constant rewarding flower and the other is a low-mean variably rewarding

flower, and in which reward contingencies are switched once during lifetime,

about half of the evolutionary runs were successful. Figure 3a shows the

mean value of several of the bees’ genes in the last generation of each of five

successful runs. The second evolutionary jump characteristic of successful

runs is due to the almost simultaneous evolution of 8 genes governing the

network structure and learning dependencies, which are essential for pro-

ducing efficient learning in the bees’ uncertain environment: All successful

networks have a specific architecture which includes only the reward, differ-
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Figure 3: Mean value of several genes in the last generation of
(a)successful and (b)unsuccessful runs. Each sub-figure shows the mean value
of one gene in the last generation of each of five runs. Genes shown (from left
to right): Top row - the learning rate gene and the two action function pa-
rameters m and b. Middle row - the boolean genes governing the existence of
the different synapses: regular blue, regular yellow and regular neutral input
synapses, differential blue, differential yellow and differential neutral input
synapses, and the reward input synapse. Bottom row - boolean genes de-
termining the dependencies of the regular module on the differential module
and on the reward module, and the dependencies of the differential module
on the regular module and the reward module

ential blue and differential yellow synapses, as well as a dependency of the

differential module on the reward module, conditioning modification of these

synapses on the presence of reward. Agents which have almost all the crucial

alleles, but are missing one or two, are nevertheless unsuccessful (Figure 3b).

Thus we find that in our framework, only a network architecture similar to

that used by Montague et al. [21] can produce above-random foraging be-

havior, supporting their choice as an optimal one. However, our optimized

networks utilize a heterosynaptic learning rule different from the

monosynaptic rule used by Montague et al., giving rise to several

important behavioral strategies.

In order to understand the evolved learning rule, we examined the forag-

ing behavior of individual bees from the last generation of successful runs. In

general, the bees manifest efficient reinforcement learning, showing a marked

preference for the high-mean rewarding flower, with a rapid transition of pref-

erences after the reward contingencies are switched between the flower types.

The values of the synaptic weights are also indicative of learning based on
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Figure 4: Preference for blue flowers for two different bees from
the last generation of different successful runs, averaged over 40 test bouts,
each consisting of 100 trials. Blue is the initial constant-rewarding high-
mean flower. Reward contingencies were switched between flower types
at trial 50. Hebb rule coefficients for the “exploiting” bee (c) are A =
−0.82, B = 0.15, C = 0.24, D = −0.04 and for the “exploring” bee (d) are
A = −0.92, B = 0.39, C = 0.16, D = 0.25.

reward contingencies, as they follow the rewards expected from each flower.

A more detailed inspection of the behavior of bees from different evo-

lutionary runs reveals that the bees differ in their degree of exploitation of

the high-rewarding flowers versus exploration of the other flowers (Figure

4). These individual differences in the foraging strategies employed by the

bees, result from an interesting relationship between the micro-level Hebb

rule coefficients and the exploration/exploitation tradeoff characteristic of

the macro-level behavior. According to the dependencies evolved, learning

(synaptic updating) occurs only upon landing, and we can analyze the het-

erosynaptic learning rule of the differential module as follows: In the common

case, upon landing the bee sees only one color, thus all inputs are zero except

the differential input corresponding to the color of the chosen flower6. Thus

the output of P in this step is:

P (t) = R(t) + (−1) ·Wchosen(t) = R(t)−Wchosen(t) (4)

6The inputs of the regular module are zero as there is no new input upon landing.
Immediately prior to landing the color of the chosen flower filled the bee’s field of view,
so the differential inputs of the non-chosen colors are zero, and that corresponding to the
color of the chosen flower is Xi(t)−Xi(t− 1) = 0− 1 = −1.
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Therefore, the synaptic update rule for the differential synapse corresponding

to the chosen flower color is:

∆Wchosen(t+ 1) = η[(A− C) · (−1) · (R(t)−Wchosen(t)) + (D −B)] (5)

leading to an effective monosynaptic coefficient of (A − C), and a general

weight decay coefficient (D − B). For the other differential synapses the

synaptic update rule is:

∆Wj(t+ 1) = η[C · (R(t)−Wchosen(t)) +D] (6)

Thus, a positive D value results in “spontaneous” strengthening of competing

synapses (a general rise in the appetitive value of not-visited flower types),

leading to an exploration-inclined bee. This behavior is further enhanced by

a positive C value, which strengthens competing synapses whenever a ”good

surprise” (resulting in a positive postsynaptic P value) is encountered. A

negative value of D will result in a declining tendency to visit competing

flower types as long as the preferred flower does not disappoint (and is thus

repeatedly chosen), leading to exploitation-inclined behavior.

