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Green technologies and their equipment for electric power generation (windmills, solar

panels etc.) used to be very costly and inefficient. But experience (learning by doing; see

Arrow 1962) is bringing down the cost of manufacturing and installing the equipment and

increasing its efficiency to the point where it is starting to come into widespread use even

on a purely commercial basis without any government subsidies. This raises the question of

whether a transition from investing in traditional polluting power plants (coal or gas powered

etc.) to the new methods should be gradual or sudden, and at what point of cost differences

the transition should begin or end. This note attempts to model the issue in an optimal

control framework.

My main result is a “clean break” theorem, with two parts. First, at the point in time

when the transition becomes optimal, it should be a sudden and complete change from

polluting to green investment; no further traditional polluting power plants at all should be

installed thereafter. Second, the transition becomes optimal at a point where the cost of the

new technologies per unit of the power they generate is still higher than that for traditional

technologies, as a kind of “investment” in the learning by doing that will bring it down in

the future. The learning by doing is a benefit available to the society as a whole. Therefore

while the installation cost of the new clean plants exceeds that of the traditional polluting

kinds, a subsidy equal to (or perhaps just slightly greater than) the cost difference should

be offered to private manufacturers or owners of the clean plants.

I should clarify and emphasize up front that the sudden “clean break” transition applies

to construction of and investment in new plants; it does not mean abandonment of the

∗I thank Nicholas Stern and William Nordhaus for comments on an earlier, even more preliminary, version,
and Mark Meldrum and Lloyd Pinnell of Systemiq ( www.systemiq.earth ) for guiding me to the data.
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existing capital stock of polluting power generation plants and equipment. In fact the older

capital will continue to play a useful role in providing back-ups to cover interruptions in the

operation of solar and wind power. Gradually, as research into methods of storage and long-

distance transmission of cleanly generated power comes to fruition, this role will be needed

less and less. Also, as time progresses, the stock of polluting power generation capital will

gradually depreciate. It is an important part of planning for the ultimate transition to clean

energy that these two dynamics operate in harmony – ensuring that enough older stock

remains to provide the back-up capacity. I have not included optimization of this balance in

the model of this paper to keep the initial exploration simple, but hope to do so in subsequent

research.

The costs of clean power generation vary widely across countries or regions or situations

depending on the amount and strength of sunshine or the speed and persistence of wind,

whether the windmill farm is on land or offshore, whether the solar panels are in a large

“farm” or on residential rooftops, and so on. Costs of polluting technologies depend on the

type of fuel (relatively clean versus highly polluting coal and gas), on whether this is locally

available or transported over large distances at considerable costs including the added CO2

emissions in the process, and so on. Therefore the optimal time for the “clean break” can

differ greatly from one specific instance to another. But the data presented here suggest

that in an average-clean to average-polluting comparison, the switch should already have

occurred, perhaps some time between 2011 and 2015!

The model is deliberately simple, and generally leans toward the cautious side. The

statement and discussion of the assumptions in the next section suggests that the case for

making the clean break is even stronger than what the results of the model yield. However,

reality differs from both parts of the clean break theorem. Investments in dirty and clean

power generation coexist and continue. Some investments in solar farms and windmills

were made even when they was far more costly than coal and gas; otherwise the learning

by doing would never have got started. On the other hand, in many places the costs of

clean power generation are already lower than those of polluting kinds, and yet the latter

persist. Obviously, the real world is not optimally designed as a mathematician or industrial

engineer would have it; instead it is a complex political interaction involving voters, lobbyists,

entrepreneurs, and many other influences. Employment in coal-mining areas, contributions

from oil and gas companies and their suppliers who have huge sunk stakes in the activities of

exploration, mining, drilling and fracking, and such other considerations of private profit help
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explain the continuance of polluting power generation. Contractual obligations may also keep

polluting power plants in operation longer than firms or governments would freely choose.

Countering these influences, we have some pressure from the scientific community concerned

with climate change, and investments by some visionary entrepreneurs who looked sufficiently

far into the future. These forces launched research and development projects, often with some

public funding or subsidies, that gained momentum for the solar panel industry and led to

major technological improvements in electricity generation from windmills. The political

game continues, and I hope that the stark findings of this simple optimization exercise will

be an input that tilts the balance toward an overall social good.

The Model

Notation:

P = stock of traditional polluting power generation capital

I = investment in traditional power generation

K = stock of non-polluting “clean” power generation capital

G = investment in clean power generation

These entities are measured in the units of power they generate, say megawatts. We begin

at time t = 0 with P (0) > 0 and K(0) = 0.

