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SUMMARY

Orbitofrontal cortex (OFC) has long been known to
play an important role in decision making. However,
the exact nature of that role has remained elusive.
Here, we propose a unifying theory of OFC function.
We hypothesize that OFC provides an abstraction of
currently available information in the form of a label-
ing of the current task state, which is used for rein-
forcement learning (RL) elsewhere in the brain.
This function is especially critical when task states
include unobservable information, for instance,
from working memory. We use this framework to
explain classic findings in reversal learning, delayed
alternation, extinction, and devaluation as well as
more recent findings showing the effect of OFC
lesions on the firing of dopaminergic neurons in
ventral tegmental area (VTA) in rodents performing
an RL task. In addition, we generate a number of test-
able experimental predictions that can distinguish
our theory from other accounts of OFC function.

INTRODUCTION

Many studies have shown that orbitofrontal cortex (OFC) is
important for learning and decision making (see reviews by
Murray et al., 2007; Wallis, 2007; Padoa-Schioppa, 2011; Rush-
worth et al., 2011). Despite this progress, the exact role that the
OFC plays in decision making is unclear. Even without an OFC,
animals and humans can learn, unlearn, and even reverse
previous associations, although they do so more slowly than
their healthy counterparts. What role can the OFC be playing
whose absence would cause such subtle, yet broadly perme-
ating, deficits? We suggest that the OFC represents the animal’s
current location within an abstract cognitive map of the task
(formally, the current state in a state space).
Our hypothesis links OFC function to the formal theory of

reinforcement learning (RL). In recent years, RL has successfully
accounted for a diverse set of findings from behavioral results in
classical conditioning (Rescorla and Wagner, 1972) to the firing
patterns of midbrain dopaminergic neurons (Schultz et al.,

1997). At the heart of RL models is the concept of a ‘‘state
representation,’’ an abstract representation of the task that
describes its underlying structure, the different states of the
task, and the (possibly action-dependent) links between them.
RL provides a set of algorithms by which one can learn a value
for each state, VðsÞ, that approximates the total discounted
future reward that can be expected when the current state is s.
These values aid decision making in the service of harvesting
reward and avoiding punishments.
In most RL models, it is assumed de facto that the animal

magically knows the true state representation of the task. How-
ever, it is clear that an integral part of learning a new task is
learning to represent it correctly (Gershman and Niv, 2010,
2013; Gershman et al., 2010; Wilson and Niv, 2011). The state
representation can be as simple as the two states needed to
model a Pavlovian conditioning experiment in which a single
stimulus predicts reward (e.g., the states ‘‘light on’’ and ‘‘light
off’’) or as intractably huge as the state space of a game of chess.
The states can be tied to external stimuli (as in light on/off), or
they can include internal information that is not available in the
environment and must be retained in memory or inferred, such
as one’s previous actions or the context of the task (e.g., infor-
mation about the opponent’s style of play in chess). More
formally, one way to distinguish between simple and complex
tasks relates to whether states are fully or partially observable
to the animal given perceptual information. In fully observable
decision problems, states correspond to easily detectable fea-
tures of the environment, making these problems much simpler
to solve than partially observable problems, which are notori-
ously difficult to solve optimally (Kaelbling et al., 1998).
We hypothesize that OFC is critical for representing task

states in such partially observable scenarios. We propose that
OFC integrates multisensory perceptual input from cortical and
subcortical areas, together with information about memories of
previous stimuli, choices, and rewards, to determine the current
state—an abstract label of a multitude of information akin to the
current ‘‘location’’ in a ‘‘cognitive map’’ of the task. Importantly,
although state representations most likely exist elsewhere in the
brain as well, we hypothesize that the OFC is unique in its ability
to disambiguate task states that are perceptually similar but
conceptually different, for instance, by using information from
working memory. Thus, impaired OFC function does not imply
a complete loss of state information but rather that perceptually
similar states can no longer be distinguished—an OFC-lesioned
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animal can still learn and perform basic tasks using RL, albeit
using only observable (stimulus-bound) states based on current
perceptual information. As a result, basic learning and decision
making are possible without the OFC, but behavior becomes
more and more impaired as tasks become abstract, and more
of their states are partially observable.

RESULTS

Here, we show how our theory can account for a number of
experimental findings. First, we consider the archetypal ‘‘OFC
task’’ of reversal learning as well as delayed alternation, extinc-
tion, and devaluation before turning to neural findings that
more directly reveal the contribution that the OFC might make
to RL.

Reversal Learning
Perhaps the most classic behavioral deficit associated with OFC
dysfunction is impaired reversal learning (Teitelbaum, 1964; But-
ter, 1969; Jones and Mishkin, 1972; Rolls et al., 1994; Dias et al.,
1996; Meunier et al., 1997; McAlonan and Brown, 2003; Schoen-
baum et al., 2002, 2003a; Chudasama and Robbins, 2003; Bohn
et al., 2003; Izquierdo et al., 2004; Kim and Ragozzino, 2005). We
illustrate our theory through a simulation of Butter (1969),
although we stress that the model similarly accounts for reversal
learning deficits in other animals and preparations.

In Butter (1969), monkeys displaced a plaque on either their
left or on their right in order to receive food reward. Only one
location was rewarded in each block, and its identity was
reversed once the monkey reached a criterion of 90% correct.

Reward contingencies were reversed five times. Figure 1A
summarizes the results—whereas initial learning was spared,
OFC-lesioned animals were impaired on reversals relative to
sham-lesioned controls.
To model behavior in this task, we used a simple Q-learning

algorithm (Sutton and Barto, 1998; Morris et al., 2004) that learns
Qða; stÞ, the value of taking action a in state st. This q value is
updated every time an action is taken and a (possibly zero)
reward rt + 1 is observed according to

Qnewðat; stÞ=Qoldðat; stÞ+aðrt + 1 #Qoldðat; stÞÞ;

where a is a learning rate parameter and ½rt + 1 #Qoldðat; stÞ% is the
prediction error. We omit the value of the subsequent state from
the prediction error (cf. Sutton and Barto, 1998) because, in this
task, trials involve one state with no sequential contingencies.
This renders our learning rule identical to Rescorla and Wagner
(1972). Using the learned values, the probability of taking action
a in state st is given by the softmax or Luce rule

pðajstÞ=
expðbQða; stÞÞP

a0
expðbQða0 ; stÞÞ

;

where b is an inverse-temperature parameter that affects the
tradeoff between exploiting and exploring, and the sum in the
denominator is over all possible actions. Unless mentioned
otherwise, in all simulations we used a = 0.03 and b = 3.
Our model proposes that all animals learned with this same

model-free algorithm, but that the crucial difference between
sham- and OFC-lesioned animals was in the states, st, about
which they learned values. In particular, in concordance with
the true structure of the task, for sham-lesioned animals, we
modeled the task with two different states: state 1, in which
choosing ‘‘right’’ yields reward and choosing ‘‘left’’ does not,
and state 2, with the opposite reward contingencies (Figure 1C).
In each state, the animal must learn values for the right and left
actions. After an action is selected, the state transitions
according to the chosen action and its outcome, and the next
trial begins.
It is easy to see that such a state representation leads to

rapid learning of reversals. When the reward is on the right, the
model will be in state 1, and because a ‘‘right’’ choice from this
state is most likely to be rewarded, the model develops a strong
preference for the right action in this state. Similarly, after the
reversal, the model transitions to state 2 and learns a strong
preference for ‘‘left’’ from this state. Reversing back to the initial
contingencies will not necessitate new learning, given that the
action propensities learned in state 1 are left unaltered. If re-
wards and choices are deterministic, then the model will only
take one trial to reverse its behavior after such a rereversal. In
the face of decision noise, mistakes can occur at a rate deter-
mined by b.
The two states in the above model are defined by memory

of the action and outcome of the last trial but are perceptually
identical. Thus, according to our hypothesis, when the OFC is
lesioned, these two states are no longer distinguishable, and
the task reduces to one state (Figure 1D). As a result, the reversal
of behavior after a reversal of reward contingency requires ‘‘un-
learning’’ of the preference that was acquired in the previous
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Figure 1. Reversal Learning
(A) Experimental results showing the mean errors to criterion in initial

discrimination learning and final reversal for control and OFC-lesioned

animals. Adapted from Butter (1969).

