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Introduction: The problem 

Clean combustion: high efficiency, low emissions 

Alternative transportation fuels: new chemistry 

Novel combustion regimes: influences of p, T, phi, mixture 
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Lange et al, ChemSusChem 2, 2012,150 

Needed: Systematic 

knowledge on 

combustion chemistry 
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Probing flame chemistry: Wanted 

In situ information on 

unknown species mix: 

identification. 

Large dynamic range of 

mole fractions, labile 

species. 

Quantitative set of 

concentration-reaction 

time profiles. 

Example: butane 

combustion, ~ 40 species. 
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Oßwald et al, Z Phys Chem 225, 2011,1029 
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Probing flame chemistry: laser diagnostics 

Laser spectroscopy: Raman, LIF, CRDS, IR absorption, etc. 

Quantitative, non-intrusive, small molecules: e.g. CH, C2 

Not suitable for complete flame analysis 
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M. Köhler et al, J Phys Chem A114, 2010, 4719 
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Small species and chemical mechanisms 

5 

One species cannot 

validate mechanisms. 

Small species are at 

end of reaction chain. 

← methane 

cyclopentene → 

M. Köhler et al, J Phys Chem 

A114, 2010, 4719 
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Probing flame chemistry: mass spectrometry 
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Molecular-beam mass spectrometry (MBMS): 

Complete species set (?!); structure-sensitive, isomers 

Quantitative – but: fragmentation, overlaps, sampling, …. 
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Species- and structure-selective analysis 
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B. Yang et al, Combust Flame 148, 2007,198 

m/z=41, C3H5, C2H2NH, CH3NC (CH3CN) 

A. Lucassen et al, PROCI 34, 2012 
C.A. Taatjes et al, PCCP 10, 2008, 1 

Tunable VUV single-photon PI-MBMS: 

Distinction of intermediates in C/H, C/H/O, and C/H/O/N systems 

Mass & photoionization efficiency (PIE) spectra as discriminators 

5D10 Fr 
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Combining high mass + energy resolution 

8 

Fuel complexity: 

hydrocarbons → 

oxygenates → fuel-N. 

More elements need 

better mass separation:   

→EI-MBMS. 

Fuel structure and 

intermediate mix need 

isomer separation:   

→PI-MBMS. 

Example: morpholine 

flame. 

 

 

A. Lucassen et al, PROCI 32, 2009,1269 
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Combining EI-MBMS+PI-MBMS+LIF+CRDS 
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MBMS results for HCN, NH3, NO, HNCO, CH3, ... 

LIF temperature measurement 

CRDS results for NH2, CN, CH, OH, … 

 

 

 

P. Nau et al, Exp Fluids 32, 2009,1269 
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Experiment vs. model: (un)disturbed T profile 

10 

T profile for optical or 

MBMS sampling must be 

considered in comparison 

with models – no shifts! 

Example: butanol flames.  

 

 

 

U. Struckmeier et al, Z Phys Chem 223, 2009, 503 
M. Sarathy et al, Combust Flame 159, 2012, 2028 
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New combustion details: study of isomeric fuels 

11 

Quantitative but 

relative species 

measurement is 

more forgiving. 

Chemical trends 

are more obvious. 

Model can probe 

mechanistic 

differences. 

Example: ethanol 

and DME addition 

to propene. 

 

 

 

A. Frassoldati et al, Combust Flame 158, 2011, 1264 
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Fuel-N conversion: biomass components 

12 

Isomeric fuel 

decomposition 

pathways different. 

Ethylamine break-

down suggests early 

NH3 formation. 

Substantial HCN mole 

fractions expected for 

both fuels. 

Example: ethylamine 

and dimethylamine 

combustion. 

 

 

 

A. Lucassen et al, Combust Flame 159, 2012, 2254 
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Ethylamine vs. dimethylamine combustion 

13 

NH3 mole 

fractions much 

higher for EA. 

Model under-

predicts NH3 in 

both flame sets.  

High HCN mole 

fractions of up 

to 12%. 

Model under-

predicts HCN.  

 

 A. Lucassen et al, Combust Flame 159, 2012, 2254 
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Low-temperature combustion chemistry 

14 

Sampling from highly-diluted, preheated, partially-premixed 

DME flame at 1 bar with T = 1400 K. 

Partially-premixing species profiles are position-dependent. 

 

 

 

K. Zhang et al, PROCI 34, 2012 
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Low-temperature combustion chemistry 

15 

Highly diluted 

preheated DME 

combustion. 

Three stoichio-

metries: 0.85, 

1.0, and 1.2. 

Intermediate-T 

behavior; e.g. 

CH3 vs. CH2O. 

 

1E06 Mon 

K. Zhang et al, PROCI 34, 2012 
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Low-temperature combustion chemistry 
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Highly diluted 

DME oxidation 

in flow reactor. 