3.3 Emergence of Risk Aversion and Matching

A prominent strategy exhibited by the evolved bees is risk-aversion. Fig-

ure 6a shows the choice behavior of previously evolved bees, tested in a

new environment where the mean rewards of the two kinds of flowers are

identical. Although the situation does not call for any flower preference,

the bees prefer the constant-rewarding flower. Furthermore, bees evolved

in an environment containing two constant-rewarding flowers yielding dif-

ferent amounts of nectar, also exhibit risk-averse behavior when tested in a

variable-rewarding flower scenario, thus risk-aversion is not a consequence of

evolution in an uncertain environment per se. In contradistinction to the

conventional explanations of risk aversion common in the fields of economics

and game theory, our model does not include a non-linear utility function.

What hence brings about risk-averse behavior in our model? Cor-

13



roborating previous numerical results [17], we prove analytically that this

foraging strategy is a direct consequence of Hebbian learning dynamics in an

armed-bandit-like RL situation.

3.3.1 Mathematical Analysis: Risk Aversion is Ordered

During a trial, a bee makes a series of choices regarding its flight direction, in

order to choose which flower to land on. As the bee does not learn (i.e. there

is no synaptic plasticity) during flight, all the choices throughout one trial

are influenced by the same weight values. Thus the bee’s stochastic foraging

decisions7 can be formally modeled as choices between a variable-rewarding

(v) and a constant-rewarding (c) flower, based on synaptic weights Wv and

Wc. For simplicity, let us examine the case of simple monosynaptic anti-

Hebbian learning8. In this case, the synaptic update rule is the well-known

temporal difference (TD) learning rule [28] ∆W (t) = η(R(t) − W (t − 1)).

The synaptic weights are in effect a “memory” mechanism, as they are a

function of the rewards previously obtained from each of the two flower types.

Wv, representing the reward expected from the variable flower, is thus an

exponentially weighted average of [v1, v2, · · ·], the previous rewards obtained

from (v):

Wv = Wv(η) = η(vt + (1− η)vt−1 + (1− η)2vt−2 + · · ·) (7)

Wc, as an exponentially weighted average of rewards obtained from the

constant-rewarding flower type, is constant.

In the following we compute fv, the frequency of visits to variably re-

warding flowers. We will prove that Wv, as a function of the learning rate,

is risk-ordered, such that for higher learning rates Wv(η) is riskier than for

lower learning rates. We then use the mathematical definition of riskiness, to

show that as a result, under relatively mild assumptions regarding the bee’s

7The following analysis relates to the bee’s behavior under a certain rewarding regime,
i.e. in between changes in reward contingencies.

8The monosynaptic part of the evolved Hebbian update rules is in fact anti-Hebbian,
as the effective monosynaptic coefficient (A − C) (see equation 5) is approximately (−1)
in all successful runs.
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choice function, fv is lower for higher learning rates than for lower learning

rates. Thus risk aversion is more prominent with higher learning rates and

is ordered by learning rate. Finally we show that the risk order property of

Wv(η) always implies risk-averse behavior, i.e. for every learning rate,

the frequency of visits to the variable flower (fv) is less than 50%,

further decreasing under higher learning rates.

We consider the bee’s long-term choice dynamics as a sequence of N

cycles, each choice of (v) beginning a cycle. Let ni ≥ 0 be the number of

visits to constant flowers in the i’th cycle. The frequency fv of visits to (v)

is determined (via Birkhoff’s Ergodic theorem9 [3]) by the expected number

of visits to (c) in a typical cycle [E(n)]:

fv = lim
N→∞

N

N +
∑N
i=1 ni

= lim
N→∞

1

1 + 1
N

∑N
i=1 ni

=
1

1 + E(n)
(8)

As Wc is constant, the bee’s choices are only a function of Wv, and we can

define the bee’s choice function as pv(Wv), the probability of choosing (v) in

a trial in which the synaptic weight corresponding to the variably rewarding

flower is Wv. Thus given Wv, [ni+1] is geometrically distributed with pv(Wv),

giving:

E(n) = E[E(n|Wv)] = E

[
1

pv(Wv)
− 1

]
= E

[
1

pv(Wv)

]
− 1 (9)

and so

fv =
1

E[ 1
pv(Wv)

]
(10)

The mathematical definition of riskiness comes from theories of second

degree stochastic dominance [13]. Rothschild and Stiglitz [25] show that

for X and Y with a finite equal mean, the following three statements are

equivalent:

(i) EU(X) ≥ EU(Y ) for every concave function U for which these expec-

tations exist

9An extension to dependent variables of the Strong Law of Large Numbers.

