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ABSTRACT

The nature of antimatter is examined in the context of algebraic quantum field theory. It
is shown that the notion of antimatter is more general than that of antiparticles. Properly
speaking, then, antimatter is not matter made up of antiparticles — rather, antiparticles
are particles made up of antimatter. We go on to discuss whether the notion of antimatter
is itself completely general in quantum field theory. Does the matter-antimatter distinction
apply to all field theoretic systems? The answer depends on which of several possible criteria
we should impose on the space of physical states.
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1 Introduction

Antimatter is matter made up of antiparticles, or so they say. To every fundamental particle

there corresponds an antiparticle of opposite charge and otherwise identical properties. (But
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some neutral particles are their own antiparticles.) These facts have been known for some

time — the first hint of them came when Dirac’s “hole theory” of the relativistic electron

predicted the existence of the positron. So they say.

All this is true enough, at a certain level of description. But if recent work in the

philosophy of quantum field theory (QFT) is any indication, it must all be false at the

fundamental level. After all, the facts about antimatter listed above are all facts about

particles. And at a fundamental level, there are no particles, according to some of the

best recent work in the philosophy of QFT.1 This would seem to render the concept of

antimatter irrelevant to matters of fundamental ontology. For if only particles can properly

be called “anti” or not, and particles are no part of QFT’s most basic ontology, it follows

that the most basic things in a field theoretic universe cannot be categorized into matter

and antimatter. Although “Matter comes in particle and antiparticle form. . . Particles are

emergent phenomena, which emerge in domains where the underlying quantum field can be

treated as approximately linear” (Wallace, 2008, p. 15).

Considered in light of some of the most important research in algebraic QFT (AQFT),

these matters are not so simple. We will show in what follows that there may be a fundamen-

tal matter-antimatter distinction to be drawn in QFT. Whether there is does not depend on

whether particles play any part in the theory’s fundamental ontology. Rather, it depends on

which criteria we use to determine which of the theory’s mathematically well-defined states

represent real possibilities, and which are surplus theoretical structure or (in the physicist’s

parlance) unphysical.

2 Antiparticles on the naive picture

A standard, naive picture of antimatter begins with the notion of antiparticle that emerges

from quantum mechanics (QM) governed by free relativistic wave equations. The simplest

1See Halvorson and Clifton (2001), Fraser (forthcoming), Malament (1996) and Halvorson and Clifton
(2002) for arguments to this effect. Theories which do admit particles have been put forward as empirically
equivalent to QFT (Dürr et al., 2005). Such Bohmian field theories (also called “Bell-type QFTs”) are
beyond the scope of this work, as we are concerned solely with the interpretation of QFT’s extant formalism.
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of these is the Klein-Gordon equation (KGE) for a spin-zero particle2

(� +m2)φ(x) = 0, (1)

and the simplest case of antiparticles arises when we consider its complex solutions.

A solution to the KGE can be expressed as a linear combination of plane waves

ϕk = exp(ikax
a) (2)

where the wave vector k satisfies the rest mass condition kak
a = m2. If ka is a future-

directed vector, then ϕk is called a “positive-frequency” wave;3 if it is past-directed, ϕk

is called “negative-frequency.” A linear combination of positive-frequency waves satisfying

the KGE is called a “positive-frequency” solution (or a positive-frequency scalar field), and

“negative-frequency” solutions are likewise defined as combinations of negative-frequency

waves.

What happens to a positive-frequency solution if we take its complex conjugate in the

position basis, i.e. map φ(x)→ φ∗(x)? A plane wave (2) becomes ϕ∗k = exp(−ikaxa). Thus

conjugating the plane wave is the same as taking ka to −ka. If ka is future-directed, −ka
is past-directed, so the complex conjugate of a positive-frequency solution is a negative-

frequency solution.

Normally to find the energy of a particle with wave vector ka in a reference frame with

unit normal na we take the inner product nak
a. If ka is past-directed, this gives a negative

result, so it seems that negative-frequency solutions must correspond to negative-energy

particles. But actually this needn’t be so, if we construct the Hilbert space of KGE solutions

properly. Quantum mechanically, the energy observable corresponds to the operator

Êφ =
~
i
na∇aφ. (3)

This might seem to strictly entail that negative-frequency solutions have negative energy.

But in fact, when forming a Hilbert space from the KGE solutions, we need to make a choice

of complex structure. That is, we need to define what it is to multiply a state vector φ by

2Where the D’Alambertian � = ∇a∇a.
3This because the frequency ω of a wave is proportional to the wave number k0.
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a complex number α, so that the set of solutions satisfies the axioms of a complex vector

space. One possible complex structure is just to define αφ in the “obvious” way as αφ(x),

that is, to just multiply the scalar field by the number α. But another possible choice — the

right choice — is to begin by decomposing φ(x) into a positive-frequency part φ+(x) and a

negative-frequency part φ−(x). Then the operation αφ can be defined as αφ+(x)+α∗φ−(x).4

If we use the correct complex structure instead of the (naively) obvious one, then for a

negative-frequency state φ we have

Êφ =
~
i
na∇aφ = −~

i
na∇aφ(x), (4)

which implies that a negative-frequency plane wave ϕ−k has the same energy as its positive-

frequency counterpart ϕk. In general, conjugate fields φ(x) and φ∗(x) will have the same

(positive) energy.5

But not all physical quantities remain the same when we conjugate. The KGE is sym-

metric under the group U(1) of phase transformations (φ(x)→ eiθφ(x)); we say that U(1) is

an internal symmetry or gauge group of Klein-Gordon theory. When we derive the existence

of a conserved current J from this symmetry, we find that

Ja(x) = φ∗(x)∇aφ(x)− φ(x)∇aφ
∗(x). (5)

Complex conjugation reverses the sign of Ja(x), so that φ(x) and φ∗(x) would appear to

carry opposite charge.6

All of this is relativistic QM; we haven’t constructed a Klein-Gordon QFT yet. To do so

we take the “one-particle” Hilbert spaceH of KGE solutions that we constructed by imposing

4If we impose the wrong (naively obvious) complex structure instead, we end up with a theory with no
lower bound on the total energy. This is both radically empirically inadequate (since we observe ground
states in nature) and contrary to rigorous axioms for quantum theories.

5Dirac addressed the analogous problem of interpreting negative-frequency solutions to his equation for
the relativistic electron by proposing his “hole theory.” This treated negative-frequency Dirac fields as
negative-energy electron states, and posited that all of the negative-energy states are occupied in the ground
state. An unoccupied negative-energy state will behave like a positron. This solution only works for fermions
because of the exclusion principle, and cannot be applied to boson field equations like the KGE. Furthermore,
the problem of negative-frequency solutions of the Dirac equation can also be solved by choosing the proper
complex structure, so Dirac’s method would seem to be outmoded.