The dynamics of the system is given by

Ṗ = I − δ P
K̇ = G− δ K

 (1)

where δ is the rate of depreciation which, in the absence of any clear reason to believe

otherwise, I assume to be the same for the two types of capital.1

I assume that the technology of power generation by traditional polluting methods (coal,

gas etc.) has stabilized, so the cost of installing each unit (measured in gigawatts of capac-

ity) of such investment is constant, denoted by φ. In reality there is some technical progress

(through R&D or other exogenous developments) as well as learning by doing in the tradi-

tional technology, but these forces are evidently faster in newer less-polluting technologies,

so the qualitative results of the model will remain valid. We can also expect the costs of

1If equipment embodying clean capital, being newer and having the benefit of more modern materials
and techniques, has a lower rate of depreciation, that will only further strengthen the results.
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these methods to rise over time, as their inputs are resources in finite supply, whose scarcity

will tighten over time, and which are in the long run subject to Hotelling’s rule that their

price should rise at the rate of interest. The data presented later support the assumption of

a constant φ as compared to a declining cost for clean technologies.

Clean power generation technologies (wind, solar etc.) become less costly over time,

through technical progress as well as learning by doing. I focus on the latter in the theoretical

model; the empirical work will recognize both. I specify the cost of installing each unit of

investment in clean technologies as ψ(K), where

ψ′(K) < 0, and ψ(0) > φ > ψ(∞) > 0 (2)

This cost decreases with K, i.e. the accumulated experience of previous investments (learn-

ing by doing). Initially the cost of clean investment exceeds that of polluting investment

(measured per unit of power they will generate), but if enough clean capital is accumulated,

this cost will fall below the level of the polluting investment.2

Then the consumption flow is given by

C = β (P +K)− γ P − φ I − ψ(K)G (3)

where β is the consumption generated by each megawatt of installed power, and γ is the

current cost of the polluting technology – expenses needed to counter the warming, health

problems caused by the smoke etc. I will give traditional technology some benefit of doubt

by assuming 0 ≤ γ < β; if γ > β that technology should never be used even if nothing else

is available.

The optimal control problem is to choose the time-path of the investments to maximize

the discounted present value of the utility of consumption:∫ ∞
0

U(C) e−ρ t dt (4)

where the utility function satisfies U ′(C) > 0, U ′′(C) < 0, and ρ > 0 is the rate of time-

discounting.

2I am assuming that as the clean capital depreciates, the learning it contributed is lost also. Instead,
perhaps gross accumulated past investment (

∫ t

0
Gdt) should be used as the argument of ψ. But that requires

introduction of a third state variable, which has proved intractable so far. In any case it would only further
strengthen the case for the transition, which this paper shows to be already quite strong.
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Clean Break Theorem

To solve the control problem I use Pontrjagin’s method (Pontrjagin et al. 1962), familiar to

economists from Cass and Shell (1976) and others. Define the current value Hamiltonian

H = U(C) + p (I − δ P ) + q (G− δ K) (5)

where p and q are the respective current value shadow prices of polluting and clean capital.

Then at each instant I and G are chosen to maximize H, and the shadow prices evolve

according to

ṗ = (ρ+ δ) p− ∂H/∂P = (ρ+ δ) p− U ′(C) (β − γ)

q̇ = (ρ+ δ) q − ∂H/∂K = (ρ+ δ) q − U ′(C) [β − ψ′(K)G]

 (6)

I begin by asking whether any transition can be gradual, i.e. whether a phase with both

I and G positive can continue for any interval of time. Temporarily assume this to be so.

Over this interval, the interior optimum should satisfy the first order (necessary) conditions

∂H/∂I = −U ′(C) φ− p = 0

∂H/∂G = −U ′(C) ψ(K)− q = 0

 (7)

Define the ratio of the two shadow prices s = q/p. Then the equations in (7) imply

s = ψ(K) / φ (8)

This defines a downward-sloping curve in (K, s) space, starting above 1 and eventually falling

below that level because of (2). This is shown in the attached figure.

Along any interval of positive investment in both technologies, the point in (K, s) space

would have to move along this curve, i.e.

ṡ / K̇ = ds/dK = ψ′(K) / φ (9)

From the dual dynamics equations (6), we have

ṡ

s
=
q̇

q
− ṗ

p
= U ′(C)

[
β − γ
p
− β − ψ′(K)G

q

]

Using the first-order conditions (7) in this,

ṡ

s
=
β − γ
φ
− β − ψ′(K)G

ψ(K)
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And log-differentiating the definition of s (8)

ṡ

s
=
ψ′(K) (G− δ K)

ψ(K)

Subtracting the second of these equations from the first, we have

0 =
β − γ
φ
− β

ψ(K)
+

δ K

ψ(K)

Multiplying through by ψ(K) and using the definition of s again,

s =
β − δ K
β − γ

(10)

This downward-sloping line can intersect the curve (8) only in isolated points (there are two

in the figure).

