High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

1st International Workshop on Flame Chemistry Warsaw, Poland July 28, 2012

Michael P. Burke

Chemical Sciences and Engineering Division, Argonne National Laboratory

Frederick L. Dryer

Department of Mechanical and Aerospace Engineering, Princeton University

Other collaborators: Yiguang Ju, Marcos Chaos, Jeffrey Santner, Francis M. Haas Stephen Klippenstein, Lawrence Harding

Motivation

- Growing interest in computational engine design/testing
 - Fluid mechanics and kinetics sub-models
- H_2 and H_2/CO
 - Synthesis gas (H₂/CO/H₂O/CO₂) from coal/biomass gasification
 - Core sub-model for all fuels
- Advanced engine technologies \rightarrow High *P*, low *T*_f
 - Modeling difficulties for flames

- 1. Y. Shi, R.D. Reitz, Fuel 89 (2010) 3416–3430.
- 2. M.P. Burke, M. Chaos, F.L. Dryer, Y. Ju, Combustion and Flame 157 (2010) 618-631.
- 3. M.P. Burke, F.L. Dryer, Y. Ju, *Proceedings of the Combustion Institute* 33 (2011) 905-912.

Difficulty in predicting high-pressure flames

- Large variations among models
- None of the models capture pressure dependence across all conditions

^{1.} M.P. Burke, M. Chaos, F.L. Dryer, Y. Ju, *Combustion and Flame* 157 (2010) 618-631.

^{2.} M.P. Burke, F.L. Dryer, Y. Ju, Proceedings of the Combustion Institute 33 (2011) 905-912.

What controls high- $P/low-T_f$ flames?

- 1. M.P. Burke, M. Chaos, F.L. Dryer, Y. Ju, Combustion and Flame 157 (2010) 618-631.
- 2. M.P. Burke, F.L. Dryer, Y. Ju, Proceedings of the Combustion Institute 33 (2011) 905-912.

Complexity of the modeling problem

Sensitivity Coefficient

- Uncertainty in all reactions of 10%
 →burning rate uncertainty of 30%
- Realistic accuracy improvements for elementary reactions will not yield typical expected accuracies for global behavior
- Optimization against global targets necessary

- Functional temperature dependence of OH+HO₂=H₂O+O₂ highly disputed/ unknown
- Parameter optimization techniques don't work if the *functional dependence* is not known
- 1. M.P. Burke, F.L. Dryer, Y. Ju, *Proceedings of the Combustion Institute* 33 (2011) 905-912.

Complexity of the modeling problem

- A rigorous modeling solution will likely require *both*:
 - Empirical adjustments to rate constants
 - Improved fundamental understanding of select processes
- Neither alone appears sufficient to solve the problem.

^{1.} M.P. Burke, F.L. Dryer, Y. Ju, Proceedings of the Combustion Institute 33 (2011) 905-912.

Updated kinetic-transport models

- H₂: Hong et al. (2011) and Burke et al. (2012)*
 - □ HO₂ formation/consumption
 - $H+O_2(+M) = HO_2(+M)$
 - HO₂+radical reactions
 - \square H₂O₂ reactions
 - ... among others
- CO: Haas et al. (2012)
 - $\Box CO + OH = CO_2 + H, CO + HO_2 = CO_2 + OH$
 - HCO chemistry

*Uncertainties remained: adjustments of rate parameters to improve predictions

^{1.} Z. Hong, D.F. Davidson, R.K. Hanson, *Combust. Flame* 158 (2011) 633–644.

^{2.} M.P. Burke, M. Chaos, Y. Ju, F.L. Dryer, S.J. Klippenstein, Int. J. Chem. Kinet. 44 (2012) 444-474.

^{3.} F.M. Haas, S. Vranckx, M. Chaos, R.X. Fernandes, F.L. Dryer (2012) in preparation.

Model performance

- Hong/Burke perform similarly well against most targets
- Largest differences in flames
 - Burke et al. within 20%, Hong et al. within 40%
- Parameter adjustments not unique → uncertainties remain!
 - 1. Z. Hong, D.F. Davidson, R.K. Hanson, Combust. Flame 158 (2011) 633-644.
 - 2. M.P. Burke, M. Chaos, Y. Ju, F.L. Dryer, S.J. Klippenstein, Int. J. Chem. Kinet. 44 (2012) 444-474.
 - 3. F.M. Haas, S. Vranckx, M. Chaos, R.X. Fernandes, F.L. Dryer (2012) in preparation.
 - 4. J. Santner, F.L. Dryer, Y. Ju, Proc. Combust. Inst. (2012) in press, oral presentation : 5E01 on Friday.