6To derive a conservation law from a symmetry, one employs Noether’s theorem (Ticciati, 2003, pp.
36–53).
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our complex structure and build a symmetric Fock space F from it. From a heuristic point

of view, a Fock space is needed because relativistic systems can undergo changes in particle

number. Thus, we take the direct sum of all symmetric (because we’re dealing with bosons)

n-particle Hilbert spaces with the right complex structure:

F = C⊕H⊕ S(H⊗H)⊕ S(H⊗H⊗H)⊕ · · · (6)

where S(V) is the symmetric subspace of a Hilbert space V .

A state Ψ in Fock space will take the form of an ordered set

Ψ = [ξ, φ1, φ2, φ3, ...] (7)

with ξ a complex number and φi an i-particle7 Klein-Gordon wavefunction (i.e., an i-rank

symmetric tensor on H). From the vacuum state,

Ψ0 = [1, 0, 0, ...], (8)

we can construct a multi-particle Fock space state by introducing “creation” and “annihi-

lation” operators. For an i-particle KG wavefunction φi and a one-particle wavefunction f ,

S(f ⊗ φi), where S is the symmetrization operation, in effect composes φi with a particle of

wavefunction f . Thus the creation operator a∗(f) defined by

a∗(f)Ψ = [0, ξf, S(f ⊗ φ1), S(f ⊗ φ2)...], (9)

where S denotes symmetrization, transforms the state Ψ by adding a particle of wavefunction

f . Conversely, its adjoint a(f) removes a particle of wavefunction f , and so is called an

annihilation operator. Now, in the complex KG Fock space we can actually define two

different creation operators. The wavefunction f can be equally well represented by its

Fourier transform f(k). Define σ+f(k) to be f(k) for future-directed k, 0 else, and σ−f(k)

to be f(k) for past-directed k, 0 else. That is, σ+ gives us the positive-frequency part of f ,

while σ− gives the negative-frequency part. Then the “particle” creation operator a∗(σ+f)

generates a particle with a purely positive-frequency wavefunction, while the “antiparticle”

7Note that we do not yet discriminate between particles and antiparticles.

5



creation operator a∗(σ−f) creates a particle with a purely negative-frequency wavefunction

(and therefore with opposite charge).

Taking the product a∗(f)a(f) gives the self-adjoint particle occupation number operator

N(f), which represents how many particles are in the state f . Thus N(σ−f) (for instance)

tells us how many (anti-)particles there are in the negative-frequency state σ−f . Summing

N(σ−f) over all the f ’s in some orthonormal basis of H therefore gives us an operator

N− representing the total number of antiparticles; by summing N(σ+f) we can likewise

construct a total particle number operator N+. It is easy to verify that conjugating the field

(transforming φ→ φ∗) switches the expectation values of N+ and N−.8

So now we have a picture of free scalar QFT involving some countable entities (negative-

frequency particles) that we identify as antimatter, and some others (positive-frequency

particles) we identify as normal matter. In other words, we have an example of the matter-

antimatter distinction, but not yet a definition. What is it for a physical system to fall under

the concept of antimatter that physicists developed in response to theoretical predictions of

the sort just summarized?

The best way to begin, perhaps, is with platitudes. In our paradigm case, antimatter is

governed by the same equation of motion as normal matter, and has the same mass. And of

course it carries opposite charge. This last fact is of physical interest in large part because

when interactions are introduced (e.g. if the system is coupled to another quantum field),

it becomes possible for a system containing equal amounts of matter and antimatter (i.e.

equal numbers of particles and antiparticles, on the naive picture) to evolve into a system

containing none of either, without violating the conservation law (5).9 This sort of evolu-

tion is what physicists call a particle-antiparticle annihilation event, or “pair annihilation.”

Likewise, without violating charge conservation, an interacting system containing no Klein-

Gordon particles (i.e., one with the Klein-Gordon vacuum as a sub-system) could evolve into

one containing equal numbers of particles and antiparticles — “pair creation.”

So when we say that there is such a thing as antimatter, we are claiming that something

like the platitudes above holds of physically possible states in QFT. Note that one of our

8This explication draws heavily on (Geroch, 1973), and readers seeking further details should consult
these precise and highly readable notes.

9Of course, even an interacting system cannot evolve into one with no matter content, period – that
would violate mass-energy conservation. But an interacting system could evolve into one containing no
Klein-Gordon matter, i.e. one in which the Klein-Gordon vacuum Ψ0 is a sub-system.
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platitudes (that matter and antimatter carry opposite charge) depends on an ontological

assumption about the nature of charge. Specifically, it requires that we can make robust

sense of the notion that two charges are “opposite” properties, in a physically fundamental

sense. In the case of scalar charges like the charge of Klein-Gordon particles, this requires

that the sign of the charge be of absolute significance. Of course there is a simple sense in

which any real number has a sign; the important distinction here is that the sign of charge

must encode physically fundamental information, if it is a fundamental fact that charges

have opposites. This is not true in general even of conserved quantities; for example, we

assign no fundamental significance to the sign of momentum, nor is there any invariant sense

in which we can ascribe “opposite momentum” to any two particles. So what is it about

charge that entails that a given charge Q has a genuine opposite, −Q?

Of course, we are free to suppose that it is simply a brute physical fact that charges have

genuine opposites. But if we can find no relevant difference in theoretical role (within QFT)

between charge and those quantities which lack genuine opposites, such a posit would seem

to have very poor epistemic support.

We will see that these questions, as well as the question of whether the notion of anti-

matter can be generalized beyond that of antiparticle, admit of natural and foundationally

significant answers within the framework of superselection sector theory in AQFT. To ex-

plore this framework, we must now explain the important results of Doplicher et al. (1971,

1974), also called the DHR picture. Eventually we will argue on the basis of these results

that a physical system counts as antimatter in virtue of standing in a certain relation (the

relation of conjugacy) to normal matter. The question of whether the matter-antimatter

distinction is fundamental then becomes the question of whether this conjugacy relation

applies to fundamental physical systems.

3 The incompleteness of the naive picture

The naive textbook picture has given us a paradigm example of antimatter, but as yet no

definition. One might think that a definition of ‘antimatter’ must have as a prerequisite a

definition of ‘antiparticle,’ since antimatter is said to be matter made of antiparticles. If

this is accurate, and if recent arguments against particles are cogent, then strictly speaking

there is no antimatter. So if the naive textbook concept is committed to this assumption, it
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is a concept with no extension — though there may be some real systems that approximate

antimatter in various ways.

A brief look at the no-particles arguments will make this tension explicit. These argu-

ments come in two forms. The first, due to Wald (1994) and Halvorson and Clifton (2001),

appeals to the non-uniqueness of particle interpretations where they are available. Even

in cases like the KG field just discussed, a particle number operator can only be defined

with the help of a complex structure. But there are many complex structures available; to

determine which we should apply, we require a notion of which solutions possess positive

frequency. The breakdown of frequencies into positive and negative depends in turn on our

notion of which momentum vectors count as future-directed. But an accelerating observer

defines the future-directed momenta differently from an inertial observer. Therefore each

observer possesses a different complex structure, and it follows that they will ascribe differ-

ent numbers of particles to the same state (e.g., according to the accelerating observer there

are particles in the state that the inertial observer would call the vacuum). We may infer

that the number operator does not represent an objective (invariant) physical property of

field-theoretic worlds. But if there were particles, we would expect that the number of them

would be an objective fact. This problem worsens in curved spacetimes, where different

families of free-falling observers will generally possess inequivalent particle concepts.