15



(ii) E[max(X − x, 0)] ≤ E[max(Y − x, 0)] for all x ∈ <

(iii) There exists on some probability space two random variables X and Z

such that Y = X + Z and E(Z|X) = 0 with probability 1.

Statement (i) provides the mathematical definition of riskiness, i.e. X is less

risky than Y if (i) is true, as through for concave utility function the mean

subjective reward obtained from X is greater than that obtained from Y so

every risk averter would preferX to Y . Statement (ii) is an easier condition to

check when determining which of two random variables is riskier. Statement

(iii) is a mathematically equivalent definition of riskiness which we will use

later in our analysis to prove that the bee is always risk averse.

Lemma: If X,X1, X2, X3, . . . are identically distributed (not necessarily in-

dependent) random variables with a finite mean, Y =
∑∞
i=1 αiXi (where ~αi

is a probability vector) is less risky than X.

Proof:
∑

αiXi − x =
∑

αi(Xi − x) ≤
∑

αi[max(Xi − x), 0] (11)

Since the right-hand side is non-negative,

max[
∑

αiXi − x, 0] ≤
∑

αi[max(Xi − x), 0] (12)

Now taking expectations of both sides

E[max(
∑

αiXi − x), 0] ≤
∑

αiE[max(Xi − x), 0] =

=
∑

αiE[max(X − x), 0] =

= E[max(X − x), 0] (13)

As a corollary, we shall prove that exponential smoothers such as Wv(η)

are risk-ordered such that a lower learning rate β leads to less risk-aversion

than a higher learning rate α (0 < β < α < 1).

Lemma: Let Wv(η) be an exponentially weighted average of identically

distributed variables Vi (i = 1, 2, 3, . . .) as in equation (7), then Wv(α) is

riskier than Wv(β) for every 0 < β < α < 1
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Proof: Let us define W (k)
v (α) identically distributed (not independent) vari-

ables as the following:

W (1)
v (α) = αv1 + α(1− α)v2 + α(1− α)2v3 + · · ·

W (2)
v (α) = αv2 + α(1− α)v3 + α(1− α)2v4 + · · ·

...

W (k)
v (α) = αvk + α(1− α)vk+1 + α(1− α)2vk+2 + · · · (14)

Let us now choose a special probability vector (~αi) as following:

α1 =
β

α
; αn = α1(α− β)(1− β)n−2 (n ≥ 2) (15)

We then have:

∞∑
k=1

αkW
(k)
v (α) =

β

α
· α · [v1 + (1− α)v2 + (1− α)2v3 + · · ·

+ (α− β)v2 + (α− β)(1− α)v3 + (α− β)(1− α)2v4 + · · ·

+ (α− β)(1− β)v3 + (α− β)(1− β)(1− α)v4 +

+ (α− β)(1− β)(1− α)2v5 + · · ·] =

= β[v1 + (1− β)v2 + (1− β)2v3 + · · ·] = Wv(β) (16)

Thus Wv(β), as a weighted sum of W (k)
v (α), is less risky than Wv(α).

Now tying this to equation (10) and to statement (i) of the Rothschild

and Stiglitz [25] theorem, if φ(·) = 1
pv(·) is convex (and so − 1

pv(·) is concave),

then

E

(
− 1

pv(Wv(β))

)
≥ E

(
− 1

pv(Wv(α))

)
(17)

⇒ fv(α) =
1

E
(

1
pv(Wv(α))

) ≤ 1

E
(

1
pv(Wv(β))

) = fv(β) (18)

And the bee will display ordered risk averse behavior: The higher the learn-

ing rate, the lower is the frequency of visits fv to the (v) flowers.

Convexity of 1
pv(·) is a mild assumption as for every concave increasing

pv,
1
pv

is strictly convex, so convexity will also be preserved under minor
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Figure 5: Choice function of model bee averaged over 1000 test trials,
for different values of m. Blue and yellow differential synaptic weights were
clamped to values in the range [0,1], neutral regular weight was clamped
to (-1). For each set of weights the bee landed 1000 times from which the
probability of visiting the yellow flowers was estimated. Parameters of the
action function were: b = 0.1, m = [5, 25, 45]. Top row - probability of
choosing the yellow flower as a function of the differential synaptic weights.
Bottom row - inverse probability ( 1

pv
).

departures from concavity of pv. Figure 5 depicts the choice function pv for

the simulated bees, for different values of the action function parameter m.