(B) Model simulations of the same task.

(C) State representation of the task used tomodel control animals, in which the

state depends on both the action and outcome on the last trial.

(D) Stimulus-bound state representation modeling OFC-lesioned animals.
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block, and, although initial learning is similarly slow for both the
intact and the lesioned models, the lesioned model takes
much longer to learn subsequent reversals (Figure 1B).
In general, the two states of our model of reversal learning

can be seen as representing the two phases of the task (‘‘reward
more likely on left’’ and ‘‘reward more likely on right’’). Thus, our
representation generalizes to probabilistic reversal learning
tasks (e.g., Tsuchida et al., 2010) in which the animal (andmodel)
must infer what state it is in by using actions and outcomes from
multiple previous trials (Gershman et al., 2010).

Delayed Alternation
The same reasoning can be applied to model the effect of
OFC lesions on delayed alternation tasks (Mishkin et al., 1969;
Miller and Orbach, 1972; Butters et al., 1973; Mishkin and
Manning, 1978). In particular, we model Mishkin et al. (1969). In
this task, monkeys made a series of choices between two
options, one of which was paired with a reward. The rewarding
option on the current trial was determined by the action on the
previous trial such that reward was always made available for
the action opposite to that on the previous trial. Thus, the
monkeys had to learn to alternate their responses, which, due
to a 5 s delay between trials, required memory of the last action.
Control animals learned this task easily, ultimately performing at
around 90% correct. However, monkeys with OFC lesions failed
to perform better than chance even after 2,000 trials of training
(Figure 2A).
We modeled the behavior of control animals with the state

representation in Figure 2C, in which the current state is deter-
mined by the choice on the last trial (option A or B).With this state
representation, the model learns the task easily (Figure 2B), and
performance is only limited by the degree of ‘‘random’’ respond-
ing mediated by the inverse-temperature parameter b. To model
OFC-lesioned animals, we again removed states that require

memory, resulting in only one (default) state. With this state
representation, the model can never learn to solve an alternation
task; hence, performance remained at 50% correct in the
lesioned case.
A crucial result is that even OFC-lesioned animals could

learn the alternation task if the delay was removed (Miller and
Orbach, 1972). Thus, the ability to learn about the value of alter-
nation was unimpaired when a stimulus-bound two-state repre-
sentation could be constructed but grossly impaired when a
short delay required a memory-based state representation to
be constructed. This suggests that value learning itself is unim-
paired in OFC-lesioned animals and that the deficit lies in encod-
ing of latent variables within the state representation.

Extinction
Our model also captures deficits in extinction that are caused
by OFC lesions and makes a number of easily testable experi-
mental predictions about postextinction phenomena (Bouton,
2004). In extinction, a previously trained association between
an outcome and a certain state or action is changed such that
the outcome is no longer available. Theories suggest that extinc-
tion does not cause unlearning of the original association but
rather results in learning of a new, competing association (Bou-
ton, 2004; Redish et al., 2007). Consequently, similar to the
model of reversal learning, we modeled extinction with a two-
state system (see also Gershman et al., 2010).
In particular, we consider the experiment in Butter et al. (1963).

Here, monkeys were trained to press a lever for food reward.
After 30 min of reinforced pressing, an extinction phase
began—rewards were no longer available, and the extinction
of responding was measured as the number of presses in suc-
cessive 10 min blocks. The results, shown in Figure 3A, clearly
demonstrate slower extinction for OFC-lesioned animals.
As previously, we modeled control animals (Figure 3C) with

a two-state model—the animal is in state ‘‘P1’’ if the previous
lever press was rewarded and in ‘‘P0’’ if it was not. These states
naturally distinguish the two contexts of reinforcement and
extinction. We considered two possible actions—either the ani-
mal presses the lever (P) or it does not (N). In our simulation,
pressing the lever led to 1 U of reward during conditioning and
to -0.2 U in extinction (representing the cost of performing the
action). Not pressing always yielded 0 reward. Again, OFC-
lesioned animals were modeled as having an impoverished state
representation that included only one memory-free state
(Figure 3D).
The simulation results are shown in Figure 3B. As in the exper-

imental data, extinction in the two-state model was fast, given
that extinction transitioned the animal into the P0 state, wherein
new action values for P and N were learned (starting from low
initial values). On the other hand, the one-state model of the
OFC-lesioned animals could only learn to stop pressing the lever
by changing the action value for P from a high value to a low one,
which necessitated more trials.
As with reversal learning, in the case of probabilistic reinforce-

ment, animals would need to integrate outcomes from multiple
trials in order to infer which state or context (conditioning or
extinction) theywere in. For an exposition of how this kind of inte-
gration might be achieved, see Gershman et al. (2010).
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Figure 2. Delayed Alternation
(A) Experimental results showing the fraction of trials on whichmonkeys chose

the correct option for control and OFC-lesioned animals.

(B) Model simulations on the same task.

(C) State representation used to model control animals, in which the state

depends on the last action.

(D) Stimulus-bound state representation modeling the OFC-lesioned animals.
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Postextinction Predictions
To assess the effectiveness of extinction and investigate what
was learned during extinction, researchers often retest behavior
after the extinction phase is completed. In particular, four classic
effects— spontaneous recovery, reinstatement, rapid reacquisi-
tion, and renewal (Bouton, 2004)—have been taken as evidence
that extinction training does not normally lead to permanent
modification of the original association.

Our two-state model also exhibits these effects because the
original associations between stimulus and reward are main-
tained in the P1 state and can be recovered when this state is
reactivated. However, our one-state model predicts different
results for OFC-lesioned animals because there the original
association is, in fact, erased during extinction. For example,

consider spontaneous recovery. Here, conditioning (cue or
action / outcome) and extinction (action / no outcome) are
performed. Then, after days or even weeks, animals undergo a
test phase in which no outcome is available, and the propensity
to perform the action is measured. Animals typically show recov-
ery of responding at test to response levels that are greater than
those at the end of extinction, withmore recovery for longer wait-
ing times between extinction and test.
Our two-state model accounts for this behavior if we assume

that the passage of time causes the animal to be unsure whether
it is in P1 or P0 at the start of testing. If a state is selected
at random (for instance, with probability proportional to the
time since it last occurred), then, on average, animals will
respond more in the testing phase than at the end of the extinc-
tion phase. In contrast, when the OFC is lesioned (that is, in the
one-state model) extinction truly does extinguish the original
association, and, thus, our model predicts no spontaneous
recovery (Figure 3E).
The model’s predictions are even starker for rapid reacquisi-

tion (Napier et al., 1992; Ricker and Bouton, 1996), in which
reconditioning of a stimulus / outcome association occurs
more rapidly after extinction than in the original learning. The
two-state model predicts this phenomenon, given that recondi-
tioning will return the animal to the P1 state in which the old
action preferences remain. However, we predict that OFC-
lesioned animals will not show rapid reacquisition and may
even show slightly slower reacquisition than original learning if
there is a small cost associated with the response (Figure 3F).