The second sort of no-particles argument, due to Fraser (forthcoming), relies on the

nonexistence of particle interpretations in physically realistic QFTs. In QFTs with inter-

actions (non-trivial couplings between fields), there is no invariant way to decompose the

solutions into positive- and negative-frequency modes. So no Fock space can be constructed,

and no operator meets the physical criteria that we would expect of the particle number

operator. Since the actual world includes interactions between fields, we may conclude that

there are no particles if QFT is correct. Both of these arguments generalize straightforwardly

to undermine the physical significance of the antiparticle number operator.

Suppose we restrict ourselves to the physically unrealistic free QFTs that do admit (non-

unique) particle interpretations, and fix one such particle interpretation as the “right one.”

Does the textbook picture at least offer an unproblematic definition of antimatter that works

in this restricted context? The textbooks can offer the beginnings of an answer, but for a

complete definition we will need to supplement them with some mathematical foundations

of QFT.
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According to a standard reference work, an antiparticle is defined to be

. . . a subatomic particle that has the same mass as another particle and equal

but opposite values of some other property or properties. For example, the

antiparticle of the electron is the positron, which has a positive charge equal

in magnitude to the electron’s negative charge. The antiproton has a negative

charge equal to the proton’s positive charge. . . (Isaacs, 1996, p. 15)

Clearly, this definition is not intended to be precise, because it does not answer the question

of which properties are supposed to have equal but opposite values. On this question, Roger

Penrose provides more detail:

[F]or each type of particle, there is also a corresponding antiparticle for which

each additive quantum number has precisely the negative of the value that it has

for the original particle. . . (Penrose, 2005, p. 66)

So, by Penrose’s account, the antiparticle is characterized by having opposite values for “ad-

ditive quantum numbers,” and the same values for all other quantities. In the literature, the

phrase “(additive) quantum number” is typically meant to denote a superselected quantity

— roughly speaking, a quantity whose value cannot change over time. Unfortunately, there

is a great deal of confusion about which quantities are subject to superselection rules; and

indeed, some physicists deny that there are any fundamental superselection rules (Aharonov

and Susskind, 1967a,b). Thus, in order to establish the fundamentality of the antimatter

concept, we will need need a principled account of which quantities are superselected. We

provide such an account in Section 5. But before we discuss superselection rules, we note a

couple of further conceptual difficulties in understanding antimatter in terms of “negative”

values for quantities.

First, the description “the negative value of a quantity” does not always pick out an

objective relation between properties. To take a ridiculously simplified example, suppose

that we arbitrarily set the center of the universe in Princeton, NJ. Then Philadelphia is the

“anticity” of New York, because the vector from Princeton to Philadelphia is the negative of

the vector from Princeton to New York. But this notion of “anticity” depends on an arbitrary

choice of a center of the universe — had we made Hoboken the center of the universe, then

Philadelphia would not have been the anticity of New York. Surely, the relation of being

9



the antiparticle is supposed to be objective in the sense that it does not depend on some

arbitrary choice of origin.

In fact, for many physical quantities, the representation via real numbers carries surplus

structure; and, in particular, the property denoted by zero has no privileged status, nor

is there any interesting relationship between an object that has the value r and an object

that has the negative value −r. For example, an ice cube at −2 ◦F bears no particularly

interesting relationship to an ice cube at 2 ◦F. What we need, then, is some explanation for

why superselected quantities have an objective notion of “negative” that can underwrite the

antimatter concept.

But before we explain why superselected quantities have objective “negative” values,

we need to clarify what “negative” means — because it will not always be as simple as

applying a minus sign to a real number. For example, the possible values for the isospin of

a particle are half integers: 0, 1
2
, 1, 3

2
, 2, 5

2
, . . . (see Sternberg 1994, p. 181; Weinberg 2005,

p. 123). So, what is the negative, or opposite, of an isospin quantum number? Of course,

anyone acquainted with this quantity knows that a particle and its antiparticle have the

same isospin: e.g. both the proton and antiproton have isospin 1
2
. So, the isospin quantum

numbers do come equipped with a notion of the negative, or opposite; but this notion does

not coincide with the additive inverse of the corresonding half integer. We will thus need

to probe more deeply in order to find a principled method for determining the inverse of a

charge quantum number.

One prima facie tempting proposal is to suppose that quantum numbers come equipped

with group structure — i.e. there is an intrinsic notion of the neutral value, and also an

intrinsic notion of the inverse of a value. (In some groups, e.g. Z2, every element is its own

inverse.) But the example of isospin again shows that this idea is too simplistic. Indeed,

if the isospin quantum numbers were a group, then the value 1
2

should be its own inverse

(since an isospin 1
2

particle is its own antiparticle). But it is not true, simpliciter, that the

combination of two particles of isospin 1
2

is a particle of isospin 0. Rather, two isospin 1
2

particles can combine to form particles of isospin 0 or 1. Therefore, not all superselected

quantities carry grouplike structure.

If we remain within the naive picture, then there are insuperable obstacles to identify-

ing necessary and sufficient conditions for a quantity to be reversed (or preserved) by the

transformation from matter to antimatter. In order to make further progress, we will need
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some background in group representations and superselection theory. This will lead to a

picture of quantum numbers not just as free-floating physical quantities, but as labels for

representations of a gauge group.

4 Group representation magic

An antiparticle has opposite electric charge from its corresponding particle, but the two

particles have the same isospin. Why is one quantity inverted, but not the other? In fact,

the particle and antiparticle have “conjugate” values for all superselected quantities, but the

definition of the conjugate value depends on the nature of the underlying gauge group.

To see the relation between conjugation and the gauge group, we begin with the simpler

case of electric charge. Electric charge is simpler because the corresponding gauge group

U(1), the unit circle of complex numbers, is abelian. (Recall that with the topology inherited

from C, the group U(1) is also a compact topological space, so we call it a compact topological

group.) What are the possible values of quantized electric charge? We know that the answer

should be Z, the integers. We claim now that the answer, in general, is:

Group Duality (DUAL): The charge quantum numbers for a system with abelian gauge

group G are elements of the dual group χ(G). The binary group operation on χ(G)

corresponds to a physical operation of “adding” charges; the identity element 1 ∈ χ(G)

corresponds to the “neutral” charge; and the inverse γ−1 corresponds to the “opposite”

charge.