As can be seen, minor departures from concavity occur only for large values

of m and for high Wc weights and low Wv weights. These weight values can

occur only in situations where the constant flower yields very high rewards,

and the variable flower varies widely between very low and very high values.

Under these extreme conditions the above proof of orderness of risk-aversion

does not hold.

According to statement (iii) of the Rothschild and Stiglitz theorem, if Y

is obtained from X by further fair gambling, then X is less risky than Y .

Thus when both flower types yield the same mean reward, Wv is riskier than

Wc. From this follows that even with low learning rates, since pv is symmetric
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with respect to Wv and Wc (i.e. pv(Wc) = 1
2
), when both flower types reward

with the same mean, the frequency fv is always less than 1
pv(Wc)

= 1
2
, and the

bee is always risk-averse. Our simulations corroborate these analytical

results (Figure 6b).

In essence, due to the learning process, the bee makes its decisions based

on finite time-windows, and does not compute the long-term mean reward

obtained from each flower. This is even more pronounced with high learn-

ing rates such as those evolved (∼ 0.8). With such a learning rate, after

landing on an empty flower of the variable-rewarding type, the bee updates

the reward expectation from this flower type (i.e. updates the corresponding

synaptic weight according to the evolved heterosynaptic Hebb update rule)

to near zero, and as a result, prefers the constantly rewarding flower, from

which it constantly expects (and receives) a reward of 1
2
µl. As long as the

bee chooses the constant-rewarding flower, it will not update the expecta-

tion from the variable-rewarding flower, which will remain near zero. Even

after an occasional ”exploration” trial in which a visit to the variable flower

yields a high reward, the preference for this flower will be short lived, last-

ing only until the next unrewarded visit. Note that rapid learning such has

been evolved here, is essential for obtaining high fitness in a highly variable

environment [18], and such abnormally high learning rates have been hy-

pothesized by Real [23], and were also used in Montague et al.’s [21] model.

The above mathematical analysis shows that even with low learning rates,

as long as the bee is a reinforcement-learning bee (its learning rate greater

than zero), it will manifest risk-averse behavior.

3.3.2 Probability Matching Behavior

The simulated bees also demonstrate probability-matching behavior. Fig-

ure 6(c,d) shows the previously evolved bees’ performance when tested in

matching experiments in which all flowers yield 1µl nectar, but with differ-

ent reward probabilities. In both conditions, the bees show near-matching

behavior, preferring the high-probability flower to the low-probability one,

by a ratio that closely matches the reward probability ratios. This is again
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Figure 6: Preference for blue flowers in 100 test trials averaged over
40 previously evolved bees. Bees were tested in conditions different from
those they were evolved in: (a) Risk aversion - Although both flower types
yield the same mean reward (blue - 1

2
µl nectar, yellow - 1µl in half the flow-

ers, contingencies switched at trial 50), there is a marked preference for the
constant-yielding flower. (b) Risk aversion is ordered according to
learning rate. Each point represents the percentage of visits to constant-
rewarding flowers in 50 test trials averaged over 40 previously evolved bees,
with a clamped learning rate. (c-d) Matching - All flowers yield 1µl nec-
tar with different probabilities in each condition. Reward probabilities for
blue and yellow flowers respectively were (c) 0.8,0.4 (d) 0.8,0.2 (contingen-
cies switched at trial 50). Horizontal lines - behavior predicted by perfect
matching.
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a direct result of the learning dynamics: Due to the high learning rate, the

fluctuating weights representing the expected yield from each flower will es-

sentially move back and forth from zero to one. When both are zero, the two

flowers are chosen randomly, but the high yielding flower has a greater chance

of yielding reward, after which its weight will be updated to 1, and this flower

is preferred to the other. When both weights are 1, the less-yielding flower

has a greater chance of having its weight updated to zero, again resulting in

preference for the high-yielding flower. Thus, in contradistinction to previous

accounts, matching can be evolved in a non-competitive setting, again as a

direct consequence of optimal RL.

3.4 Robot Implementation

In order to assess the robustness of the evolved RL algorithm, we imple-

mented it in a mobile mini-robot by letting the robot’s actions be governed

by a NN controller similar to that evolved in successful bees, and by hav-

ing its synaptic learning dynamics follow the previously evolved RL rules.