Devaluation
The above tasks are predominantly explained with model-
free RL (Daw et al., 2005). However, OFC is also thought to be
important for model-based RL, in which animals use a learned
model of reward contingencies to compute values. A proto-
typical example of such a model-based task is reinforcer deval-
uation (Colwill and Rescorla, 1985; Balleine and Dickinson,
1998). In this paradigm (Figure 4A), animals are trained to
perform actions or associate cues with an outcome. When the
outcome is devalued outside the context of the experiment, for
example, by pairing its consumption with indigestion-inducing
poison, actions that were trained with the devalued food are
reduced at test, even if the test is performed in extinction condi-
tions (that is, with no additional experience of the contingency
between these actions and the devalued outcome). Such
behavior indicates a capacity to ‘‘simulate’’ the consequences
of actions within a cognitive model of the task and, thus, realize
that a once valuable action would now lead to an unwanted
outcome and, hence, should no longer be chosen. These mental
simulations (Daw et al., 2005) involve taking imaginary paths
through the states of the task, and we propose that these imag-
ined (but not externally available) states are encoded in OFC.
Consistent with this proposal, OFC lesions impair performance
in devaluation experiments, causing lesioned animals to respond
equally to devalued and nondevalued cues (Gallagher et al.,
1999; Pickens et al., 2003; Izquierdo et al., 2004; but see Ostlund
and Balleine, 2007).
We illustrate this effect through the results of Pickens et al.

(2003), reproduced in Figure 4B. Here, rats were first taught
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Figure 3. Extinction
(A) Experimental results. Lever press rates were normalized to the maximum

response rate in conditioning. Adapted from Butter et al. (1963).

(B) Model results.

(C) State representation used to model the control group in which the state

depends on the last outcome.

(D) State representation used to model the OFC lesion group with only a single

state.

(E) Model predictions for extinction (ext) and spontaneous recovery (re).

(F) Model predictions for reacquisition. init, initial learning; reacq, reacquisition.
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to associate a light cue with food. Subsequently, the food was
devalued by pairing its consumption to the injection of lithium
chloride. Then, a testing session measured the amount of time
spent at the food cup when the light was presented. In order to
establish a baseline level of responding, in a control condition,
lithium chloride was administered in the second stage but was
not paired with the food. Sham-lesioned animals showed
reduced responding to the light in the paired condition relative
to the unpaired condition, as if they were imagining the (never
experienced) chain of events light / food / poison. OFC-
lesioned animals showed no such change in behavior, as if
they were incapable of such model-based reasoning.
We modeled the behavior of sham-lesioned animals using

the state representation shown in Figure 4C. We assumed that
sham-lesioned animals used a mixture of model-based and
model-free learning to compute values. The model-free (MF)
component learned a value, VMFðsÞ, for each state s using stan-
dard temporal-difference prediction error learning. Specifically,
when the model transitioned from state s to state s’, it computed
a prediction error

d= r +VMF

!
s
0"# VMFðsÞ;

which was used to update the model-free value of state s

VMFðsÞ)VMFðsÞ+ad;

where a = 0.1 was the learning rate, and we assumed that
the reward, r, was +1 during the initial learning phase and #1
after devaluation. Thus, the model-free component learns a
positive value for the light state (given that it only ever experi-
ences the light paired with food) and, in the devaluation stage,
a negative value for the food state. In contrast, the model-based
(MB) component uses the low value of the food state to update,
even absent direct experience, the value of the light state
through imagined simulation

VMBðlightÞ=VMFðfoodÞpðfoodjlightÞ;

where VMBðlightÞ is themodel-based value of the light, VMFðfoodÞ
is the model-free value of the food state, and pðfoodjlightÞ is the

B C D 

A Figure 4. Devaluation
(A) First, animals are trained to associate a light

with food. Then, the food is devalued by pairing it

with an indigestion-inducing poison, LiCl. In a

control condition, the food and LiCl are unpaired

during devaluation. Finally, the extent of devalua-

tion is indexed by measuring responding to the

light.

(B) Experimental results from Pickens et al. (2003)

showing relative responding to the food cup when

the light is turned on for sham- and OFC-lesioned

animals in the paired and unpaired condition.

(C) State representation of the devaluation task.

(D) Model results showing the relative value of the

light for the sham- and OFC-lesioned models.

estimated (learned) probability of the
light state leading to the food state (set
to 0.9 in our simulations). The total value

of the light was a combination of the model-based and model-
free values as in Daw et al. (2005),

VðlightÞ= zVMBðlightÞ+ ð1# zÞVMFðlightÞ;

where we used z = 0.2 as the mixing fraction. According to this
model, when the food is devalued, sham-lesioned animals
compute a low value for the light (Figure 4D). However, the
OFC-lesioned model lacks model-based planning abilities (z =
0) and, thus, shows no effect of devaluation.
This line of reasoning can also be used to explain other recent

findings that are thought to reflect the role of OFC in model-
based RL, such as sensory preconditioning (Jones et al.,
2012), identity unblocking (McDannald et al., 2011), and
Pavlovian overexpectation (Takahashi et al., 2009). In each
case, OFC-dependent behavior or learning requires a form of
mental simulation with the appropriate imagined (but not exter-
nally available) states.

Insights into the Role of OFC from Dopamine Firing
Patterns
If the OFC is involved in RL, then, in addition to changes in
behavior, lesions to the OFC should cause changes in the neural
substrates of RL. Moreover, if our hypothesis is correct, then the
changes in neural firing patterns should be consistent with the
loss of non-stimulus-bound states but the preservation of all
other RL processes. Motivated by this idea, in Takahashi et al.
(2011), we investigated the effects of unilateral OFC lesions on
prediction error signals in the ventral tegmental area (VTA)
(Schultz et al., 1997).
In this experiment, described in detail in Takahashi et al. (2011),

after a light came on, rats initiated a trial by entering an odor port,
where they were presented with one of three odors. One odor
indicated that the left fluid well would be paying out a reward on
this trial (henceforth, a forced left trial), a second odor indicated
that the rat must go right to get a reward (forced right), and the
third odor indicated that both wells were paying out (free choice).
Critically, the amount and delay of the reward offered at each

fluid well changed every 60 trials as shown in Figure 5A. In the
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first block of trials, one well paid out one drop of juice after a
short delay, whereas the other paid out one drop after a longer
delay. In the second block, these reward contingencies were
reversed. In the third block, the two wells offered a big reward
(two drops of juice) and a small reward (one drop of juice), and
these contingencies reversed again in the fourth and final block
of the session. The experiment was repeated with similar ses-
sions daily.

State Representations of the Task
We modeled both the rats’ behavior and the firing of dopami-
nergic VTA neurons. The true generative state representation
of the task (that is, the representation that accords with the
experimenter-defined reward contingencies) is depicted in Fig-
ure 5B. A trial begins when the rat moves to the odor port (indi-
cated by the ‘‘odor port’’ state). Then, an odor is presented,
signaling a forced left (‘‘left’’ state), free choice (‘‘free’’), or forced
right (‘‘right’’) trial. In forced right trials or free choice trials, if the
rat chooses to go to the right fluid well, then it arrives at the ‘‘right
port’’ state. Over time, the state changes to ‘‘right reward 1,’’
which denotes the time of juice delivery in blocks in which a small
or short reward is delivered as well as the time of the first drop of
juice if a big reward is to be delivered. The state continues to
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tations for the Odor-Guided Choice Task
(A) Time course of reward for the different blocks.

Times associated with positive prediction errors

caused by unexpected reward are labeled in green.

Figure adapted from Takahashi et al. (2011).

(B) State representation used to model sham-

lesioned controls.

