

Predictive Theoretical Elementary Reaction Kinetics and its Role in Combustion Modeling

Stephen J. Klippenstein

Theoretical Elementary Reaction Kinetics

Potential Energy Surface Exploration

Ab Initio Electronic Structure Theory Stationary Points – Minima and Transition States Evaluate Energies and Rovibrational Properties

Predict Rate Constants for Individual Dynamical Steps

Transition State Theory (TST)

Evaluate Partition Functions

Tunneling, Hindered Rotors, Variational Effects

Predict Collision Induced Energy Transfer Rates

Collision Rate

Energy Transfer Distribution

Usually Empirical

Predict/Model Pressure Dependence

Master Equation -> Population vs. Time Represent with Kinetic Phenomenology

Team Effort

How to Calculate Rate Constants Accurately and Efficiently?

Ab Initio Transition State Theory Master Equation

Lawrence B. Harding Yuri Georgievskii James A. Miller

AITSTME Coding Team

Energy Transfer

Applications

Ahren Jasper

Judit Zador

Outline

1. Theoretical Studies Motivated by Modeling

- $CO + HO_2$, $H + HO_2$, $CH_3OH + HO_2$
- NNH Chemistry
- $CH_2 + O_2$
- $C_3H_6OOH + O_2$
- C_4H_9OH , C_4H_9O , $C_4H_9O + O_2$
- 2. Uncertainties
 - Electronic Energies
 - Vibrational Frequencies
 - Torsional Modes
 - Energy Transfer
 - Coupling of TST and Energy Transfer

CO/H₂/O₂ Oxidation: Ignition Delays in RCM

G. Mittal, C. J.
Sung, R. A.
Yetter, Int. J.
Chem. Kinet.
38, 516 (2006).

Uncertainty Analysis Highlighted Sensitivity to CO + HO₂ G. Mittal, C. J. Sung, M. Fairweather, A. S. Tomlin, J. F. Griffiths, K. J. Hughes, Proc. Comb. Inst. 31, 419 (2007).

$CO + HO_2 -> CO_2 + OH$

15

P_c = 15 Bar

 $T_c = 1028.5 \text{ K}$

С

0.6

0.8

1.0

H₂/O₂ at High Pressure

H + HO₂ Recombination

The Role of NNH in NO Formation and Control

NNH Lifetime – Discrepancy between value required for modeling and value predicted by theory

- NNH Mechanism for NO_x Formation Possibly important at low temperatures
- **1.** NNH + O_2
- **2.** NNH + O; NH + NO, H + N_2O
- **3.** $NH_2 + O_2 \rightarrow H_2NO + O$
- 4. Literature Review of NNH Lifetime and Thermochemistry
- 5. More accurate branching ratios for $NH_2 + NO$

S. J. Klippenstein, L. B. Harding, P. Glarborg, and J. A. Miller, Comb. Flame, 158, 774 (2011).

Modeling vs Expt NO O₂ and T Dependence

Experiments: F. Kasuya, P. Glarborg, K. Dam-Johansen, Chem. Eng. Sci. 50 (1995) 1455-1466.

Modeling vs Expt N₂O O₂ and T Dependence

4

Modeling vs Expt NO₂ O₂ and T Dependence

4

Modeling vs Expt NO H₂ and T Dependence

Mechanism Development CO-C3 Core Mechanism

Large scale update of Miller mechanism Include Pressure Dependent Rate Coefficients

Miller, Klippenstein, and Glarborg, work in progress

Pressure Dependent Reactions QOOH + O₂

Modeling indicates QOOH + O_2 Central to Low Temperature Chain Branching but essentially no Elementary Kinetics Studies $C_3H_6OOH + O_2$ Smallest Prototype Goldsmith, Green, Klippenstein, J. Phys. Chem. A, 116, 3325 (2012)

Butanol Chemistry

CEFRC Developing Mechanism for Butanol Combustion

Sensitivity Analyses Suggest Need for Further Study of a Few Key Reactions

C₄H₉OH Decomposition - Isobutanol C. W. Zhou, S. J. Klippenstein, J. M. Simmie, H. J. Curran, Proc. Comb. Inst. in press (2012); Paper 4D05

C₄H₉O Decomposition (α, β, γ, δ, and O radicals) P. Zhang, C. K. Law, S. J. Klippenstein, (2012).

 $C_4H_9O + O_2(\alpha, \beta, \gamma, and \delta radicals)$ O. Welz, J. Zador, S. J. Klippenstein, in progress (2012).

Sensitivity for Methanol (CH₃OH) Combustion Li, Zhao, Kazakov, Chaos, Dryer, Scire, IJCK, 39, 109 (2007) Validated Against Ignition Delays, Flame Speeds, Species Profiles

How to Improve for Engine Conditions - High Pressures/Non-Dilute?