A Khepera mini-robot foraged in a 70X35cm arena whose walls were lined

with flowers, viewing the arena via a low-resolution CCD camera (200x200

pixels), moving at a constant velocity and performing turns according to the

action function (eq. 2) in order to choose flowers, in a manner completely

analogous to that of the simulated bees. The NN controller was identical to

that evolved for the simulated bees, except that it received no ”neutral” in-

puts. All calculations were performed in real-time on a Pentium-III 800Mhz

computer (256Mb RAM) in tether mode. Moving with continuous speed and

performing all calculations in real-time, the foraging robot exhibited rapid

reinforcement learning and risk-averse behavior, analogous to that of the

simulated bees (Figure 7). Thus the algorithms and behaviors evolved in

the virtual bees’ simulated environment using discrete time-steps hold also

in the different and noisy environment of real foraging mini-robots operating

in continuous time.
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Figure 7: Synaptic weights of a mobile robot incorporating a NN con-
troller of one of the previously evolved bees, performing 20 foraging trials
(blue flowers - 1/2µl nectar, yellow - 1µl in half the flowers, contingencies
switched after trial 10). (a) The foraging robot. (b) Blue and yellow weights
in the differential module represent the rewards expected from the two flower
colors along the trials. Top: Flower color chosen in each trial.

4 Discussion

The interplay between learning and evolution has been previously investi-

gated in the field of Alife. Much of this research has been directed to elu-

cidating the relationship between evolving traits (such as synaptic weights)

versus learning them [1, 14]. A relatively small amount of research has been

devoted to the evolution of the learning process itself, most of which was

constrained to choosing the appropriate learning rule from a limited set of

predefined rules [2, 4, 6]. In this work we show for the first time, that optimal

learning rules for RL in a general class of armed bandit situations, can be

evolved in a general Hebbian learning framework. The evolved heterosynap-

tic learning rules are by no means trivial, as they include an anti-Hebbian

monosynaptic term and employ axo-axonic plasticity modulation.

We can define necessary and sufficient conditions on the environment,

for the successful evolution of reinforcement learning: RL behavior can be

evolved in a setting in which both flower types are constant rewarding (with
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different amounts of nectar), as long as the reward contingencies are not

preserved between generations (ie. switched randomly between generations

and/or switched in a random timestep during a bee’s lifetime). Uncertainty

within one of the flower types, although not a necessity for evolving RL

behavior, can also be present in the environment, but too much uncertainty

in the environment can hamper the ability to produce successful RL: we

have not been able to evolve RL behavior in environments in which both

flower types were variably-rewarding types, such as in probability matching

scenarios10.

The emergence of complex foraging behaviors as a result of optimal learn-

ing per se, demonstrate once again the strength of Alife as a methodology that

links together phenomena on the neuronal and behavioral levels. We show

that the fundamental macro-level strategies of risk aversion and

probability matching are a direct result of the micro level synaptic

learning dynamics, which control the tradeoff between exploration

and exploitation. These behavioral strategies have not been explicitly or

implicitly evolved, but emerge in the model as an artifact of optimal learning,

making additional assumptions conventionally used to explain them redun-

dant. This result is important not only to the fields of Alife and animal

learning theories, but also to the fields of economics and game theory.

In our simulations we find that due to the learning process, the initial

weight values are not essential for successful solutions and vary considerably

between successful bees. In contrast, the correct learning rule dynamics and

the network architecture are crucial for efficient foraging. These results

stress the importance of the encoding of macro level parameters in

the genome, as opposed to encoding neuronal weight values. Such indirect

encoding, which is necessary for evolving large networks, can facilitate future

research aimed at enlarging the network model by elaborating the visual

inputs, as well as the rewarding stimuli. Other future challenges include

evolving an action module, which will use the inner reinforcement dopamine-

10This is not to say that bees which have been evolved in less uncertain conditions can
not subsequentially use their evolved learning mechanism in order to forage successfully
in such a scenario, as has been shown here.
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like signal produced by P as a basis for the bee’s actions in a more complex

manner, hopefully producing more complex foraging behaviors.

In summary, the significance of this work is two-fold: on the one hand

we show the strength of simple Alife models in evolving fundamental pro-

cesses such as reinforcement learning, and on the other we show that optimal

reinforcement learning can directly explain complex behaviors such as risk

aversion and probability matching, without need for further assumptions.
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