(C) State representation used to model OFC-

lesioned animals.

transition to ‘‘right reward 2,’’ the time of
the second drop in big reward trials,
‘‘wait right,’’ a state that represents the
unpredictable delay before reward on
long reward trials, ‘‘right reward 3,’’ which
is the reward delivery time in long reward
trials, and finally the ‘‘end’’ state. In
contrast, if the rat chooses to go to the
left fluid well on a right trial, then the task
transitions (without reward) to the end
state, signifying the end of the trial. A
similar sequence of states occurs for the
left reward arc. Through repeated experi-
ence with the task, it is reasonable to
assume that rats learned this correct rep-
resentation of the task contingencies or at
least the breakdown of the task into fairly
well-delineated states. Thus, we assumed
this representation when modeling the
sham-lesioned group.

Although a straightforward description
of the task, some states in this sequence

are not directly tied to fully observable stimuli. For instance,
the ‘‘right port’’ state does not correspond directly to the physical
right port, given that going to that same physical port on a forced
left trial will not lead to this state. Moreover, we assume that
the two physical food ports are relatively indistinguishable from
the vantage point of a rat waiting for reward with its nose in the
port. Of course, remembering the previous odor and action will
uniquely identify the state. However, this is precisely the type
of information that we hypothesized would be missing from the
state representation if OFC function was compromised. We
also assume that temporal information is not available externally,
and, thus, OFC-lesioned rats cannot distinguish reward states
that are only separated by the passage of time. Altogether, these
assumptions define the OFC-lesioned state representation de-
picted in Figure 5C, which involves a single ‘‘reward port’’ state
and two rather than four states in the reward arc (‘‘reward 1’’ rep-
resenting the first drop of juice, and ‘‘reward 2’’ representing the
second drop on big trials, externally distinguishable from reward
1 because it is immediately preceded by a drop of juice).

Prediction Errors
Our goal was to understandOFC-lesion-induced changes in pre-
diction error signals recorded from dopaminergic neurons in the
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VTA (Schultz et al., 1997). These signals convey the difference
between predicted and actual outcomes (Sutton and Barto,
1998; see the Supplemental Information for a detailed descrip-
tion) and, in theory, should depend strongly on how the task is
parsed into states.
There are two points in a trial in which we can expect pre-

diction errors—the time of reward (if the reward obtained is
different from the expected reward) and the time of odor pre-
sentation (where prediction errors are due to the difference
between the reward predicted after sampling the odor in com-
parison to the prediction before odor onset). Indeed, although
behavior in both groupswas equated because of the lesion being
unilateral, Takahashi et al. (2011) observed small but clear
differences between the firing of dopaminergic neurons on the
side of the lesion in sham- and OFC-lesioned animals, the
specific pattern of which was captured by our model. Here, we
look more closely at these differences at the time of reward.
Results at the time of the odor are presented in the Supplemental
Information.
Figure 6 shows the firing of VTA neurons at the time of un-

expected reward. These rewards are unexpected at the start
of a block, after reward contingencies have changed unexpect-
edly, but, given learning with the correct state representation,
should be predicted by the end of the block. Thus, we compared
the first two (early) trials to the last five (late) trials of a block in
order to test for effects of learning (see the Supplemental Infor-
mation for additional details).

Sham-lesioned animals (Figure 6A) showed a decrease in
prediction error firing between early and late trials in all cases
(p < 0.05). Importantly, there was no effect of transition type on
the difference between early and late prediction errors. These
findings are consistent with the predictions of the intact RL
model (Figure 6C).
In contrast, in the OFC-lesioned animals, the difference

in firing between early and late trials was wholly absent
(p = 0.74) in the ‘‘long’’ to ‘‘short’’ transition at the beginning
of the second block (Figure 6B). The lesioned model predicts
the lack of elevated prediction errors at the beginning of this
block. This is because the lesioned model cannot learn different
predictions for reward on the left and right ports but, rather,
learns to predict the average reward in the block. For the
lesioned model, both blocks involve early reward on a seemingly
random half of the trials and delayed reward on the other half.
However, the model does predict positive prediction errors on
block switches in which the average reward, over both options,
increases. This can be seen in the data for the ‘‘long’’ to ‘‘big’’
transition from block two to three, both for the first drop (previ-
ously delayed on half the trials and now surprisingly reliably early)
and the second drop (which did not appear before and now ap-
pears on half the trials).
The lesioned model also predicts no change in prediction

errors for the ‘‘small’’ to ‘‘big2’’ transition at the beginning of
the fourth block, a prediction seemingly not borne out in the
data. However, in Takahashi et al. (2011)’s experiment, on
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Figure 6. Firing of Dopaminergic VTA Neurons at the Time of Unexpected Reward Early and Late in a Block
Unlike in Takahashi et al. (2011), where neural responses were averaged over the different types of unexpected reward delivery, here we divided the data into the

four different cases, indicated by the green annotations in Figure 5A: the short reward after the long to short transition between blocks 1 and 2 (long/ short), the

arrival of the first (long/ big1) and second (long/ big2) drops of reward after the long to big transition between blocks 2 and 3, and the second drop of the small

to big transition between blocks 3 and 4 (small / big2). Early, first two trials; late, last five trials.

(A) Experimental data for sham-lesioned controls (n = 30 neurons; error bars represent SEM).

(B) Experimental data for the OFC-lesioned group (n = 50 neurons; error bars represent SEM).

(C) Model predictions for the sham-lesioned animals.

(D) Model predictions for OFC-lesioned animals.

(E) Model predictions for the small / big2 transition when taking into account the variable third drop of juice.
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some trials in the fourth block, an extra third drop of water was
added to ‘‘big’’ trials if the rat appeared to be losing interest in
the task. Although the timing of this manually applied third
drop was not recorded, examination of the spike raster plots in
which the response of individual neurons to each drop is clearly
visible (for an example, see Figure S1 available online) shows the
third drop in 13 of the 14 examples. Adding this third drop indeed
changes the average available reward, aligning the lesioned
model’s predictions with the experimental results (Figure 6E).
Therefore, a prediction of the model is that, without the third
drop, this difference in firing between early and late trials for
the ‘‘small / big2’’ transition would disappear.

Importantly, these neural results are inconsistent with promi-
nent ideas according to which the OFC contributes to RL by
directly encoding expected value. As detailed in Takahashi
et al. (2011), an inability to learn or represent values would
predict that dopaminergic firing at the time of reward would
not change throughout a block, because obtained rewards
would be completely unpredictable—a prediction clearly incon-
sistent with the data. Observed differences in firing at the time of
the odor are also inconsistent with this idea that OFC encodes
value (Figure S2). Altogether, the behavioral and neural results
suggest that, rather than representing values per se, the OFC
is involved in representing unobservable states, which are often
essential for learning or calculation of accurate values.

DISCUSSION

We have proposed a role for the OFC in encoding the current
state in a cognitive map of task space and shown how this role
would manifest in associative learning and decision making
tasks known to depend on the OFC. Specifically, we have pro-
posed that the OFC is necessary for disambiguating states
that are not perceptually distinct. Our theory explains classic
findings in reversal learning, delayed alternation, extinction,
and devaluation, along with neural results from a recent lesion
experiment (Takahashi et al., 2011) and makes easily testable
experimental predictions about postextinction phenomena in
animals with OFC lesions. Now, we turn to discuss the implica-
tions of our theory and relate it to other results and models of
OFC function.