DUAL says not only that the cardinality of the set of quantum numbers is fixed by G, but

that the quantum numbers come equipped with group structure. We postpone our attempt

to give a physical motivation for DUAL. For now, we explain the concept of a dual group,

and show how to generalize DUAL to the crucial case of nonabelian gauge groups.

Let G be a topological abelian group. The dual group χ(G) of G consists of continuous

homomorphisms of G into the multiplicative group of complex numbers of unit modulus.

The binary group operation “◦” on χ(G) is defined by pointwise multiplication

(γ1 ◦ γ2)(g) = γ1(g)γ2(g), g ∈ G, (10)
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and we equip χ(G) with the topology of uniform convergence. It is then obvious that the

map 1 ∈ χ(G) defined by

1(g) = 1, g ∈ G, (11)

is the identity element of χ(G), and for each γ ∈ χ(G), the map γ defined by pointwise

complex conjugation

γ(g) = γ(g), g ∈ G, (12)

is an inverse for γ. Therefore, χ(G) is also a topological abelian group.

DUAL gives the right result in the case of electric charge, where the gauge group G ∼=
U(1). In this case the dual group χ(G) is isomorphic to Z, the additive group of integers

(Folland, 1995, p. 89). Furthermore, DUAL provides a mathematical explanation for the

quantization of charge: if the group G is compact (as we expect of gauge groups), then the

dual group χ(G) is discrete (Folland, 1995, Proposition 4.4).

To summarize, given a topological abelian group G, there is a naturally related group,

χ(G); and if G is the gauge group then χ(G) gives (in all known cases) the correct answer

for the set of quantum numbers as well as for the group structure on this set. But what is

the physical explanation for the correctness of this mathematical recipe? As yet, we have

no physical explanation for why the algorithm DUAL works. And to further complicate the

situation, this recipe does not work — without modification — for the case where the gauge

group G is nonabelian.

When the gauge group G is nonabelian, the dual group recipe G 7→ χ(G) does not yield

the correct quantum numbers. For example, the isospin gauge group is SU(2), but there

is only one continuous homomorphism of SU(2) into complex numbers — viz. the trivial

homomorphism that maps everything to 1 — and so the dual group of SU(2) is the trivial

(one element) group. In the case of isospin, DUAL gives a radically incorrect account of the

quantum numbers.

But a different, related algorithm does work for isospin. Let C = {0, 1
2
, 1, 3

2
, . . . } denote

the set of isospin quantum numbers. We define a binary operation “⊗” on C to represent

the composition of charges (isospins), so that X⊗Y is a system composed of charges X and

Y . Similarly, we define a binary operation “⊕” to represent a mixture of possible charges,

so that X ⊕ Y is a system which may have either charge X or charge Y ; the theory doesn’t
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tell us which. The charge 0 ∈ C is the privileged neutral quantum number in the sense that

X ⊗ 0 = X = 0⊗X, (13)

for all X. However, a composite X ⊗ Y is typically not itself a quantum number, i.e. is not

an element of C. For example, 1
2
⊗ 1

2
cannot be identified with any particular element of C;

rather,
1
2
⊗ 1

2
= 0⊕ 1. (14)

The general formula for composing isospin quantum numbers is given by the Clebsch-Gordan

formula:

X ⊗ Y =
X+Y⊕

Z=|X−Y |

Z (15)

(see Sternberg, 1994, p. 184), where the direct sum runs from |X − Y | to |X + Z| in incre-

ments of 1. The operation “⊗” is sometimes given a dynamical interpretation: e.g., when

two particles with quantum number 1
2

“collide”, then they annihilate to produce particles

with quantum numbers in the set {0, 1}. But this cannot be a strictly accurate understand-

ing of the formalism, which can after all be used to model free as well as interacting systems.

Instead, we should understand it as representing a relationship between the charges of com-

ponent systems and the charge of the composite system they form. This implies that the

charges of the component systems do not uniquely determine the charge of the composite

system; a system composed of two 1
2

charges may have either charge 0 or 1, depending on

other (non-charge) features of the component systems. Then, because charge quantum num-

bers are conserved by dynamical evolution, we can infer that any interaction will result in a

system with one of these charges.

The physicists’ magic recipe (Eq. 15) makes spectacular predictions about systems whose

gauge group is SU(2). In fact, this recipe and the related recipe for general SU(n) are

the abstract backbone of the standard model of particle physics. The operation “⊗” is

interpreted by physicists as the composition of charges, but the space of charges is not a

group under “⊗”. So the notion of charges as elements of a group does not survive the

transition from abelian to nonabelian symmetries.

We wish now to find some rationale for the apparently magical recipe (Eq. 15) for com-

posing isospin quantum numbers. The first step in this explanation — which we take up in
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the remainder of this section — is to show that the recipe follows from group representation

theory. The second step in the explanation — which we take up in the following section —

is to show that representations of the gauge group correspond to superselection sectors of

the quantum field theory.

Recall that Group Duality (DUAL) tells us that for a system with an abelian gauge

group G, the quantum numbers have the structure of a group, in particular the dual group

χ(G). The relationship between G and its dual χ(G), known as Pontryagin duality, does not

generalize straightforwardly for arbitrary compact groups.

In order to generalize DUAL, we need to move from group theory into category theory. A

category is given by a class of objects (e.g. A,B,C, . . . ) and a class of arrows or morphisms

(f, g, h, . . . ) that relate ordered pairs of objects. When A and B are related by arrow f , we

write f : A → B.10 An important sort of relation between categories is given by functors.

A covariant functor from C to D is a mapping that takes each object A of C and returns an

object F (A) of D, and another mapping that takes each arrow f : A→ B in C and returns

an arrow F (f) : F (A)→ F (B) of D. The arrow mapping is required to preserve composition

[F (f ◦g) = F (f)◦F (g)] and identity arrows [F (1A) = 1F (A)]. A contravariant functor is just

like a covariant functor except that it reverses the direction of arrows [if f : A → B then

F (f) : F (B)→ F (A)].

The notion of duality in DUAL has a natural category-theoretic expression. To make

this clear, let’s define the necessary terms in category language. Recall the group-theoretic

definition, for any topological abelian group G, of its dual χ(G). In category-theoretic

language, we have a mapping χ on the objects in the category AbTop of topological abelian

groups. This object map naturally extends to a contravariant endofunctor: for each group

homomorphism s : G → K, define a corresponding group homomorphism χ(s) : χ(K) →
χ(G) by setting

χ(s)(γ) = γ ◦ s, γ ∈ χ(K). (16)

Obviously, χ(s ◦ t) = χ(t) ◦χ(s), and so χ is a contravariant functor. In fact, χ2 is naturally

isomorphic11 to the identity functor on AbTop; in particular, for each object G of AbTop,

10For any two morphisms f : A → B and g : B → C, a category must also contain a third composite
arrow, g ◦ f : A→ C, and composition is required to be associative. For each object A there is also required
to be an identity arrow 1A : A→ A such that 1A ◦ f = f for all f : B → A, and g ◦ 1A = g for all g : A→ C.

