

1st International High-Pressure Flame Chemistry Workshop

1

Towards a predictive combustion chemistry model – Uncertainty propagation and minimization

Hai Wang and David A. Sheen University of Southern California, Los Angeles, California, USA

Model Hierarchy

Reaction Model Development

The Current Approach

Kinetic Rate Parameter Uncertainties

 $H + O_2 \leftrightarrow OH + O (R1)$

- Uncertainty factor ~1.25
- Logarithmic sensitivity coefficient
 = 0.24 (ethylene-air, f = 1, p = 1 atm)

- •±5% (±4 cm/s) uncertainty in predicted flame speed due to R1 alone
- •Key question: How do we propagate uncertainties in rate constants in combustion simulations?

Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty

Burke, et al. (2010)

Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty

fundamental combustion expt.

MUM-PCE

• Method of Uncertainty Minimization – Polynomial Chaos Expansions

• Mathematical foundation and numerical methods: Sheen & Wang "Kinetic uncertainty quantification and minimization using polynomial chaos expansions," *Combustion and Flame*, DOI:10.1016/j.combustflame.2011.05.010.

- Model prediction presented as a (2-*s*) band of uncertainty resulting from kinetic parameter uncertainties.
- Model uncertainty may be constrained by experimental data (ignition delay, species-time history, flame speeds etc)

MUM-PCE: Methods

• Stochastic Spectral Expansion: express kinetic parameter x_i as a polynomial expansion of basis random variables

$$x_{i} = \mathbf{x}_{i}^{(0)} + \sum_{j=1}^{m} \alpha_{ij} \xi_{j} + \sum_{k=1}^{m} \sum_{j=k}^{m} \beta_{ijk} \xi_{j} \xi_{k} + \dots$$

Following N. Wiener (1938), D.B. Xiu, et al. (2002)

 Solution Mapping: use polynomial response surface to express the relation between a combustion response h and x

$$\eta_r(\mathbf{x}) \cong \eta_{r,0} + \sum_{i=1}^N a_{r,i} x_i + \sum_{i=1}^N \sum_{j\geq i}^N b_{r,ij} x_i x_j$$

Forward Uncertainty Propagation

$$\eta_{r}(\mathbf{x}) = \eta_{r,0} + \sum_{i=1}^{n} a_{i}x_{i} + \sum_{i=1}^{n} \sum_{j \ge i}^{n} b_{ij}x_{i}x_{j}$$
Response surface from solution mapping
$$x_{i} = \frac{1}{2}\xi_{i}$$
Spectral representation of uncertainty in x's (mean = 0, s = 0.5, each indep't of others)
$$\eta_{r}(\mathbf{x},\xi) = \eta_{r}(\mathbf{x}^{(0)}) + \sum_{i=1}^{M} \hat{\alpha}_{r,i}\xi_{i} + \sum_{i=1}^{M} \sum_{j=i}^{M} \hat{\beta}_{r,ij}\xi_{i}\xi_{j}$$

9

Solution Mapping Method

• Fit a response surface to the model

¹⁰ G.E.P. Box, *et al.* (1978), Frenklach *et al.* (1992), S.G. Davis *et al.* (2004)

- High-pressure data sensitize kinetics of hydrogen oxidation.
- A large number of models outside experimental uncertainty at high pressures.

- 2
 σ uncertainty band calculated by MUM-PCE, based on rate parameter uncertainties.
- Models are statistical samples of parameter uncertainties.

11 Sheen & Wang (2011)

Burke, et al. (2010)

Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty

fundamental combustion expt.

MUM-PCE

fundamental combustion expt.