Neural Activity in OFC
According to our theory, we ought to be able to see state-
related signals in the activity of OFC neurons. Thus, the question
arises: what is the neural signature of a state representation
for RL? We propose two conditions that should be satisfied
by a brain region encoding states: (1) representation—all the
variables that comprise the current state, as it is defined for
the purpose of RL, are encoded in the brain area—and (2) spec-
ificity—irrelevant variables that are not part of the current state
are not encoded in the area. The first condition ensures that all
relevant variables are at least present in the area, whereas the
second condition rules out areas whose encoding is not task
specific. Our theory predicts that neural representations in the
OFC would satisfy these two conditions across tasks and,
specifically, that variables that are not necessarily perceptually
available (such as memory for previous actions or outcomes)

would be represented in the OFC, but only if they are required
for the current task.
Representation
Although no experiments have explicitly tested these neural
predictions, several results are consistent with the first condi-
tion—in particular, in tasks in which relevant variables are not
externally available. For instance, our model implies that both
the previous choice and the previous outcome should be
encoded in OFC in reversal learning tasks, which has been found
(Schoenbaum and Eichenbaum, 1995; Sul et al., 2010; the latter
also found these variables in dorsolateral prefrontal cortex
[dlPFC] and anterior cingulate cortex [ACC]). In a probabilistic
RL task, Hampton et al. (2006) showed that fMRI activation in
ventromedial prefrontal cortex close to OFC was correlated
with the underlying task state in a Bayesian model.
A related experiment is the ‘‘shift-stay’’ paradigm (Tsujimoto

et al., 2009, 2011), in which monkeys choose between two
options with a strategy cue, presented at the start of a trial, in-
structing them as to whether the rewarded response is to
‘‘stay’’ with their last choice or ‘‘switch’’ to the other option.
Such a task is readily solved with two states that combine the
last choice and strategy. Intriguingly, Tsujimoto et al. (2009,
2011) found neural correlates of these variables in OFC.
Similarly, in delayed match-to-sample tasks, OFC encodes

the remembered sample, a critical component of the state
(Ramus and Eichenbaum, 2000; Lara et al., 2009; the latter study
is especially interesting becasue it included ‘‘distractor’’ drops of
water that did not elicit OFC firing), and, in fMRI studies, OFC ac-
tivity has been associated with context-dependent disambigua-
tion of navigational routes (Brown et al., 2010) and task rules
(Nee and Brown, 2012).
Specificity
Addressing the specificity condition is more difficult, due to it be-
ing hard to know exactly what state representation an animal is
using in any given task. However, one could look for differences
in OFC representations in tasks with similar stimuli but different
underlying states. If OFC encodes the states of the task, even
subtle changes in the task should lead to changes in OFC firing.
This was indeed shown in two tasks by Schoenbaum and Ei-
chenbaum (1995) and Ramus and Eichenbaum (2000) (reviewed
in Schoenbaum et al., 2003b). In the first task, four of eight odors
predicted that a response at a nearby fluid well would be re-
warded. In the second task, eight odors were used in the same
apparatus, but reward on a given trial was not predicated on
odor identity but, rather, on whether the odor on the current trial
was different from that presented on the previous trial. In both
cases, the odor was relevant for performance. However, in the
first task, the identity of the odor was critical for predicting
reward, whereas, in the latter task, whether or not the odors on
consecutive trials matched was critical. Intriguingly, approxi-
mately 77% of OFC neurons were odor selective when odor
identity was relevant, whereas only 15% of OFC neurons were
odor selective in the task in which match, but not identity, pre-
dicted reward. Furthermore, in that latter task, 63% of OFC neu-
rons encoded whether the odor was a match or a nonmatch.
Simmons and Richmond (2008) also demonstrated that small

changes in a task can cause significant changes to OFC repre-
sentations. In their task, monkeys were rewarded after
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one, two, or three correct trials in a row, a number selected
randomly after each reward. In a ‘‘valid cue’’ condition, back-
ground color indicated to the monkey the number of trials before
the next reward, whereas, in a ‘‘random cue’’ condition, there
was no relation between background color and number of trials
to reward. As a result, the outcome of the previous trial was
informative for reward prediction only in the random cue con-
dition, because after a rewarded trial, the next trial would be
rewarded only on one-third of the cases (a one-correct-trial
requirement), whereas, after an unrewarded trial, the next trial
would be rewarded on one-half of the cases (a two-correct- or
a three-correct-trial requirement). Indeed, far fewer neurons
encoded the last reward in the valid cue condition (25%), where
it was not informative regarding task state, than in the random
cue condition (50%). Furthermore, we predict that OFC encod-
ing of background color should be different across the two
conditions in this task.

Subdivisions of the OFC
The OFC is not a single, homogeneous region—connectivity
analyses suggest a division into distinct medial and lateral
networks in monkeys (Carmichael and Price, 1996), humans
(Croxson et al., 2005; Kahnt et al., 2012), and rats (Price,
2007). Recent results implicate medial OFC in encoding eco-
nomic value and lateral OFC in more complex functions, such

as credit assignment and model-based RL (Noonan et al.,
2010; Rudebeck and Murray, 2011a, 2011b; Noonan et al.,
2012). It seems likely that our theory pertains more to the lateral
than the medial OFC, although the lesion studies we discussed
typically targeted the entire OFC. Thus, more work is needed
in order to precisely localize the representation of task states
within OFC subregions.

Interspecies Differences in OFC
We have not distinguished between rats and monkeys, treating
what is defined as ‘‘OFC’’ in these very different species as
essentially the same area. However, it is important to note that
there are large differences in anatomy across species, and
OFC in rats has a very different cytoarchitecture than OFC in
monkeys and humans (Wise, 2008; Wallis, 2012). These stark
anatomical differences have lead some researchers to question
whether many of the frontal structures found in primates,
including OFC, have analogs in the rat (Wise, 2008; but see Pre-
uss, 1995).
Interestingly, despite these differences, there are strong inter-

species similarities at the level of connectivity (Carmichael and
Price, 1996; Price, 2007), neural activity, and function. This is
particularly true for OFC, perhaps more so than any other pre-
frontal region (Preuss, 1995). For example, lesions to OFC cause
similar deficits in reversal learning (Teitelbaum, 1964; Butter,
1969; Jones and Mishkin, 1972; Rolls et al., 1994; Dias et al.,
1996; Meunier et al., 1997; McAlonan and Brown, 2003; Schoen-
baum et al., 2002, 2003a; Chudasama and Robbins, 2003; Bohn
et al., 2003; Izquierdo et al., 2004; Kim and Ragozzino, 2005),
extinction (Butter, 1969; McEnaney and Butter 1969), and deval-
uation (Gallagher et al., 1999; Gottfried et al., 2003; Izquierdo
et al., 2004) across species, and neural firing in different species
in these tasks is also very similar (Thorpe et al., 1983; Schoen-
baum and Eichenbaum 1995; Critchley and Rolls, 1996a,
1996b; Schoenbaum et al., 1999; Gottfried et al., 2003; O’Doh-
erty et al., 2002; Morrison and Salzman, 2009). We suggest
that OFC encodes the current task state in all of these species.
Animals such as rodents are perhaps limited in the complexity
of the state that can be represented in their relatively small
OFC, whereas humans, who have a much more developed
OFC, are able to deal with highly complex tasks that involve
many hidden states.