Three stoichio-

metries: 0.8, 1.0, 

and 1.2. 

Expected low-T 

behavior. 

Compare with 

model/ to EtOH: 

→WIP! 
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1E07 Mon, W5P070 Fri 

F. Herrmann et al, PROCI 34, 2012 
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Low-temperature combustion chemistry 
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DME oxidation in 

low-T flow reactor. 

High mass reso-

lution: fuel DME 

(46.042) and formic 

acid (46.010) at Th = 

583 K are separated.  

Methyl formate is 

detected. 

More species, VUV-

PI-MBMS: →WIP! 

 1E07 Mon, W5P072 Fri 

F. Herrmann et al, PROCI 34, 2012 
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EI-MBMS and GC from the same volume 

18 

In-situ isomer separation + EI-MBMS  

Example: butene flames, C5H8 m/z 68  

M. Schenk et al, Combust 

Flame 2012, submitted 
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Butene combustion as C4 chemistry subset 

19 

M. Schenk et al, Combust Flame 2012, submitted 

Different fuel break-

down schemes for the 

3 butene isomers. 

C3 route is of high 

importance for all 

butenes, almost 

exclusive for i-butene. 

Additional C4 route 

exists for the 2 linear 

butenes. 

 

 W2P081 Tue 
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Highly complex chemistry: Biomass pyrolysis 
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J. Weng et al, PROCI 34, 2012 

Tunable VUV PI-MBMS for analysis of pyrolysis 

profiles (T, time) of second-generation biofuels. 

Fast-growing poplar wood as potential corn 

replacement; carbon conversion to biofuels. 
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Poplar pyrolysis set-up 

21 

J. Weng et al, PROCI 34, 2012 

I.  Pyrolysis, 20 mTorr 

 
II. Photonionization 

Qstar triple quadrupole 

TOF-MS with mass range 30-

20000 Da, resolution 10000. 

Reactor is heated to specific 

temperature, then sample 

inside the quartz pole is 

pushed into the furnace. 

Pyrolysis products pass 

through a repeller plate into 

the photoionization region, 

photoions are analyzed by 

the QTOF mass spectrometer.  

 



Department of Chemistry   

1st International Workshop on Flame Chemistry, Warsaw, Poland, July 28-29, 2012 

Major products from poplar pyrolysis 

22 

J. Weng et al, PROCI 34, 2012 
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Time-resolved pyrolysis profiles 
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(b) m/z 114 

hemicellulose 

(c) m/z 180 

lignin 

(d) m/z 124 

lignin 

(e) m/z 138 

lignin 

(f) m/z 110 

lignin 

(a) total ion 

current 
2G10 Tue 

J. Weng et al, PROCI 34, 2012 

Time: 115 s 

Time: 90 s 

Time: 60 s 

Time: 90 s 

500 ºC 

10.5 eV 
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MBMS in non-premixed flames 

24 

C2H2 flame at 30 Torr 

Mole fractions vs. fuel outlet 

Agreement with model by Jim Miller 

 

 

S.A.Skeen  et al, PROCI 34, 2012 
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MBMS in non-premixed flames 

25 

Radicals can be detected. 

Profiles appear shifted vs. model. 

 

 

5E07 Fr 

S.A.Skeen  et al, PROCI 34, 2012 
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Flame-sampling aerosol mass spectrometry 

26 

Flame 

chamber 

Aerosol mass 

spectrometer 
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Flame-sampling aerosol mass spectrometry 

27 

Gas phase species and 50-100 nm particles are sampled 

from 700 Torr counterflow flame with quartz microprobe.  

Particles are 

focused with aero-

dynamic lens onto 

heated copper plate 

and flash-vaporized. 

Molecular con-

stituents are VUV-

photoionized and 

detected by TOF 

mass spectrometry. 
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Particle chemical composition: surprises 

28 

 Mass spectra map chemical composition of the particles vs.  

distance from the fuel outlet; PIE spectra permit identification. 

Example m/z=116, normally only identified as indene, but PIE 

curve shows also phenyl-substituted allene and propynes. 
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Soot formation beyond benzene 

29 

Many species beyond 

benzene to ~1000 Da.  

Mass spectra peak  at 

around 202 Da, i.e. 

pyrene. 

Detailed analysis in 

progress. 
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Perspectives: Future trends and needs? 

30 

New combustion chemistry: more elements, higher 

mass range, structure-selective quantitative analysis. 

New measurement domains: larger p and T range, 

pyrolysis vs. highly-diluted oxidative systems, 

particles, aerosols, homogeneous vs. heterogeneous 

combustion chemistry. 

Time-resolved analysis. 

Support by theory: ionization energies, structures, 

simulation of spectra, kinetics, thermochemistry. 

Combination of methods: optical&MS techniques, in 

situ GC-MBMS, IR-absorption, MS-MS, PEPICO, …. 

Caveat: Let‘s get sampling problem solved! 
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