11Given two functors F,G from category C to category D, a natural transformation α : F ⇒ G is a
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there is an isomorphism αG : χ2(G)→ G. This fact gives the precise sense in which χ(G) is

a ‘dual object’ of G (see Folland, 1995; Roeder, 1971, 1974)

But this form of duality does not extend to compact nonabelian groups. The major

difficulty with attempted generalizations is that there does not seem to be any way to

construct a contravariant functor χ on the category of compact groups, such that χ2 is

naturally isomorphic to the identity functor. So from mathematical considerations alone we

have reason to suspect that quantum numbers might not generally carry grouplike structure.

In order to generalize DUAL to arbitrary compact groups, we need a more sophisticated

notion of the dual of a group. Could DUAL be a special case of a rule that also applies

to nonabelian groups? For G = U(1), for example, we know that the integers parametrize

the continuous homomorphisms from G to complex numbers, and so they form the dual

group χ(G). But the integers also parametrize the irreducible unitary representations of G,

which are given in a Hilbert space by the phase transformations πz(θ) = eizθ, for θ ∈ G and

z ∈ Z.12 More generally, the dual group of an abelian group G is part of (viz. the irreducible

elements of) the category Rep(G) of the Hilbert space representations of G. So we can try

generalizing DUAL as

Group Duality 2 (DUAL2): For a system with compact gauge group G, the quantum

numbers have the structure of the category Rep(G), whose objects are unitary repre-

sentations of G on finite-dimensional Hilbert spaces and whose arrows are intertwiners

between these representations.

Thanks to the pioneering work of Tannaka, and more recent developments by Deligne, Do-

plicher, and Roberts, we now know the reason why there is no group that is naturally dual

to a compact nonabelian group. In short, a nonabelian group G does have a dual, but the

dual is not a group; it is the category Rep(G).

Before explaining at length why DUAL2 is true, we should emphasize its importance.

DUAL2 has much to teach us about the nature of antimatter. We’re looking for a notion of

collection of arrows
{αX : F (X)→ G(X) | X is an object of C},

such that if f : X → Y then αY ◦ F (f) = G(f) ◦ αX . We say that α is a natural isomorphism just in case
each αX is an isomorphism.

12A unitary representation of a group G is a pair (H,π) where H is a Hilbert space and π is a homomor-
phism of G into the group of unitary operators on H.
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“opposite” that applies to additive quantum numbers, so that we can explain why matter and

antimatter systems take on opposite values for these numbers. We’ve seen that the group-

theoretic notion of opposite (the inverse) is insufficient, since not all quantum numbers form

groups. But Rep(G) includes a more general notion of opposite: representations of G always

possess so-called conjugates. Indeed, for each Hilbert space H and basis {ei}, there is an

antiunitary mapping J defined by setting J(
∑

i ciei) = ciei. Then given a representation

(H, π) of G, we can define another representation π on H by setting π(g) = J−1π(g)J , for

all g ∈ G. In the case where the representation π is one-dimensional, i.e. a homomorphism

of G into U(1), the conjugate π is simply the map that assigns the conjugate scalar.

Since Rep(G) has an intrinsic notion of conjugates, we can use this to define the “op-

posite” of a quantum number. In the following section, we will see that each element of

Rep(G) also corresponds to a family (folium) of states, which allows us to define antimatter

as those states associated with the representation conjugate to that of matter states. Unlike

the naive picture, this definition makes no appeal to the notion of particle, and indeed it

applies to many states that lack particle interpretations. Along the way we’ll show why

additive quantum numbers are always conserved.

But this is somewhat premature. At this point all we have is a rule (DUAL2) that takes

as input a QFT’s internal symmetry group and outputs its charge quantum numbers. Why

does DUAL2 succeed?

5 What makes the magic work?

Group representation theory is like the magician’s hat of elementary particle physics. Once

the symmetry group is fixed, we need only consult our local group representation theorist

in order to obtain a complete classification of elementary particles, based on their charge

quantum numbers. We have seen that DUAL2 is the key step in this process, but not why it

works. Understanding the success of DUAL2 requires a grasp of superselection rules. DUAL2

is a natural consequence of the fact that, in AQFT, the physical property of a charge (or

additive quantum number, or superselection sector) corresponds to a representation of the

gauge group, i.e. an element of Rep(G). Furthermore, superselection theory also provides

a natural explanation of why all additive quantum numbers are conserved, since it is dy-

namically impossible for a state to change sectors. To see why, read on as we expound the
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details.

5.1 Superselection rules

We begin by recalling how the formalism of C∗-algebras makes precise the idea of a superse-

lection rule between quantum states. (For a detailed exposition, see Earman, forthcoming).

Roughly speaking, a superselection rule prohibits superposing two given pure states. This ef-

fectively tells us that the state vectors for a system are not contained in a single Hilbert space

(all elements of which can be superposed); rather, the states are contained in a collection of

two or more disjoint Hilbert spaces.

Recall that a C∗-algebra A is an algebra (i.e. it has both addition and multiplication

operations) over the complex numbers (i.e. there is a product cx for c ∈ C and x ∈ A) that

has an antilinear involution x 7→ x∗, and a norm ‖ · ‖ : A→ R+ relative to which

‖xy‖ ≤ ‖x‖ · ‖y‖, and ‖x∗x‖ = ‖x‖2,

for all x, y ∈ A. It is also assumed that A is complete relative to this norm (i.e. all Cauchy

sequences converge), and that A has a multiplicative identity 1. The motivating examples

of C∗-algebras are algebras of n× n matrices over complex numbers or, more generally, the

algebra B(H) of bounded linear operators on a Hilbert space H.

We call a positive, trace 1 operator on H a state on B(H), since such a density operator

can be understood as an assignment of expectation values to observables (self-adjoint oper-

ators) acting on H. More generally, if A is a C∗-algebra then a state on A is a linear map

ω : A → C such that ω(x∗x) ≥ 0 for all x ∈ A, and ω(1) = 1. A state ω on A is said to be

pure if ω = aρ+ (1− a)σ, with a ∈ (0, 1) and ρ, σ states of A, entails that ρ = σ = ω. The

standard gloss on this formalism is that if observables in A represent physical quantities,

then a pure state on A represents a physical possibility. A non-pure (mixed) state represents

an ignorance measure over possibilities.

The basic physical idea behind superselection rules is that the states of a system fall into

equivalence classes: {[ω] : ω is a state of A}. Within each equivalence class, or sector, the

pure states can be superposed to give another pure state. However, a ‘superselection rule’

forbids the superposition of states from different equivalence classes. In order for this to

work, the relevant equivalence relation must be
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Same sector. If ω and ρ are states of A, then we say that ω ∼ ρ just in case there is a

unitary operator u ∈ A such that ω(u∗xu) = ρ(x) for all x ∈ A. (Recall that u is

unitary iff u∗u = 1 = uu∗.)