Interaction with Other Brain Areas
Figure 7 illustrates how our theory of OFC fits into a larger model
of RL in the brain. In particular, we propose that OFC encodes
task states, drawing on both stimulus-bound (externally avail-
able) and memory-based (or internally inferred) information.
These states provide scaffolding for model-free RL in a network
involving ventral striatum (encoding state values VðsÞ) and
dorsolateral striatum (encoding state-action values Qða; sÞ).
This system is trained by prediction errors computed in VTA
and substantia nigra pars compacta, where reward input from
areas such as the lateral habenula, hypothalamus, and peduncu-
lopontine nucleus is compared to predicted values from the
ventral and dorsolateral striatum. State information in OFC is
also critical for model-based RL (Sutton and Barto, 1998; Daw
et al., 2005), which makes use of learned relationships between
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Figure 7. Schematic of Neural RL with Hypothesized Mapping of
Functions to Brain Areas
The environment provides rewards and sensory stimuli to the brain. Rewards,

represented in areas such as the lateral habenula (LH) and the pedunculo-

pontine nucleus (PPTN) are used to compute prediction error signals in ventral

tegmental area (VTA) and substantia nigra pars compacta (SNc). Sensory

stimuli are used to define the animal’s state within the current task. The state

representation might involve both a stimulus-bound (externally observable)

component, which we propose is encoded in both OFC and sensory areas,

and a hidden (unobservable) component, which we hypothesize is uniquely

encoded in OFC. State representations are used as scaffolding for both

model-free and -based RL. Model-free learning of state and action values

occurs in ventral striatum (VS) and dorsolateral striatum (DLS), respectively,

whereas model-based learning occurs in dorsomedial striatum (DMS) as well

as VS.
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states in order to plan a course of action through mental simula-
tion of imagined states.

In parallel, we propose that a purely stimulus-bound state
representation encoded in sensory areas can also be used for
learning and decision making. These stimulus-bound states
are the sole basis for RL when OFC is lesioned but may also
be used for learning in intact animals. For instance, concurrent
use of a suboptimal stimulus-bound state representation could
account for some erroneous credit assignment seen even in
sham-lesioned control animals, as evidenced in Walton et al.
(2010).

Other Areas that Might Encode Task States
Several other areas have been proposed to encode task states.
Perhaps chief among these is the hippocampus. Like OFC,
lesions in hippocampus cause deficits in spatial reversal learning
(Teitelbaum, 1964) and prevent postextinction renewal (Ji and
Maren, 2007). However, this is true only when states are defined
according to spatial location. Hippocampal lesions seem to have
no effect on nonspatial reversal learning, whereas OFC lesions
generally affect all types of reversal (Teitelbaum, 1964).

On the basis of neural recordings that showed that choices,
stimuli, and rewards were encoded in neurons in the dlPFC,
Seo et al. (2007) proposed that dlPFC encodes task states.
Indeed it seems clear that dlPFC satisfies the representation
condition; however, this area is less able to satisfy the specificity
condition, given that dlPFC seems to encode combinations of
task relevant and task irrelevant stimuli. An intriguing possibility
is that dlPFC encodes a reservoir of candidate state variables
from which OFC constructs the current state with the variables
found to be most relevant to the current task (Otto et al., 2009).

There is also clearly related literature on rule-based behavior
that does not explicitly mention state representations. Indeed,
the outcome of learning with a sophisticated state representa-
tion is a set of action values that essentially determine rules for
the task by specifying the most rewarding action in each state.
Such rule-based behavior has long been thought to depend on
dlPFC (Banich et al., 2000; MacDonald et al., 2000; Petrides,
2000), and recent imaging studies have further localized this
function to the inferior frontal sulcus and inferior frontal junction
(Brass et al., 2008). However, it is important to distinguish be-
tween a state, which is an abstract representation of the current
location in a task, and a rule, which specifies a mapping from
conditions to actions. These two functions may be associated
with different brain areas, consistent with neuroimaging results
in which tasks involving the implementation of explicit rules
invoke dlPFC activity (Banich et al., 2000; MacDonald et al.,
2000; Petrides, 2000), whereas tasks requiring nontrivial assign-
ment of reward in a complex state space elicit activations in the
lateral OFC (Noonan et al., 2011). Furthermore, Buckley et al.
(2009) found differential effects of lesions to the OFC and the
dlPFC in a monkey analog of the Wisconsin card sorting task—
OFC lesions diminishedmonkeys’ ability to learn new reward as-
sociations, consistent with an impaired representation of state,
whereas dlPFC lesions decreased the ability to use a previously
learned rule.

Finally, one might argue that the encoding of state information
is too general a function to be ascribed to a single brain region

and that these representations are widely distributed, perhaps
over the entire prefrontal cortex. However, this seems at odds
with the specificity of deficits that occur as a result of OFC
lesions (Buckley et al., 2009)—if the encoding of state were
more distributed, then one might expect that lesions to other
prefrontal areas would cause similar deficits. Furthermore, the
OFC might be uniquely well placed to integrate disparate pieces
of information, including sensory information and latent variables
such as memories, in order to compute the current state
because of its afferent connectivity, which is different from that
of other prefrontal areas. For instance, the OFC is the only
prefrontal area to receive sensory input from all sensory modal-
ities; it has strong connections to areas such as dlPFC, ACC, and
the hippocampus, and it has strong reciprocal connections with
subcortical regions such as striatum and amygdala, which are
critical to the representation of reward (Carmichael and Price
1995a, 1995b; Murray et al., 2011).

Relation to Other Theories of OFC Function
Over the years, many hypotheses of OFC function have been put
forth. For example, that the OFC inhibits prepotent responses
(Ferrier, 1876; Fuster, 1997) or that it represents bodily markers
for affective state (Damasio, 1994). Here, we discuss two popular
recent accounts that also relate OFC function to RL.
OFC Encodes Economic Value
Perhaps the dominant theory of OFC function in the past few
years has been the idea that OFC encodes economic value (Pa-
doa-Schioppa and Assad, 2006). Interpreted in the language of
RL, this essentially implies that OFC encodes state values, VðsÞ.
Recent studies have begun to cast doubt on this account. In

particular, some patterns of firing in OFC neurons are hard to
interpret as a pure value signal. For instance, OFC neurons
have been found to encode variables such as spatial location
(Roesch et al., 2006; Feierstein et al., 2006; Furuyashiki et al.,
2008), satiety (de Araujo et al., 2006), uncertainty (Kepecs
et al., 2008), and taste (Padoa-Schioppa and Assad, 2008).
Indeed, our own results, specifically the preservation of VTA
firing at the time of the odor after OFC lesions (Takahashi
et al., 2011), are inconsistent with the view that OFC provides
values to the computation of prediction errors in dopamine
neurons.
A more recent idea is that, rather than storing learned values,

OFC computes values in a model-based way to enable flexible
economic decision making and choices among many different
options in many different situations without explicitly storing
a previously learned value for each (Padoa-Schioppa, 2011).
This account fits well with our theory. In particular, although it
is not yet clear whether OFC itself is involved in computing
model-based values, we propose that the OFC provides the
state information that allows these computations to occur and
is thus essential to such economic decision making.
OFC Takes Part in Solving the Credit Assignment
Problem
Our theory is closely related to a recent proposal that OFC (in
particular, lateral OFC) acts to solve the credit assignment prob-
lem; i.e., to decide which reward should be attributed to which
action for learning (Walton et al., 2010; Noonan et al., 2012).
This idea shares many properties with our state-representation
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hypothesis, given that correctly keeping track of the current state
allows credit to be assigned appropriately. However, in our
theory, credit assignment itself is not damaged by the loss of
the OFC, but, rather, the states to which credit is assigned are
changed. This subtle distinction is an important one because
it points to a key difference between the theories: our theory
predicts that OFC lesions will not appear to cause a deficit
in credit assignment in tasks in which stimulus-bound states
suffice. Moreover, the credit-assignment hypothesis suggests
that past actions should always be represented in OFC for credit
assignment, whereas we predict that past actions will only be
encoded when they are important for determining the states of
the task.
More generally, our theory accounts for the role for OFC in a

wide range of tasks, not only reversal learning, delayed alterna-
tion, and extinction, but also devaluation, sensory precondition-
ing, and so on. Indeed, it predicts involvement in any situation
where task states are not stimulus bound. As such, our theory
provides a unifying account of OFC function that can be tested
(and disproved) in a variety of different tasks.
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Odor%guided%choice%task%%

Lesions%and%recording%

All experimental procedures were in accordance with the University of Maryland School 

of Medicine Animal Care and Use Committee and US National Institutes of Health 

guidelines. For full details of lesions see Takahashi et al. (2011). Recording electrodes 

were surgically implanted under stereotaxic guidance in the one hemisphere of VTA. 