Thus my tentative assumption – coexistence of positive investment in both technologies

over an interval of time – implies two things: the point in (K, s) space has to move along

the curve (8), and it has to satisfy (10) at all times. But the two are compatible only at

isolated instants. Therefore the tentative assumption is invalidated. Any transition between

the technologies must be sudden and complete.3

An intuition for this can be presented as follows. Suppose at an instant of time t we

have exact indifference between investing in the two types of power generation, polluting

and green, so positive investment levels in both types are justified and both are undertaken.

Consider another instant t′ that is > t, however slightly so. The cost of the polluting

equipment is unchanged, but that of the green equipment has gone down because the positive

investment at t has generated some learning. That breaks the indifference at t′ in favor of

the green investment. Therefore positive investment in both types cannot coexist over any

interval of time of positive duration, no matter how small.

Let us examine what kind of transitions can occur. If we are in a phase where only the

clean technology is being used, its cost advantage can only increase over time because of the

learning by doing. Therefore it will remain optimal in the future - a transition from clean to

polluting generation should not happen.

3Since learning by doing brings with it some increasing returns to scale (non-convexities), first-order con-
ditions may not yield an optimum, and it would seem necessary to check second-order (Legendre) conditions.
However, here I am proving that the first-order conditions do not yield an interior optimum for other reasons,
and the true optimum is to be found by direct binary comparison of two extreme paths as argued below.
Therefore I do not need to be concerned with second-order conditions.
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Next consider a transition from polluting to clean investment at time T . Before this,

there was no investment in clean generation, so P (T ) > 0 and K(T ) = 0. There was no

learning by doing, so cost conditions were stationary at φ for polluting and ψ(0) for clean.

With unchanged cost conditions, if a transition is desirable at time T , it is also desirable at

any time t < T . Therefore if there is to be a transition from polluting to clean investment,

it should occur right at the outset t = 0, or else not at all. Which is better depends on the

ψ(K) function and its relation with φ.

Thus the optimization problem boils down to a simple binary comparison: (i) solve the

problem of optimal investment in polluting capital as if the clean technology didn’t exist, (ii)

separately solve the problem of investment in clean technology alone, keeping the polluting

capital starting at the given P (0) and then gradually depreciating, and (iii) compare the

discounted present values of the utilities from the two separate calculations. That is best

left to numerical work based on actual data for the two technologies. The answer will depend,

among other things, on the cost φ of the polluting generation, the path of the learning curve

ψ(K) for the clean technology, how dirty the polluting technology is (which determines the

negative externality parameter γ) and the initial level P (0) of the polluting capital stock.

However, one general principle can be stated. If ψ(0) ≤ φ, then clean technology dom-

inates polluting technology in all respects: less costly, and without the bad effects on con-

sumption via γ. Therefore by continuity, even if ψ(0) is raised slightly above φ, it will remain

optimal to transition to clean generation at once. This is the second part of the Clean Break

theorem stated above: It is optimal to make an “investment in the learning to come” that

clean generation provides, even if it is currently somewhat more costly.

To make these general propositions precise needs numerical solutions, and the answers

will vary across applications. In this paper I develop a simple and broad analysis to illustrate

and apply the theoretical analysis above. The data presented next are for averages of the cost

parameters. They suggest that in this average sense the optimal switch to green generation

is already overdue. But many variations around these averages should be investigated in

future research directed to specific contexts of contemplated switches.

Data Analysis

There exists a voluminous literature estimating learning by doing in various industries, dating

back to the classic paper of Wright (1936) on airframes. A recent review in the context of
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solar and wind generation is Castrejon-Campos, Aye and Hui (2022). My scope and method

in this paper are far simpler, but different in some crucial ways from much of the literature:

Following Wright, most of the literature specifies a power law. In my notation, starting

with an initial installed capacity K0, we are to have, for K > K0,

ψ(K) /ψ(K0) = [K /K0 ]−ω

This is unsatisfactory in at least two ways. (1) It does not allow the process to start with no

solar or wind capacity installed (K0 = 0): the cost is infinite at that point, so no investments

will be made, and no learning will occur. More importantly, it forces ψ(K) → 0 as K gets

ever larger, which is patently untrue: the LCOE tables in the Lazard publication show that

their projections for out-years level out at costs significantly greater than 0. (2) The decline

of LCOEs seen in the data from one year to the next is likely to be some combination of

exogenous technical progress through R&D or other influences, and learning by doing, and

as Nordhaus (2009) and others have argued, a specification attributing the entire effect to

learning by doing can yield very misleading results.