Uncertainties remaining in 2012 (for flames)

- Parametric uncertainties
 - $HO_2 + X$ reactions

$$HO_2 + H = OH + OH$$

 $H_2 + OH$
 $H_2O + OH$

- $HO_{2} + OH_{2} + O_{2} + O_{2}$ $HO_{2} + OH_{2} + OH_{2} + O_{2} + O_{2}$
- $HO_{2} + HO_{2} = H_{2}O_{2} + O_{2}$
- \square H + O₂ (+M) = HO₂ (+M)
 - Pressure dependence
 - 3^{rd} body efficiencies for H₂O and CO_2
- $\Box CO + O + M = CO_2 + M$

Model assumptions

Nonlinear mixture rules

^{1.} M.P. Burke, M. Chaos, Y. Ju, F.L. Dryer, S.J. Klippenstein, Int. J. Chem. Kinet. 44 (2012) 444-474.

^{2.} F.M. Haas, S. Vranckx, M. Chaos, R.X. Fernandes, F.L. Dryer (2012) in preparation.

P. Saxena, F.A. Williams, 7th US National Combustion Meeting, Atlanta, GA, 2011. 3.

Recall the complexity of the modeling problem and uncertainties in $OH+HO_2 = H_2O+O_2$

- A rigorous modeling solution will likely require *both*:
 - Empirical adjustments to rate constants
 - Improved fundamental understanding of select processes
- Neither alone appears sufficient to solve the problem.

^{1.} M.P. Burke, F.L. Dryer, Y. Ju, Proceedings of the Combustion Institute 33 (2011) 905-912.

Modeling strategies

Current kinetic models: <u>sets of rate parameters</u>

Hierarchical, comprehensive modeling

Westbrook & Dryer (1984)

Optimization and Uncertainty Quantification

- Frenklach (1984), Frenklach, Wang, Rabinowitz (1992): Solution-mapping + optimization of A-factors
- Frenklach et al. (2004), Sheen & Wang (2009): Uncertainty Quantification of A-factors
- Turányi et al. (2012), Sheen et al. (2012): Uncertainty quantification of A-n-E_a
- Require massive amounts of data to constrain full T/P/M-dependence of all k's
 - Extrapolation outside the dataset very challenging
- Direct incorporation of theory useful
 - Replaces fitting formulas with physical theories
 - Common for extrapolation of data for a single reaction
 - Imposes constraints spanning all T/P/M

Multi-scale models: <u>sets of molecular parameters</u>

- Optimal use of information from *ab initio* calculations, *k* measurements, combustion measurements
- □ Theory fills in the gaps across all T/P/M

^{1.} M.P. Burke, S.J. Klippenstein, L.B. Harding, *Proceedings of the Combustion Institute* (2012) in press.

Multi-scale informatics

set of molecular parameters informed by data across all scales

Implementation for H₂O₂ system

10¹⁴

 $(cm^{3} mol^{-1} s^{-1})$

 \triangleright

 \triangleleft

τ'n

0

10

DeMore (1980

DeMore (1982)

Keyser (1988)

Lii et al. (1980)

Cox et al. (1981) Kurylo et al. (1981)

Braun et al. (1982)

500

1000

T (K)

 $\mathsf{OH} + \mathsf{HO}_2 = \mathsf{H}_2\mathsf{O} + \mathsf{O}_2$

X

1500

╵╴╍╺╍╴╴

○,● Kappel et al. (2002)

□,■ Hong et al. (2010)

Srinivasan et al. (2006)

2000

2500

Optimization variables

$H_2O_2(+M) = OH + OH(+M)$	$A'_{(1)}, n_{(1)}, E_{(1)}$
$H_2O_2 + OH = HO_2 + H_2O$	$E^{\dagger}_{(2)}$, $v'_{all(2)}$, $v'_{tr(2)}$, $v'_{ss(2)}$, $v'_{imag(2)}$, $E_{w(2)}$, η'_{H2O2} , $\eta'_{TS(2)}$
$HO_2 + HO_2 = H_2O_2 + O_2$	$E^{^{\dagger}}_{^{(3)}}$, $v'_{all(3)}$, $v'_{tr(3)}$, $v'_{ss(3)}$, $v'_{imag(3)}$, $E_{w(3)}$, $\eta'_{TS(3)}$
$HO_2 + OH = H_2O + O_2$	$E^{^{\dagger}}_{^{(4g)}}$, $v^{\prime}_{all(4)}$, $v^{\prime}_{tr(4g)}$, $v^{\prime}_{ss(4g)}$, $v^{\prime}_{imag(4g)}$, $E_{w(4g)}$, $\eta^{\prime}_{TS(4g)}$
	$E^{^{\dagger}}_{^{^{\prime}}(4e)}$, $v^{^{\prime}}_{TS(4e)}$, $v^{^{\prime}}_{tr(4e)}$, $v^{^{\prime}}_{ss(4e)}$, $\eta^{^{\prime}}_{TS(4e)}$, $f^{^{\prime}}_{VRCTST,c(4)}$
$OH+OH = O+H_2O$	$E^{\dagger}_{(5g)}$, $v^{\prime}_{all(5)}$, $v^{\prime}_{tr(5g)}$, $v^{\prime}_{ss(5g)}$, $v^{\prime}_{imag(5g)}$, $E_{w(5g)}$
	$E^{\dagger}_{(5e)}$, $v'_{TS(5e)}$, $v'_{tr(5e)}$, $v'_{ss(5e)}$
Shock-heated H ₂ O ₂ /H ₂ O/O ₂ /Ar	$T'_{i\prime},P'_{i\prime},M'_{H2O2,o,i}$, $M'_{H2O,o,i}$, $M'_{O2,o,i}$
Shock-heated H ₂ O/O ₂ /Ar	$T'_{i\prime},P'_{i\prime},M'_{H2O,o,i}$, $M'_{O2,o,i}$, $M'_{H,o,i}$
Shock-heated H ₂ O ₂ /Ar	$T'_{i \cdot} P'_{i \cdot} M'_{H2O2,o,i}$, $\sigma'_{1,H2O2}$, $\sigma'_{2,H2O2}$, $\sigma'_{1,HO2}$, $\sigma'_{2,HO2}$