Some rats (n = 7) also received neurotoxic lesions of ipsilateral OFC. Controls (n = 6) 

received sham lesions in which burr holes were drilled and the pipette tip lowered into 

the brain but no solution delivered. 30 neurons were recorded from the sham-lesioned 

group and 50 from the OFC-lesioned group. 

Model%

Prediction%errors%

The temporal difference prediction error, δ t , at time t  (Sutton & Barto, 1998) is given 

by 

 δ t = rt + γV (st )−V (st−1)    (1) 

where rt   is the current reward, γ  is the discount factor, st  is the state at time t  and 

V (st )  is the value of that state.  This prediction error is used to update the state values of 

all eligible states according to 

 Vnew (s) =Vold (s)+αe(s)δ t    (2) 

where α  is the learning rate and e(s)  is the eligibility trace that determines which states 

are eligible for update.  In particular, at each time step of the model, a new state is visited 

(and a reward potentially obtained), after which all values are updated as above, and then  

e(s)  are updated to reflect the new state visited, according to 

 enew (s) =
1+ eold (s) if s = st
λeold (s) otherwise

⎧
⎨
⎪

⎩⎪
   (3) 



In contrast to many RL models, here we are not interested in modeling the fine scale 

dynamics of the learning process, but rather, we focus on the overall change that occurs 

across each block. Assuming that D  is sufficiently large to ensure that learning goes to 

completion, and given that we know the behavior (which is identical in both groups, see 

Takahashi et al., 2011), we can write down expressions for the steady state values in each 

block. These values can then be used to compute prediction errors both at the end of a 

block, when learning has gone to completion, and at the start of a block, before learning 

has significantly changed the values. In particular we can write the early and late 

prediction errors for moving into state st  in block b  as 

 
G early
b  rt

b �JVb�1(st )�V
b�1(st�1)

G late
b   rt

b �JVb (st )�V
b (st�1)

   (4) 

where Vb (st ) is the value of state st  in block b , and rb (st ) is the reward associated with 

moving into state st , in block b . The expressions for the average values, Vb (st ) , are 

given below. 

State�Values�

Assuming that learning goes to completion in each block, we can compute the average 

state values at the end of each block. This is done by considering the average of the 

update equation, equation 2, over all possible choices and odors, i.e.: 

 Vnew (s)  Vold (s) �D e(s)G t     (5) 

where �  denotes taking the average.  When learning has gone to completion in block b  

we have Vnew (s)  Vold (s)  Vb (s) and thus at long times ( tof ), 

 e(s)G t   0   (6) 

This condition enables us to compute the fixed point values in each block.  For the sham 

model, these values are, for the right reward arc, 



 

Vb (right rew 3)  0

Vb (wait right)  1� pwait
1�J pwait

rr
b (3)

Vb (right rew 2)  JV b(wait right)
Vb (right rew 1)  JVb (right rew 2)� rr

b (2)
Vb (right port)  JVb (right rew 1)� rr

b (1)

   (7) 

where pwait  is the probability of staying in the wait states (wait right or wait left) and 

rr
b (i) is the amount of reward delivered in the right reward port in block b  at the i th 

reward point, i  = 1 for the short, small and first drop of the big reward, i  = 2 for the 

second drop of the big reward, i  = 3 for the long reward.  Similarly for the left reward 

arc we have 

 

Vb (left rew 3)  0

Vb (wait left)  1� pwait
1�J pwait

rl
b (3)

Vb (left rew 2)  JVb(wait left)
Vb (left rew 1)  JVb (left rew 2)� rl

b (2)
Vb (left port)  JVb (left rew 1)� rl

b (1)

   (8) 

where rl
b (i) is the reward in the left reward port.  Finally at the odor and odor port, 

 

V b (right)  p(correct | forced)JVb (right port)
V b (left)  p(correct | forced)JVb (left port)
V b (free)  p(left | free,b)JVb (left port)� p(right | free,b)JVb (right port)

V b (odor port)  J
3
Vb (left)�Vb (free)�Vb (right)ª¬ º¼

   (9) 

where p(correct | forced) is the probability of making the correct choice on a forced trial 

(e.g. going right on a forced right trial instead of left), p(left | free,b) is the probability of 

going left on a free choice trial in block b  and p(right | free,b)  is the probability of going 

right. 

For the lesioned model, as the state representation does not correspond to the underlying 

structure of the task, we have to be more careful when taking the average.  In particular, 



we must consider the long-short and small-big cases separately as their paths through the 

state space are different.   

The long-short condition is complicated because the model will spend different amounts 

of time in the port state depending on whether the reward is short or long, spending just 

one time step there in the short condition and multiple time steps there in the long 

condition. 

 
Vb (reward 2)  0
Vb (reward 1)  0

Vb (port)  

p(long)O 3(1� pwait )
1� O pwait

� p(short)

p(short)� p(long) (1�J )(1� O � O 2 )� O
3(1� pwait )
1� Opwait

§
©̈

·
¹̧

   (10) 

where p(short) is the average probability of encountering the short option, 

 p(short)  1
3
p(correct | forced)� p(short | free,b)� �    (11) 

Note that p(short | free,b)  p(right | free,b)  when the short reward is on the right and 

vice versa for the left.  p(long)  is the average probability of encountering the long option 

 p(long)  1
3
p(correct | forced)� p(long | free,b)� �   (12) 

where, similarly, p(long | free,b)  p(left | free,b) when the long reward is on the left. 

  



At the odor and odor port, we have 

Vb (short)  p(correct | forced) (J � O)Vb(port)� O� �
Vb (long)  p(correct | forced)u

Vb (port)(J � (J �1)O(1� O � O 2 )� O 4 JVb (reward 1)�1�Vb (port)� � 1� pwait
1� O pwait

§
©̈

·
¹̧

Vb (free)  p(short | free)
p(correct | forced)

Vb (short)� p(long | free)
p(correct | forced)

Vb (long)

Vb (odor)  J
3

(Vb (left)�Vb (free)�Vb (right))

  (13) 

where we have introduced Vb (short)  and Vb (long)  to denote the value of the odor 

corresponding to forced trials to the short and long rewards respectively.  Note that 

Vb (long)  Vb (left) when the long reward is on the left. 

The small-big condition is more straightforward as, regardless of the trial type, the model 

only spends one time step in the port state.  Thus we have 

 

Vb (reward 2)  0

Vb (reward 1)  p(l)rl (2)� p(r)rr (2)
p(l)� p(r)

Vb (port)  1�JVb (reward 1)

Vb (right)  p(correct | forced) (J � O)Vb (port)� O(J � O)Vb(reward 1)� Orr (1)� O 2rr (2)� �
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  (14) 

Converting�Prediction�Errors�to�Firing�Rate�in�VTA�

To convert the computed prediction errors into neural firing rates, f , we used a simple 

linear transformation 

 f  B � kG    (15) 



where B  is the baseline firing rate and k  is the scale factor. Based on experimental 

findings (Schultz et al., 1997) and in line with previous work (Niv, Duff, & Dayan, 

2005), we used a different scale factor for positive prediction errors (PPEs) and negative 

prediction errors (NPEs).  