Global uncertainty analysis

- Indicates reaction with dominant contribution to overall uncertainty
- Theoretical predictions of selected rate coefficients
- How accurate?

Klippenstein, Harding, Davis, Tomlin, Skodje Proc. Comb. Inst. 33, 351 (2011).

Variance Analysis for the Ignition Delay

Transition State Theory

Complete torsional sampling to find torsional minima

Torsional modes treated as uncoupled 1dimensional hindered rotors

Asymmetric Eckart Tunneling

Other modes – harmonic oscillators and rigid rotors

Change in ignition characteristics

Predicted Ignition Delays

How Accurate are our Predictions?

- Currently a Factor of 2-3 Uncertainty
- Compare with Experiments
 - Experience from many comparisons
- Analysis of uncertainty for underlying factors in theoretical analysis
 - Barrier Height Uncertainties
 - Vibrational Frequency Uncertainties
 - Anharmonicity Corrections
- Do Mechanisms Improve?
- Trying to reduce uncertainties to about 1.2-1.3

Reactions with Barriers

Combustion Thermochemistry Database

- HEAT (Stanton and coworkers); Wn (Martin and coworkers); Focal Point (Allen and coworkers)
 CCSD(T)/TZ optimizations and Frequencies
 CCSD(T)/CBS from CCSD(T)/AQZ',A5Z'
 CCSDT(Q)/DZ
 Core-Valence CCSD(T)/CBS; TZ and QZ
- Relativistic from DKH with CI/TZ
- DBOC from HF/cc-pVTZ
- Anharmonic corrections from B3LYP/6-311++G**
- Heats of formation relative to H₂, CH₄, H₂O, NH₃ 5 Heavy Atoms

Size of Individual Corrections

	Mean	MAD	RMSD	Variance
CCSDT(Q)	-0.36	0.42	0.62	0.46
Core-Valence	0.54	0.54	0.60	0.28
Anharmonicity	0.47	0.49	0.59	0.32
Relativistic	-0.16	0.16	0.20	0.11
DBOC	0.10	0.11	0.14	0.09

H, O, OH, O2, HO2, H2O2, O3, C, CH, CH2, 1CH2, CH3, CO. HCO. COH. CH2O. HCOH, CH2OH, CH3O, CO2, HOCO, HCO2, OCHOH, CH3O2, CH3OOH, C2, C2H2, H2CC, C2H3, CCH3, C2H4, CHCH3, C2H5, C2H6, CCO, 1CCO, HCCO, CH2CO, HCCOH, CH3CO, CH3CHO, CH2CHOH, CH3CHOH, C2H4OH, CH3CH2O, C2H5OH, CH3OCH3, OCHCHO, CH3C(O)OH, CH2CCH, CH3CCH, CH2CCH2, -CH2CHCH-, CH3CHCH2, CH3CH2CH3, N, NNH, NHNH, H2NN, NHNH2, NH2NH2, NO, HNO, NOH, H2NO, HNOH, H2NOH, N2O, NO2, NO3, CN, HCN, CNH, H2CN, HCNH, CH3N, CH2NH, CH3NH, CH2NH2, CH3NH2, NCO, HNCO, HCNO, NCOH

Number

Rovibrational Properties Reactions on C₃H₇ PES

Rovibrational Properties

Coupling of Uncertainties

Direct Sampling of Torsions

Pressure Dependence: Comparison with Expt

A Priori Predictions of Pressure Dependence

Trajectory Simulations of Energy Transfer A Priori $P(E' \rightarrow E)$ 1D Master Equation Assumes Strong Collider in J – Not Valid ΔE_{down} ΔJ_{down} P(E',J'->E,J)2-Dimensional Master Equation (E,J) (c) 14 0.9 0.8 12 calculated 0.7 10 0.6 </k_strong 0.5 P<\√> 8 0.4 6 best fit to P(J,J') п downward tail п 4 0.3 gamma=5 qamma=10 gamma=6 gamma=15 2 aamma=8 aamma=30 0.2 0 0.1 10 100 0.01 20 40 60 80 100 0 P(bar) ľ

Coupling of Uncertainties: n-propyl + O₂

normalized rate constant

C. F. Goldsmith, A. S. Tomlin, S. J. Klippenstein, Proc. Comb. Inst. 34, in press (2012) Paper 2D09

Funding

US-Department Of Energy

- 1. Chemical-Physics Program Chemical Dynamics in the Gas Phase
- 2. Argonne-Sandia Consortium on High Pressure Combustion Chemistry
- **3. Combustion Energy Frontier Research Center**
- 4. An Expert Ab Initio Transition-State-Theory-Based Master Equation Code