My specification avoids both these problems. I assume that ψ(K) declines from a high

value ψ at K = 0 and t = 04 toward its low asymptotic level ψ as a product negative

exponentials in t and K:

ψ(K)− ψ = e−σ t (ψ − ψ) e−θK

where the first factor on the right hand side reflects other exogenous technical progress and

the second is the learning effect. I transform this into an equation to fit to the data:

ln[ψ(K)− ψ ] = Constant− σ t− θ K (11)

Finally, although the existing literature uses more disaggregated data for longer time

periods, I focus on the last dozen years, when the cost reduction in clean power generation

have been most dramatic, and therefore most instructive for future planning, and I keep the

analysis at an aggregate level to bring out the main ideas in the simplest possible way.

The concept used in measuring and comparing the cost of electricity generation from var-

ious sources is the Levelized Cost of Electricity (LCOE), measured in dollars per megawatt-

hour. To get this, the capital cost of the equipment is spread out over its projected lifetime

4This is just the choice of origin on the time axis, and affects only the magnitude of the constant term in
the regression.

8



using standard discounted present value methods. To this are added the forecast costs of

materials, maintenance etc. in each year of the lifetime. Dividing the annual cost by the

output (taking into account the capacity of the plant and its forecast utilization) gives the

LCOE.

Tables 1 and 2 show the LCOEs for solar and wind for the years 2009-2021.5 A range of

high, average, and low estimates is shown. For the purpose of my illustrative calculations I

have used the average, but the other cases should also be experimented with. The costs vary

widely across countries and regions. The cost for wind power differs substantially between

land and offshore windmills. Therefore the optimal transition dates from polluting to clean

wind power will also depend on where the windmills are to be located. The theoretical model

above can readily be adapted and applied to calculations for these specific situations.

On the same aggregate and average basis, I guessed ψ to be 30 for solar and 35 for wind,

by looking at where the numbers in the out-year projections in the Lazard publication seemed

to be leveling off; variations around these guesses do not make a great deal of difference.

The results of the regressions are shown in Tables 3 and 4 for solar and wind respectively.

The overall fit is very good in both cases. For solar the coefficients θ and σ are very tightly

estimated. For wind they are similar in magnitude to solar but their standard errors are

much larger; in fact θ is not significantly different from 0. Of course many variations around

these numbers should be explored, both because of the uncertainty and guesswork involved,

and because of the variations across countries, specific locations and different sizes of solar

farms, windmills etc.

For settled LCOEs of polluting technologies (φ in the notation of my model), the data

(see the chart on p.9 of the Lazard publication cited in the Footnote just above) give a

range of $64 to $171 for coal (average $117), and $33 to $108 for gas (average $70). Most

importantly, the curves for these costs are much flatter over time, justifying my assumption

in the theoretical model.

5The cost data are from a Lazard publication LCOE Lazard, Version 16.0, April 2023,
available at www.lazard.com/research-insights/levelized-cost-of-energyplus/ as the file
lazards-lcoeplus-april-2023.pdf; see the charts on p.13 of the PDF file (p.10 in the document’s
page numbering at the bottom right of each page) for solar and wind, and the bar chart on p.7 of the PDF
(page numbered 4 in the document) for coal and gas. The solar and wind capacity data are from an Ember
publication, from the site ember-climate.org/data-catalogue/yearly-electricity-data/. This is a
very large file in .csv format, for numerous countries and years. I have used the capacity numbers for the
whole world, since learning about technologies spreads fast among the relevant engineering and equipment
manufacturing communities. Both data sets are publicly available and downloadable.
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As I have already emphasized, energy investment policies in the real world are not guided

solely, or even substantially, by aims of social optimization. But suppose we were starting

an optimization exercise at the highest costs ψ for clean technologies, in the year 2009 or

thereabout. The costs of solar and wind in that year were substantially higher than those of

coal and gas. It is not clear whether a switch would have been optimal at that time. But as

costs declined over time through R&D and other exogenous forces, a transition would become

optimal soon thereafter. Comparing the average path of the costs for solar and wind with the

average costs of polluting technologies, it seems that “on average” in 2023 it is already well

past time for the “clean break” from investment in coal and gas based electricity generation

to solar or wind. Since the clean break should occur while ψ(K) is still greater than φ, the

numbers in Tables 1 and 2 suggest that perhaps the optimal switch should have been made

some time around 2011-15! Of course calculations for specific instances of contemplated

switches should use the actual cost figures in each context; the theoretical model gives a

method for policy-makers to perform these calculations and choose policies and investments.
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Max Avg Min Max Avg Min