Fitting�Model�Parameters�to�Neural�Data�

To set the model’s free parameters, we fit the model to the dopaminergic firing data at the 

time of the reward and the time of the odor. The model had six free parameters: the 

discount factor J , the eligibility trace decay rate O , the baseline firing rate before an 

odor cue ( B  in equation 15), the baseline firing rate before the reward, the scaling of 

positive prediction errors ( k� in equation 15) and the scaling for negative prediction 

errors ( k� in equation 15). We fit the sham-lesioned and OFC-lesioned groups separately. 

To fit the parameters, we minimized the mean squared error between the model’s 

predicted firing rates and the average firing rates measured in the experiment. The best fit 

values of the parameters were: 

Parameter Sham lesion OFC lesion 

Discount factor, J  0.89 0.47 

Eligibility trace decay, O   1.0 1.0 

Baseline before odor (Hz) 5.3 5.6 

Baseline before reward (Hz) 3.7 4.2 

PPE scaling, k�   1.6 1.7 

NPE scaling, k�   2.0 1.6 

Fit parameter values for the sham- and OFC-lesioned animals 

Interestingly, for the most part, the parameter values were similar between the sham- and 

OFC-lesioned groups, suggesting that indeed basic reinforcement learning processes are 

intact in OFC-lesioned rats. The exception to this is the discount factor, which was 

reduced in the OFC-lesioned group. That is, the best-fit parameters suggest that the OFC-

lesioned group discounts rewards more steeply than the sham-lesioned controls. One 

interpretation of this ‘steeper discounting’, is that due to the inaccurate (and specifically, 

non-Markov) state space representation of the task in the OFC-lesioned model, reward 



information cannot ‘travel back’ reliably to reward predictive states. That is, the existence 

of aliased states that represent more than one state in the true state space of the task (for 

instance, the ‘reward port’ state), means that information about rewards cannot 

effectively be attributed to early states that lead to that reward. This effect could disguise 

itself as heavier discounting of rewards, as those future rewards do not exert their full 

effect on earlier state values. Moreover, this result is consistent with there being a smaller 

difference between the dopaminergic response to the forced high and forced low odors in 

the OFC-lesioned group, as compared to the sham-lesioned group. 

Extra�Drop�for�the�Big�Reward�Option�in�Fourth�Block�

In figure 6 in the main text we discussed the effect of a third, discretionary drop of juice 

that was occasionally applied for the big reward in the fourth block. Unfortunately, the 

delivery of this drop was not recorded in the dataset and so it is impossible to determine 

at this point on what trials it was delivered. However, an echo of this extra reward can be 

seen in firing patterns of a subset of our VTA neurons. 

To illustrate this, Figure S1 shows the firing of one of these neurons when the animal is at 

the high valued reward port in the fourth block. This neuron clearly shows elevated firing 

following the first two rewards (presented at 0.5 and 1 seconds following reward port 

entry). It also shows a clear elevation in firing rate at around 1.7 seconds indicative of an 

extra drop of juice presented at 1.5 seconds. 

Similar visual examination of the firing of individual neurons suggests that at least 14 

neurons were recorded in the presence of a third drop. For 13 of these neurons (as in our 

example neuron) the third drop appears from the start of the fourth block. 

Firing�at�the�Time�of�Reward�

Figure 6 in the main text shows the firing of VTA neurons at the time of unexpected 

rewards. These rewards are unexpected at the start of a block, after reward contingencies 

have changed unexpectedly, but given learning with the correct state representation, 

should be predicted by the end of the block. Thus we compared the first two (‘early’) 

trials to the last five (‘late’) trials of a block to test for effects of learning. To maximize 



statistical power, in Figure 6A,B we included both forced and free choice trials, as RL 

theory suggests that reward expectations should be similar regardless of the type of trial. 

Indeed, there were no qualitative differences in the results if only forced trials were 

considered (since the animals did not choose the low option often enough, we could not 

analyze free choice trials alone). In the model (Figure 6C-E), assuming that learning goes 

to completion in each block, we could compute these early and late prediction errors 

analytically, in a way that is robust to the choice of learning rate parameters 

Firing�at�the�Time�of�the�Odor�

In addition to the time of the reward, which we concentrated on in the main text, we can 

expect to see prediction error signals at the time of odor presentation. This is because the 

identity of the odor can change the rats’ expectation of future reward. For example, 

smelling the ‘forced high’ odor can lead the rat to expect a higher than average reward, 

and thus cause a positive prediction error. Conversely, the ‘forced low’ odor leads to the 

expectation of a lower than average reward and should cause a negative prediction error. 

In Supplementary Figure 2 we show the predicted and actual firing rates at the time of the 

odor, on forced trials. In particular we focus on the last 5 trials of each block when we 

assume that learning has gone to completion. The sham-lesion data (Supplementary 

Figure 2A) show increased firing when the rat expects a high-valued reward (e.g. forced 

left when the high reward is on the left), and lower firing rates when it expects the less-

valued reward. These differences are significant for the 1st (short vs long), 2nd (long vs 

short) and 4th (small vs big) blocks while there is a trend in the same direction (p = 0.11) 

for the 3rd block (big vs small). These firing patterns are in line with standard RL 

accounts of dopaminergic firing, and our model is in close agreement with the data 

(Supplementary Figure 2C). 

Intriguingly, data from OFC-lesioned rats (Supplementary Figure 2B) show a similar 

pattern of firing, even though the firing at the time of reward in this group was quite 

different from that of control rats, as discussed above. This is especially interesting for 

block 2 (long vs short): at the time of the odor there is a significant difference in firing 

between the odor cue predicting the short reward (forced high) and that predicting the 



long reward (forced low), despite the fact that firing at the time of reward does not 

indicate accurate expectations of reward (Figure 6B). Thus, the predicted values at the 

time of the odor cues seem inconsistent with those at the time of reward. However, this 

seeming inconsistency is predicted by our model: because learning in the model uses 

eligibility traces, when a forced left odor is presented, for example, the model enters the 

left state and this state becomes eligible for update. When the animal then encounters a 

reward later on in the trial, the ensuing prediction error is used to update the value of the 

left state. Thus over the course of learning the animal learns to associate the short reward 

with forced left odor and the long reward with the forced right odor and the pattern of 

prediction errors at the time of the odor (Supplementary Figure 2D) is preserved in the 

lesioned model. This is despite the fact that the model cannot learn differential 

predictions for the left and right port states because the food port states are shared 

between both trial types, and thus the change from block 1 to 2 has no consequences for 

the average prediction errors at the time of reward (Figure 6B). 

 �



Supplemental�Figures�

Figure S1 – Firing in an example neuron from an OFC-lesioned rat evidencing the extra 

(third) reward drop in the fourth block. Trial 1 marks the first trial of the fourth block. 

Evidence of the manually-delivered reward is apparent throughout the whole block, 

though towards the end of the block learning seems to have attenuated the prediction 

error response to this drop. 

Figure S2 – Measured and predicted dopaminergic firing at the time of the odor on forced 

trials in Takahashi et al. (2011). (A, B) Experimental data correspond to the average 

firing rate in the 500ms after the odor. Blue: trials in which the better of the two possible 

outcomes in this block was expected; Red: trials in which the worse of the two outcomes 

was expected. Stars denote significance at p < 0.05. (C, D) In the model, the time of the 

odor corresponds to entering either the left, free or right states. The left plots (A, C) show 

data from the sham-lesioned group and the full state space (see Figure 5B), and in the 

right plots (B, D) are data from the OFC-lesioned group and the reduced state space 

(Figure 5C). 
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