Method of Uncertainty Minimization

 $\mathbf{x} = \mathbf{x}_0 + \alpha \boldsymbol{\xi}$

Chemical model + associated uncertainty

$$\eta_r(\mathbf{x}) \cong \eta_{r,0} + \sum_{i=1}^N a_{r,i} x_i + \sum_{i=1}^N \sum_{j\geq i}^N b_{r,ij} x_i x_j$$

Physics model

$$\eta_{r}(\mathbf{x},\xi) = \eta_{r}(\mathbf{x}^{(0)}) + \sum_{i=1}^{m} \hat{\alpha}_{r,i}\xi_{i} + \sum_{i=1}^{m} \sum_{j=i}^{m} \hat{\beta}_{r,ij}\xi_{i}\xi_{j}$$

Predictions + associated uncertainty

$$\Sigma = \left[\sum_{r=1}^{n} \frac{1}{\left(\sigma_{r}^{\text{obs}}\right)^{2}} \left(\mathbf{b} \mathbf{x}_{0}^{*} \mathbf{x}_{0}^{*T} \mathbf{b} + \mathbf{a} \mathbf{x}_{0}^{*T} \mathbf{b} + \mathbf{b}^{T} \mathbf{x}_{0}^{*} \mathbf{a}^{T} + \mathbf{a} \mathbf{a}^{T} \right) + 4\mathbf{I} \right]^{-1}$$
$$\boldsymbol{\alpha}^{*} = \boldsymbol{\Sigma}^{1/2}$$

 k_1

 $\Phi(\mathbf{x}_{0}^{*}) = \min_{\mathbf{x}_{0}} \left\{ \sum_{r=1}^{M} \frac{\left[\eta_{r,0}^{\text{obs}} - \eta_{r}(\mathbf{x}_{0}) \right]^{2}}{\left(\sigma_{r}^{\text{obs}} \right)^{2}} + \sum_{n=1}^{N} \frac{\left(x_{0,n} \right)^{2}}{\left(\sigma_{n} \right)^{2}} \right\}$

*k*₂

- Model uncertainty constraining
- JetSurF 2.0 H2/CO submodel
 - 14 species, 41 reactions

Dataset 1: From Davis, et al. (2005):

	No.	P ₀ , P ₅ (atm)	Τ ₀ , Τ ₅ (K)	f
Laminar Flame Speeds	12	1-15	298	1.0-3.0
Ignition Delay Times	13	0.5-33	1000-2600	1.0-6.1
Flow Reactor Profiles	9	1.0-16	915-1040	0.3-1.0
Laminar Flame Profiles	2	0.047	400	1.9

Dataset 2:

From Burke <i>, et al.</i> (2010):	No.	P ₀ , P ₅ (atm)	<i>Τ</i> ₀ , <i>Τ</i> ₅ (K)	f
Laminar Flame Speeds	18	15-25	298	0.85 <u>-</u> 2.5

¹⁷ Sheen & Wang (2011)

Dataset 1 Knowledge prior to 2010

+ Burke, *et al.* (2010) Current knowledge

Weak constraint by experiments Strong constraint by experiments

JetSurF – A Jet Surrogate Fuel Model

JetSurF is a detailed chemical reaction model for the combustion of jet-fuel surrogate. The model is being developed through a multi-university research collaboration and is funded by the Air Force Office of Scientific Research. Project participants include

F. N. Egolfopoulos, Hai Wang		University of Southern California		
R. K. Hanson, D. F. Davidson, C. T. Bowman, H.		Stanford University		
Pitsch				
C. K. Law		Princeton University		
N. P. Cernansky, D. L. Miller		Drexel University		
W. Tsang		National Institute of Standards and Technology		
R. P. Lindstedt		Imperial College, London		
A. Violi		University of Michigan		
New Release:	JetSurF Version 2.0 – A working model for the combustion of <i>n</i> -alkane up to <i>n</i> - dodecane, cyclohexane, and mono-alkylated cyclohexane up to <i>n</i> -butyl- cyclohexane (<i>Release Date: September 19, 2010</i>)			
Old Releases:	Pases: JetSurF Version 1.1 – A interim model for the combustion of n-butyl-, n-propyl-, ethyl-, and methyl-cyclohexane and cyclohexane (Release Date: September 15, 2009)			

JetSurF Validation – Species Concentrations behind reflected shock waves

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, R. P. Lindstedt, A high-temperature chemical kinetic model of n-alkane oxidation, JetSurF version 1.0, September 15, 2009 (http://melchior.usc.edu/JetSurF/Version1_0/Index.html).