That is, two states are in the same sector just in case there is a unitary mapping between

them.

Trivially, this explains why no state can ever change sectors. Quantum dynamics is

unitary, so if ω can change into ρ then a unitary mapping must exist. We say that sectors

are ‘dynamical islands’ which no state can ever leave.

Just like groups, C∗-algebras have Hilbert space representations. We can use this fact,

combined with a beautiful result of Gelfand, Naimark and Segal, to determine when two

states are in the same sector. A representation of a C∗-algebra A is a pair (H, π) where

H is a Hilbert space, and π is a ∗-homomorphism [an algebra homomorphism such that

π(x∗) = π(x)∗] of A into B(H). A representation (H, π) of A is said to be irreducible just in

case no non-trivial subspaces of H are invariant under π(A).

GNS Theorem. For each state ω of A, there is a representation (Hω, πω) of A, and a

vector Ω ∈ Hω such that ω(x) = 〈Ω, πω(x)Ω〉, for all x ∈ A, and the vectors {πω(x)Ω :

x ∈ A} are dense in Hω. This representation is unique in the sense that for any other

representation (H, π) satisfying the previous two conditions, there is a unitary operator

u : Hω → H such that uπω(x) = π(x)u, for all x in A.

The theorem says, in short, that every state on A has a unique “home” Hilbert space

representation of A. Using it, we can show that ω ∼ ρ just in case there is a vector ϕ in the

GNS Hilbert space Hω for ω such that ρ(x) = 〈ϕ, πω(x)ϕ〉, for all x ∈ A. Thus ω ∼ ρ tells

us, roughly, that ω and ρ are “vectors in the same Hilbert space.”

Now, ω ∼ ρ iff there is a unitary operator u : πω → πρ.
13 Thus, the superselection

sectors of states correspond to unitary equivalence classes of representations of A. In other

13Proof: If ω ∼ ρ then there is a unitary operator v ∈ A such that ω(a) = ρ(v∗av) for all a ∈ A. But the
vector πω(v)Ωω is cyclic in Hω for πω(A), and

ρ(a) = 〈πω(v)Ωω, πω(a)πω(v)Ωω〉,

for all a ∈ A. By the uniqueness of the GNS representation, it follows that (Hω, πω) and (Hρ, πρ) are
unitarily equivalent.

Conversely, suppose that there is a unitary operator u : Hω → Hρ such that uπω(a) = πρ(a)u for all
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words, for a system with observable algebra A, the ‘charge quantum numbers’ are names

for isomorphism classes of objects in the category Rep(A) of representations of A. Rep(A)’s

objects are Hilbert space representations of M , and the arrows from (H, π) to (H ′, π′) are

given by bounded linear operators from H to H ′ such that vπ(x) = π′(x)v, for all x in A.

According to the algebraic formalism, quantum numbers label dynamically isolated is-

lands of states, and hence conserved properties of physical objects. But if we remain at this

level of abstraction, then the quantum numbers have very little structure — not enough to

support the sorts of explanations provided by elementary particle physics. In particular,

the category Rep(A) does not have a tensor product, and so cannot support the notion of

composing superselection sectors or quantum numbers (which we’ve seen is needed in the

case of isospin). Indeed, consider how we might try to define the tensor product π ⊗ π′ of

two representations (H, π) and (H ′, π′) of a C∗-algebra A. It would seem natural to use the

tensor product H ⊗ H ′ of the Hilbert spaces. But the mapping A 3 x 7→ π(x) ⊗ π′(x) is

not linear, and so is not a representation. Other attempts to define the tensor product of

representations also end in failure.

In order to give the quantum numbers additional structure, we must place additional

physical constraints on our algebra of observables. The obvious place to look is special

relativity, since relativistic QFT ought to share its symmetries. To implement this, we’ll

need to associate our physical quantities (operators) with regions of Minkowski spacetime:

1) Assign to each double cone O a unital C∗-algebra A(O), representing the observable

quantities localized within O. We require that if O1 ⊆ O2 then there is an injection

i1,2 : A(O1)→ A(O2), and so the mapping O 7→ A(O) is a “net” of algebras. Since the

double cones of Minkowski spacetime are directed under inclusion, there is an inductive

limit C∗-algebra A generated by the A(O).

Since the theory is supposed to be relativistic, we assume that spacelike-separated observables

a ∈ A. Thus,

ω(a) = 〈Ωω, πω(a)Ωω〉 = 〈uΩω, uπω(a)Ωω〉 = 〈uΩω, πρ(a)uΩω〉,

for all a ∈ A. Since ρ is pure, the representation (Hω, πω) is irreducible, and it follows that there is a unitary
operator v in A such that πρ(v)Ωρ = uΩω. Clearly then

ρ(v∗av) = 〈uΩω, πρ(a)uΩω〉 = ω(a),

for all a ∈ A, and therefore ρ ∼ ω.
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are causally independent:

2) Microcausality: For self-adjoint a1 ∈ A(O1), a2 ∈ A(O2) and O1, O2 spacelike separated,

a1 and a2 commute.

We ensure covariance under the symmetries of relativity by insisting that

3) g 7→ αg is a representation of some group G of symmetries of Minkowski spacetime in

the group Aut(A) of automorphisms of the C∗-algebra A. Furthermore, αg(A(O)) =

A(g(O)) for each region O and symmetry g. We typically assume only covariance under

the translation group of Minkowski spacetime. We will explicitly note when we need

to assume covariance under the Euclidean group, or even under the Poincaré group.

4) The preferred vacuum state ω0 is invariant under all symmetries:

ω0(αg(a)) = ω0(a), ∀a ∈ A,∀g ∈ G.

These four conditions, taken as axioms, constrain the models of ‘algebraic quantum field

theory’ (see Haag, 1996). Unfortunately they don’t yet provide enough structure to introduce

tensor products of superselection sectors.

5.2 DHR representations

The C∗-algebra A will typically have many more states than are needed in physics. A

selection criterion is a further condition on which states are physically possible. For example,

Arageorgis et al. (2003, p. 181) argue that, since physical possibilities must assign expectation

values to the stress-energy tensor, only so-called Hadamard states are possible. Even if they

are correct, this may not be the only necessary condition. Which selection criteria are

needed to give a plausible space of possibilities is thus a vexed question. That said, selection

criteria can be very useful even in the absence of solid justification. By “pretending” that

the physical possibilities are limited by a given criterion, we can develop a physical concept

(such as additive quantum number) that covers at least some of the possibilities, and which

can then hopefully be generalized to include all of them.

Proceeding in this spirit, the most extensively investigated criterion is that proposed by

Doplicher et al. (1969a):
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DHR selection criterion: Let (H0, π0) be the GNS representation induced by the privi-

leged vacuum state ω0 of A. A representation (H, π) of A is DHR iff (1) for each double

cone O, the representations π0|A(O′) and π|A(O′) are unitarily equivalent; and (2) (H, π)

possesses finite statistics, that is, a finite-dimensional representation of the permuta-

tion group. Here O′ is the spacelike complement of O, and A(O′) is the C∗-algebra

generated by A(O1) with O1 a double cone spacelike separated from O.

