

Kinetic Mechanism Development for Hydrocarbons and Oxygenated Fuels

Dr. Henry Curran and Dr. Philippe Dagaut

Combustion Chemistry Centre, NUI Galway, Ireland

CNRS Orleans, France

Lecture 1st Workshop on Flame Chemistry July 28th, 2012

Future HC fuels - many sources

- Some petroleum will still be available
- Oil sands, oil shale
- Coal-to-liquids
- Fischer Tropsch
- Natural gas
- > Hydrogen
- Bio-derived fuels
 - Ethanol, butanol, algae
 - Biodiesel from vegetable and animal oils
- Chemical kinetics to understand and simulate
 - complex behaviour (ignition, NTC, cool flames...)
 - reactivity (extent of conversion, heat release)
 - product / pollutant formation

How well an oxygenated fuel works depends on its molecular structure

- > Alcohols (methanol, ethanol, propanol, butanol)
- Ethers (DME, DEE, EME, MTBE, ETBE)
- Esters (methyl and ethyl esters)
- Ketones (acetone, EMK, DEK)
- Furans (methyl furan, di-methyl furan)

General reaction scheme

Intermediate temperature

Fuel decomposition reactions

Propanol isomers: Comparison of reactivity

Johnson et al. Energy & Fuels (2009) 23 5886–5898.

Alcohol molecular elimination

Tsang, W. Int. J. Chem. Kinet. (1976) 8: 173–192.

Water elimination is much more important for iso-

0.5% *n*-propanol $\phi = 1.0, T = 1600 \text{ K}$ 30% fuel consumed

0.5% *iso*-propanol $\phi = 1.0, T = 1600 \text{ K}$ 30% fuel consumed

Johnson et al. Energy & Fuels (2009) 23: 5886–5898.

General reaction scheme

Intermediate temperature

Sub-mechanism

Reactivity of ethers

Yasunaga et al. Comb. Flame (2011) 158: 1032–1036.

Ether molecular elimination

MP4/cc-pVTZ//MP2/cc-pVTZ level of theory with zero point corrections

Ether molecular elimination

Ethylene is very fast to ignite

General reaction scheme

Intermediate temperature

H-atom abstraction reactions

Acetone: Low p, High T

$CH_3COCH_3 + OH = CH_3COCH_2 + H_2OC^3$

$CH_3OCH_3 + OH = CH_3OCH_2 + H_2O$

$CH_3OCH_3 + OH = CH_3OCH_2 + H_2O$

H-atom Abstraction

 \succ *n*-Butanol + •OH/HO₂•

C-W. Zhou, J. M. Simmie, H. J. Curran. *Combust. & Flame*, **2011** *158* 726–731. C-W. Zhou, J. M. Simmie, H. J. Curran. *Int. J. Chem. Kinet.*, **2012** *44* 155–164.

n-Butanol + CH₃ (Imperial College London: Prof. Alex Taylor)

D. Katsikadakos, C-W. Zhou, J. M. Simmie, H. J. Curran, P.A. Hunt, Y. Hardalupas, A.M.K.P. Taylor. *Proc. Comb. Inst.*, 2012. Paper 4D03 Thursday 2nd August.

Ethers + •OH

H-atom Abstraction

 $CH_2OH + H_2O_2$ $CH_3OH + HO_2$

Klippenstein, S J.; Harding, L B.; Davis, M J. *et al.* Proc. Comb. Inst. **2011** *33* 351–358. Li, J.; Zhao, Z.; Kazakov, A.; Chaos, M.; Dryer, F L. et al. Int. J. Chem. Kinet. **2007** *39* 109–136.

Acetone: α' hydrogen reactivity C³

Acetone: α' hydrogen reactivity

- Electron delocalization from $\pi(CO)$ to $\sigma^*(CH_{in})$ and $\sigma^*(CH_{out})$ is different
- $\Delta E_{cT} = 2.0 \text{ kcal/mol}$ $\Delta E_{cT} = 0.0 \text{ kcal/mol}$

α' hydrogen reactivity in DME

Electron delocalization from oxygen lone pairs to σ*(CH_{out}) weaken the BDE of out-of-plane CH bond by 5.0 kcal/mol.

> **NUI Galway** OÉ Gaillimh

 $\Delta E_{cT} = 4.9 \text{ kcal/mol}$ $\Delta E_{cT} = 1.7 \text{ kcal/mol}$

α' Reactivity Compared to Alkanes C

Ethers

- * Oxygen lone pairs accelerate reactivity of α ' hydrogen compared to alkane
- * Growing size of the α -side has no influence on reactivity of α ' hydrogen atoms

Ketones

- * α ' H-atom is less reactive than primary H-atom in alkanes
- * Growing size of the $\alpha\text{-side}$ will accelerate reactivity of $\alpha\text{'}$ H-atoms

Comparative Reactivity

General reaction scheme

Intermediate temperature

Low-temperature chemistry

Alcohol Oxidation

Aldehyde formation from α -radical + O₂

Alcohol Oxidation

Waddington mechanism (β -radical + O₂)

Comparison: Alcohol/Alkane Oxidation

Effect of chain length

Alcohol Oxidation

Effect of chain length on influence of functional group

Heufer *et al.* Proc. Comb. Inst. (2012) in press. Paper 4D06, Thursday 2nd August

Soybean and rapeseed derived biodiesels have only 5 principal components

Biodiesel components ignite in order of number of C³ double bonds

Westbrook et al. Proc. Comb. Inst. (2012) in press.

- Inserting one C=C double bonds changes the reactivity of 4 carbons atoms in the C chain
- Allylic C H bond sites are weaker than most others
- Therefore they are preferentially abstracted by radicals
- O₂ is also very weakly bound at allylic sites and falls off rapidly, inhibiting low T reactivity

Westbrook *et al. Proc.* Comb. Inst. (2012) in press.

Paper 3D03 Wednesday 1st August

Experimental data: Vanhove et al. PCI 2005 Simulations: Mehl, Vanhove, Pitz, Ranzi Combustion and Flame 155 (2008) 756—772.

of the molecule "inhibits" RO₂ kinetics

Novel fuels

Furans vs bio-ethanol

- Promising Next Generation Biofuels
 - Roman-Leshkov et al., Nature (2007) 447: 982-985. (2nd generation)

Novel renewable production process

- Biomass (lignocellulosic) feedstock not destined for human/animal consumption
- Highly efficient
- Large scale and low cost

Desirable physicochemical properties

- Higher energy density (40%)
- Direct combustion in unmodified engine
- ➢ RON = 119
- Lower aqueous solubility and less volatile

Laminar Flame Speed Measurements of DMF, Ethanol and Gasoline, Tian et al., Energy Fuels, **2010**

Energy Densities:

60

- Gasoline: 35 MJ/L
- ▶ 2,5-DMF: 31 MJ/L
- Bio-Ethanol: 23 MJ/L

Session 1: Monday morning: "Kinetics of Cyclic Ethers"

2MF: Unimolecular Decomposition

Somers et al. Comb. Inst. (2012) in press. Paper1D01 Monday 30th July

Conclusions

General chemical reaction schemes of HCs can be applied to oxygenated fuels

Details of oxygenated fuel combustion are quite different!