Plot stolen from Ron Hanson. Solid line: experiments; dashed line: JetSurF

Prediction Uncertainties in As-Compiled Model

Good nominal prediction with significant uncertainty!

Chemistry Model & Experimental Targets

- Modified JetSurF 1.0
 - 196 species, 1478 reactions

	No.	P ₀ , P ₅ (atm)	<i>Т_о, Т₅</i> (К)	f
Laminar Flame Speeds	4	1	353	0.8-1.4
Ignition Delay Times	11	1-4	1000-2600	0.5-2

	No.	P ₅ (atm)	Т ₅ (К)	f
OH, H ₂ O, CO ₂ , C ₂ H ₄ , CH ₃ Species Profiles	11	1.6-2.4	1365-1545 K	1

Predictions of As-Compiled and Uncertainty-Minimized Models

23

Effect on Flame Speed Predictions

Considering no experiments

Model constrained by species profiles

Model constrained by species profiles + flame speeds

Effect on Flame Speed Predictions

What did uncertainty minimization do?

Model constrained by species profiles

H+O₂↔O+OH HCO+H ↔CO+H, HCO+M↔CO+H+M CH+H₂↔CH₂+H CH,+O,↔HCO+OH CH,+O,↔CO,+2H CH₃+H(+M)↔CH₄(+M) CH₂+O↔CH₂O+H CH3+OH↔CH2,+H2O 2CH_e(+M)↔C_pH₆(+M) G₂H₂+H↔G₂H₂+H₂ C,H3±O,↔CH°CHQCHO+Q G₀H₄+O↔CH₆+HCO C₂H₄+OH↔C₂H₃+H₂O aC₂H_a+H(+M)↔G₂H_a(+M) Č_sH₆+H⇔aC_sH₅+H₂ PXG₅H₁₁+G₂H₅↔NG₇H₁₆ pG₄H₉+nG₃H₇↔NG₇H₁₆ NG7H16+H↔PXG7H15+H2 NG₇H₁₆+H↔SXG₇H₁₅+H₂