The requirement of finite statistics is quite weak, since the standard Bose and Fermi rep-

resentations of the permutation group are both one-dimensional, and hence trivially satisfy

finite statistics. In fact, allowing finite statistics is liberal in the sense that it also permits —

but does not require — the existence of systems with parastatistics. So, all known physical

systems meet the finite statistics requirement.

The DHR states (the physically possible states according to the DHR criterion) are

elements of the folia of DHR representations. The intuitive idea is that the DHR states are

those that look identical to the vacuum state, except possibly in some bounded region of

spacetime. It is obvious that this criterion is too stringent to count as a necessary condition

for physical possibility. Charged states in electromagnetism, for instance, differ from the

vacuum at infinity due to Gauss’ law. However, the DHR criterion is the only proposal for

which we currently have a body of worked-out mathematical results. Even for the slightly

more liberal Buchholz-Fredenhagen criterion (Buchholz and Fredenhagen, 1982), we still

lack a full understanding of the category of superselection sectors. Thus, we will begin by

considering only possibilities meeting the DHR criterion.

Since A is a C∗-algebra, the collection of all of its representations are objects of a category,

Rep(A), whose arrows are intertwiners between representations. The DHR representations

of A form a sub-category DHR(A) of Rep(A), and this category has tensor products. [A cat-

egory with tensor products is called a tensor category. See (Halvorson and Müger, 2007) for

details.] Indeed, it can be shown that a representation (H, π) of A is DHR just in case there

is a particular sort (i.e. “localized” and “transportable”) of endomorphism ρ : A → A such

that (H, π) is unitarily equivalent to (H0, π0◦ρ), where (H0, π0) is the vacuum representation.

Furthermore, given two DHR representations, corresponding to two such endomorphisms ρ1

and ρ2, it can be shown that ρ1 ◦ ρ2 also corresponds to a DHR representation. This con-

struction gives us a notion of the tensor product of DHR representations — just what we

need for our additive quantum numbers. Finally the representations of our algebra have
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enough mathematical structure to represent the physical behavior we set out to describe.

We have a set of physical possibilities (the DHR states) which fall into natural families:

superselection sectors (DHR representations). Since states cannot change sectors, and sectors

(like quantum numbers) possess a tensor product, the sectors can be taken to correspond

to additive quantum numbers. But we still need to explain DUAL2. Why do the additive

quantum numbers have the same structure as the category Rep(G) of representations of the

gauge group? Since additive quantum numbers are just sectors, and the sectors form the

structure DHR(A), we can explain this by showing that Rep(G) and DHR(A) must be

equivalent categories.14

But we’re getting ahead of ourselves. We haven’t yet explained what it is for an AQFT

to possess a global internal symmetry given by a gauge group G. Once that’s out of the way,

we can go about justifying DUAL2. And then, at last, antimatter will appear.

5.3 Gauge groups and the Doplicher-Roberts reconstruction

The Doplicher-Roberts reconstruction theorem is a remarkable result, and essential to un-

derstanding DUAL2. It establishes that given an AQFT system, described in terms of its

algebra of observables A, we can derive the global gauge group G which leaves that system

invariant. We can then show that the irreducible representations of G are isomorphic to the

DHR representations of the observable algebra — exactly what we need to explain DUAL2.

The definition of an AQFT system is given purely in terms of an algebra of observables A

and a mapping O 7→ A(O) from bounded regions of spacetime to subalgebras of A. The self-

adjoint elements of A are supposed to represent measurable (at least in principle) physical

quantities, which take on values within the bounded regions O (which is why we have the

net mapping O 7→ A(O)). We might wonder what it is for such a theory so defined to have

a gauge group G, since normally all of a theory’s measurable quantities are left unchanged

by its internal symmetries. Thus every element of A should be left unchanged by G — so in

what nontrivial sense is there a symmetry at all?

To define the notion of a gauge group, we need to expand the formalism to include

unobservable, non-gauge-invariant structure. This structure is given by a field algebra F . A

field algebra is built like an algebra of observables — in particular, it has a local subalgebra

14Two categories C and D are said to be equivalent if there are functors F : C → D and G : D → C such
that G ◦ F = 1C and F ◦G = 1D.
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F (O) for every open region O — but it need not satisfy microcausality. A field algebra is

meant to signify a collection of theoretical quantities, the elements of F , which are assigned

values by the states but are not necessarily measurable, or covariant under the theory’s

internal symmetries. An AQFT then possesses an internal symmetry given by a gauge

group G just in case its algebra of observables, A, is given by the gauge-invariant part of

some field algebra F . That is,

A(O) = {a ∈ F (O) : g−1ag = a,∀g ∈ G}

for all open regions O.15

For all we’ve shown so far, an AQFT given by A may have no field algebra, or it may have

many. If so, there is no such thing as the gauge group for the theory, and DUAL2 becomes

nonsense. This is where the DR theorem comes in: it establishes that a given observable

algebra A possesses a unique distinguished field algebra F and gauge group G. The following

was first proved by Doplicher and Roberts (1990); a simpler proof appears in the appendix

to Halvorson and Müger (2007).

DR Reconstruction Theorem. Let A be an algebra of observables satisfying the axioms

of AQFT and ω0 a vacuum state on A. Then there exists a unique (up to unitary

equivalence) complete, normal field algebra F and gauge group G such that A is the

G-invariant subalgebra of F .

All that’s left is to show that Rep(G) and DHR(A) are isomorphic categories. The field

algebra F acts irreducibly on a Hilbert space H, but the subalgebra A ⊂ F of observables

typically leaves non-trivial subspaces of H invariant. In this case, H decomposes into a

direct sum of superselection sectors

H = H1 ⊕H2 ⊕ · · · ,
15More precisely, a field system with gauge group G consists of a net O 7→ F (O) of von Neumann algebras

acting on some Hilbert space H, a privileged vacuum vector Ω in H, and and also a compact gauge group
G acting (via unitary operators) on H. It is required that the gauge transformations act internally, that is
g−1F (O)g = F (O) for each double cone O and for each g ∈ G, and leave the vacuum invariant: gΩ = Ω
for all g ∈ G. There are some additional technical conditions that we can safely ignore at present —
e.g. the requirement of normal (Bose-Fermi) commutation relations between operators localized in spacelike
separated regions. See (Halvorson and Müger, 2007, p. 808)
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where A leaves each sector Hi globally invariant, and also the gauge group G leaves each

sector Hi globally invariant. (That is, if a ∈ A and ψ ∈ Hi, then aψ ∈ Hi, and similarly for

g ∈ G.) It then follows that, for each subspace Hi, the restriction of the observable algebra

A to Hi is a representation of A. To be precise, we define

πi(a) = api, ∀a ∈ A,

where pi is the orthogonal projection onto Hi. Then each (Hi, πi) is a DHR representation

of A. Furthermore, the restriction of the action of the gauge group G to Hi is a unitary

representation of the gauge group; indeed, it is equivalent to a direct sum of irreducible

representations of G, all with the same character. Thus, each sector Hi yields simultaneously

a DHR representation of A and a representation of the gauge group G, so we have a nice

one-to-one correspondence between objects of the category DHR(A) of DHR representations

and objects the category Rep(G) of representations of G. This correspondence is functorial

(Halvorson and Müger, 2007, pp. 808-815), and since quantum numbers are just labels for

DHR representations (i.e. for superselection sectors), DUAL2 follows.