2009 394 359 323 23.6 2009 169 135 101 150.12
2010 270 248 226 41.59 2010 148 124 99 180.83
2011 166 157 148 73.91 2011 92 71 50 220.10
2012 149 125 101 104.05 2012 95 72 48 266.84
2013 104 104 91 140.89 2013 95 70 45 299.76
2014 86 79 72 179.92 2014 81 59 37 349.23
2015 70 64 58 227.72 2015 77 55 32 416.09
2016 61 55 49 299.86 2016 62 47 32 466.78
2017 53 50 46 394.93 2017 60 45 30 514.11
2018 46 43 40 488.47 2018 56 42 29 563.36
2019 44 40 36 590.69 2019 54 41 28 621.14
2020 42 37 31 716.39 2020 54 40 26 731.63
2021 41 36 30 849.06 2021 50 38 26 824.60

ln(Avg-30) Time ln(Capacity) ln(Avg-35) Time ln(Capacity)
5.7961 0 3.1612 4.6052 0 5.0114
5.3845 1 3.7279 4.4886 1 5.1976
4.8442 2 4.3028 3.5835 2 5.3941
4.5539 3 4.6449 3.6109 3 5.5866
4.3041 4 4.9480 3.5553 4 5.7030
3.8918 5 5.1925 3.1781 5 5.8557
3.5264 6 5.4281 2.9957 6 6.0309
3.2189 7 5.7033 2.4849 7 6.1459
2.9957 8 5.9787 2.3026 8 6.2424
2.5649 9 6.1913 1.9459 9 6.3339
2.3026 10 6.3813 1.7918 10 6.4316
1.9459 11 6.5742 1.6094 11 6.5953
1.7918 12 6.7441 1.0986 12 6.7149

SUMMARY OUTPUT SUMMARY OUTPUT

Regression Statistics Regression Statistics
Multiple R 0.9991 Multiple R 0.9896
R Square 0.9983 R Square 0.9793
Adjusted R Square 0.9980 Adjusted R Square 0.9752
Standard Error 0.0589 Standard Error 0.1731
Observations 13 Observations 13

ANOVA ANOVA
df SS MS F Significance F df SS MS F Significance F

Regression 2 20.2794 10.1397 2924.7613 1.4477E-14 Regression 2 14.1829 7.0914 236.5643 3.7992E-09
Residual 10 0.0347 0.0035 Residual 10 0.2998 0.0300
Total 12 20.3141 Total 12 14.4826

CoefficientsStandard Error t Stat Lower 95% Upper 95% CoefficientsStandard Error t Stat Lower 95% Upper 95%
Intercept 7.0396 0.3080 22.8544 6.3533 7.7259 Intercept 6.4183 4.3010 1.4923 -3.1649 16.0016
Time -0.2229 0.0243 -9.1890 -0.2770 -0.1689 Time -0.2288 0.1160 -1.9725 -0.4872 0.0296
ln(Capacity) -0.3915 0.0847 -4.6196 -0.5803 -0.2027 ln(Capacity) -0.3670 0.8401 -0.4368 -2.2388 1.5049

Table 3: Regression analysis - Solar Table 4: Regression analysis - Wind

Table 1: Solar cost and capacity data Table 2: Wind cost and capacity data

Capacity GW Capacity GWYear Year
LCOE - $/MW LCOE - $/MW

11



  

 
  

Fi
gu

re
 1

 –
 Im

po
ss

ib
ili

ty
 o

f i
nt

er
io

r o
p5

m
um

 
 

So
ur

ce
: A

ut
ho

r’s
 c

on
st

ru
c5

on
 fr

om
 c

al
cu

la
5o

ns
 in

 te
xt

 
    

𝜓
(0
)/
𝜙

 
 

𝛽
(𝛽
−
𝛾)

⁄
 

    
   

   
   

   
   

   
1 

 
𝜓
(∞
)
𝜙⁄

 
 

𝑠
=
𝜓
(𝐾
)/
𝜙
	  

 𝑠
=
(𝛽
−
𝛿𝐾
)
(𝛽
−
𝛾)

⁄
  

  𝐾
  

 