I. Molecular data:

ab initio calculations (Klippenstein/Harding)

II. Rate constant measurements:

see paper

III. Combustion measurements:

 $OH(t), H_2O(t)$ Shock-heated H_2O_2/Ar (Hong et al. 2009,2010)OH(t)Shock-heated $H_2O/O_2/Ar$ (Hong et al. 2010) $abs_{215nm}(t)$ Shock-heated H_2O_2/Ar (Kappel et al. 2002)

1. M.P. Burke, S.J. Klippenstein, L.B. Harding, *Proceedings of the Combustion Institute* (2012) in press.

1. M.P. Burke, S.J. Klippenstein, L.B. Harding, *Proceedings of the Combustion Institute* (2012) in press.

Consistent description of $OH+HO_2 = H_2O+O_2$

- Single description consistent with:
 - 1. Ab initio calculations
 - 2. Low-T k measurements
 - 3. High-T raw global data
- Milder *T*-dependence
 - Minimum near 1200 K

1. M.P. Burke, S.J. Klippenstein, L.B. Harding, *Proceedings of the Combustion Institute* (2012) in press.

Consistent description of $OH+HO_2 = H_2O+O_2$

- Simultaneous weighting of diverse data types
 - Theory guides experimental interpretations
- Raw data and careful documentation extremely powerful
- 1. M.P. Burke, S.J. Klippenstein, L.B. Harding, *Proceedings of the Combustion Institute* (2012) in press.

Consistent description of $OH+HO_2 = H_2O+O_2$

Z. Hong, K.-Y. Lam, R. Sur, S. Wang, D.F. Davidson, R.K. Hanson

"On the rate constants of OH + HO₂ and HO₂ + HO₂: A comprehensive study of H_2O_2 thermal decomposition using multi-species laser absorption."

Combustion Symposium: 5D11

M.P. Burke, S.J. Klippenstein, L.B. Harding

"A quantitative explanation for the *apparent* anomalous temperature dependence of OH + HO₂ = $H_2O + O_2$ through multi-scale modeling." *Combustion Symposium: 4D09*

- 1. M.P. Burke, S.J. Klippenstein, L.B. Harding, *Proceedings of the Combustion Institute* (2012) in press.
- 2. Z. Hong, K.-Y. Lam, R. Sur, S. Wang, D.F. Davidson, R.K. Hanson, Proc Combust Inst (2012) in press.

Conclusions

- High-pressure syngas flames
 - Emphasize HO₂ pathways + collision efficiencies of CO₂/H₂O
 - Inherently difficult to model
- Rigorous modeling solutions
 - Empirical adjustments based on global targets
 - Improved fundamental characterization
- Uncertainties remain in both 1) model parameters and
 2) model assumptions
- Moving forward
 - Incorporation of theory to *fill in the gaps*
 - Raw data and careful documentation
 - Characterization of non-idealities/uncertainties in experiments and theory

Acknowledgements

This work was supported by:

- Director's Postdoctoral Fellowship from Argonne National Laboratory (MPB)
- U. S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357 (SJK, LBH)
- U. S. Department of Energy, University Turbine Systems Research Program under Contract No. DE-NT0000752 (FLD,YJ)
- U.S. Department of Energy, Office of Basic Energy Sciences, Energy Frontier Research Center under Contract No. DE-SC0001198 (FLD,YJ)

PrincetonUniversity

Mechanical & Aerospace Engineering Department

Thank you.

Questions?

End