 $\begin{array}{c} \mathsf{H} + \mathsf{O}_{2} \leftarrow \mathsf{O} + \mathsf{O} + \mathsf{O} + \mathsf{H} \\ \mathsf{H} \mathsf{CO} + \mathsf{H} \leftarrow \mathsf{O} + \mathsf{H} \\ \mathsf{H} \mathsf{CO} + \mathsf{H} \leftarrow \mathsf{CO} + \mathsf{H} \\ \mathsf{H} \mathsf{CO} + \mathsf{H} \mathsf{C} \mathsf{O} + \mathsf{H} \\ \mathsf{CH} + \mathsf{H}_{2} \leftarrow \mathsf{CO}_{1} + \mathsf{H} \\ \mathsf{CH}_{3} + \mathsf{O}_{2} \leftarrow \mathsf{H} \mathsf{O} + \mathsf{O}_{1} + \mathsf{H} \\ \mathsf{CH}_{3} + \mathsf{H} (\mathsf{H} \mathsf{M}) \mathsf{C} + \mathsf{CO}_{1} + \mathsf{C} \mathsf{H} \\ \mathsf{CH}_{3} + \mathsf{O}_{2} \leftarrow \mathsf{CO}_{2} + \mathsf{C} \mathsf{H} \\ \mathsf{CH}_{3} + \mathsf{O}_{2} \leftarrow \mathsf{O}_{2} + \mathsf{C} \mathsf{H} \\ \mathsf{CH}_{3} + \mathsf{O}_{2} \leftarrow \mathsf{O}_{2} + \mathsf{C} \mathsf{H} \\ \mathsf{CH}_{4} + \mathsf{O}_{2} \leftarrow \mathsf{O}_{2} + \mathsf{C} \mathsf{H} \\ \mathsf{CH}_{4} + \mathsf{O}_{2} \leftarrow \mathsf{O}_{2} + \mathsf{H}_{2} \\ \mathsf{C}_{2} \mathsf{H}_{3} + \mathsf{H} \leftarrow \mathsf{O}_{2} \mathsf{C} \mathsf{C} + \mathsf{H}_{2} \\ \mathsf{C}_{2} \mathsf{H}_{4} + \mathsf{O}_{2} \leftarrow \mathsf{O}_{2} + \mathsf{H}_{2} \\ \mathsf{C}_{2} \mathsf{H}_{4} + \mathsf{O}_{2} \leftarrow \mathsf{O}_{2} \mathsf{H}_{2} + \mathsf{H} \\ \mathsf{C}_{2} \mathsf{C}_{2} \mathsf{H}_{1} + \mathsf{H} \\ \mathsf{C}_{2} \mathsf{H}_{2} + \mathsf{H}_{2} \\ \mathsf{C}_{2} \mathsf{H}_{3} + \mathsf{H} \leftarrow \mathsf{O}_{2} \mathsf{C}_{2} \mathsf{H}_{2} + \mathsf{H}_{2} \\ \mathsf{C}_{2} \mathsf{H}_{3} + \mathsf{H} \\ \mathsf{C}_{2} \mathsf{H}_{2} + \mathsf{H}_{2} \\ \mathsf{C}_{2} \mathsf{H}_{3} + \mathsf{H} \\ \mathsf{C}_{2} \mathsf{C}_{2} \mathsf{H}_{1} + \mathsf{H} \\ \mathsf{C}_{2} \mathsf{C}_{2} \mathsf{H}_{1} \\ \mathsf{H}_{2} + \mathsf{C}_{2} \mathsf{H}_{2} \\ \mathsf{C}_{2} \mathsf{H}_{2} + \mathsf{H}_{2} \\ \mathsf{C}_{2} \mathsf{H}_{2} + \mathsf{H}_{2} \\ \mathsf{C}_{2} \mathsf{H}_{3} + \mathsf{H} \\ \mathsf{C}_{2} \mathsf{C}_{2} \mathsf{H}_{1} \\ \mathsf{H}_{2} \\ \mathsf{H}_{2} \\ \mathsf{C}_{2} \mathsf{H}_{2} + \mathsf{H}_{2} \\ \mathsf{C}_{2} \mathsf{H}_{2} \\ \mathsf{H}_{2} \\ \mathsf{C}_{2} \mathsf{H}_{2} \\ \mathsf{H}_{2} \\ \mathsf{H}_{2} \\ \mathsf{H}_{2} \\ \mathsf{C}_{2} \mathsf{H}_{2} \\ \mathsf{H}_{2} \\ \mathsf{H}_{2} \\ \mathsf{C}_{2} \mathsf{H}_{2} \\ \mathsf{H}_{2} \\ \mathsf{H}_{2} \\ \mathsf{C}_{2} \mathsf{H}_{2} \\ \mathsf{H}_{2} \\ \mathsf{H}_{2} \\ \mathsf{H}_{2} \\ \mathsf{C}_{2} \mathsf{H}_{2} \\ \mathsf{H}$

CH₃, CH₂, secondary chain branching, fuel breakup

Model constrained by flame speeds

H chain branching

What did uncertainty minimization do?

"Our" Approach

Acknowledgements

Previous students/postdocs

- Xiaoqing You
- Baptiste Sirjean

Current students/postdocs

- David Sheen
- Enoch Dames
- Bing yang

Collaborators

- Stephen Klippenstein (ANL)
- Chung-King Law (Princeton)
- Fokion Egolfopoulos (USC)
- Elke Goos (DLR)

The JetSurF team

Ron Hanson (Stanford) Tom Bowman (Stanford) Heinz Pitsch (Stanford) Wing Tsang (NIST) Angela Violi (UMich) Peter Lindstedt (Imperial Col.) Nick Cernansky (Drexel) David Miller (Drexel)

Financial Support

AFOSR, AFRL, SERDP, DOE, NSF