At last all the formal machinery is in place to define the relation of conjugacy that holds

between matter and antimatter.

6 A quite general notion of antimatter

The naive textbook presentation has it that, at the fundamental level, a particle and its

antiparticle counterpart take on opposite values for all additive quantum numbers. We

have seen that in realistic QFTs there are no particles, and that additive quantum numbers

are just labels for superselection sectors, so really this definition is not given in physically

fundamental terms at all. We will show in this section that the real definition of antimatter

is as follows:

A matter system and its antimatter counterpart are given by states in conjugate

superselection sectors.

This definition applies at least to all states that satisfy the Buchholz-Fredenhagen (BF)

superselection criterion (Buchholz and Fredenhagen, 1982). It is more general than the

24



textbook definition, since all massive free particle states satisfy the BF selection criterion, and

some BF sectors have conjugates but no particle interpretation. If we accept the BF criterion,

the superselection sectors are all elements of category C that is provably equivalent to the

category Rep(G) of representations of a compact group. The notion of conjugacy employed

in our definition is a relation between elements of Rep(G). Irreducible representations of a

compact group always possess unique conjugates; therefore, so do sectors.

When a system’s gauge group is abelian, its sectors have the structure of a group, so

for any two sectors (charge quantum numbers) X and Y there is a product X, Y 7→ X ◦ Y ,

and an inverse X 7→ X. In this special case the definition of conjugate is obvious. But

in general, the product of sectors is a tensor product in a category: X, Y 7→ X ⊗ Y . We

cannot expect that the “conjugate” X of a sector will always satisfy the defining equation

X ⊗X = X ⊗X = 1 for group inverses.

What are we looking for in a notion of conjugation for sectors? It must explain antimatter

behavior — that is, the possibility of pair annihilation. This means it must be possible for

a system composed of states ωX , ωX from X and its conjugate sector X to evolve into an

element of the zero-charge vacuum sector, which we’ll call V . Since the composite state lives

in the tensor product of these sectors, X ⊗X, it must be physically possible for a state in

this tensor product to end up in V . Since it’s impossible for states to change sectors, this

means that V must be a part (that is, a subrepresentation) of X ⊗X.

In DHR(A), the vacuum representation is always given by the identity object of the

category; i.e. V = 1. For categories like DHR(A), if there is a monomorphism from A

to B, then B is either A or the direct sum of A with some other objects, and is therefore

a subrepresentation of A. Setting B = X ⊗ X and A = 1, the conjugacy relation must

ensure that X ⊗ X = 1 ⊕ (other representations). Thus it must ensure the existence of a

monomorphism from 1 to X ⊗X. Since conjugacy should be a symmetric relation, we must

require the same for X⊗X. Thus we define conjugacy as follows (Longo and Roberts, 1997):

Definition. Let C be a tensor ∗-category and let X be an object of C. A conjugate of X

is a triple (X, r, r) where X is an object of C, and r : 1 → X ⊗X and r : 1 → X ⊗X are

arrows satisfying the ‘conjugate equations’

1X ⊗ r∗ ◦ r ⊗ 1X = 1X , (17)

1X ⊗ r∗ ◦ r ⊗ 1X = 1X . (18)
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If every non-zero object of the category C has a conjugate then we say that C has conjugates.

If (X, r, r) and (X
′
, r′, r′) both are conjugates of X then one easily verifies that 1X′ ⊗

r∗ ◦ r′ ⊗ 1X : X → X
′

is unitary. Thus conjugates, if they exist, are unique up to unitary

equivalence.

Do conjugates exist in the relevant category, namely the category of sectors? Recall first

that in the category Rep(G) of representations of a compact group G, the conjugate of (H, π)

is defined by

π(g) = J−1π(g)J, ∀g ∈ G, (19)

where J is an antiunitary operator on H. In this case, a linear map r : 1 → π ⊗ π can

be defined by setting r(1) =
∑

i Jei ⊗ ei, and then extending linearly. Similarly, the arrow

r : 1→ π ⊗ π is defined by setting r(1) =
∑

i ei ⊗ Jei. Some elementary linear algebra then

shows that (π, r, r) satisfies the conjugate equations, and so Rep(G) has conjugates.

In the case of the category DHR(A) of superselection sectors, the existence of a conjugate

sector is guaranteed for any sector that can be reached from the vacuum by application of

field operators (Doplicher et al., 1969b). So, if a field net O 7→ F (O) is given a priori, then

every sector has a conjugate. Furthermore, even if only the observable net O 7→ A(O) is

given a priori, a sector has a conjugate iff it has finite statistics (Doplicher et al., 1971),

and the existence of a conjugate is also independently guaranteed for any sector with a mass

gap (Fredenhagen, 1981). Indeed, proving the existence of conjugate sectors is a key step

in the Doplicher-Roberts reconstruction, which shows that the category of sectors (i.e. the

category DHR(A)) is equivalent to the category of representations of the gauge group (i.e.

the category Rep(G)).

We’ve ended up with a rather orderly picture. Any state ω meeting the DHR condition

lives in a DHR representation. Every DHR representation has a unique conjugate. And

every state in the conjugate representation is conjugate to ω. Thus for any “matter” state

we might choose, if it is DHR we have a whole representation full of “antimatter” states

which can annihilate it while conserving all additive quantum numbers (that is, without

changing sectors) if the two states are composed.

We are now in a position to challenge some assumptions of the naive picture. Most

importantly, we can show that the concept of antimatter is not confined solely to particle

systems. Nothing about our definition of conjugate rules out non-particle systems — but
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can we show that there are QFT systems, with no particles, to which it applies?

We can. By the plausible argument of Fraser (forthcoming), no interacting QFT admits

a particle interpretation. One theory that falls under Fraser’s purview is the Yukawa interac-

tion between charged fermions and neutral bosons, used to describe the strong force as it acts

between mesons and nucleons. Summers (1982) has shown that the two-dimensional version

of this theory (Yukawa2, one of the few interacting QFTs which has been proven to exist)

satisfies the DHR condition. So a state of the Yukawa2 theory is a clear example of a state

with no particle interpretation, but which possesses conjugates — therefore, antimatter.

As noted in the Introduction, Wallace (2008) has claimed this is impossible.16 For Wal-

lace, the existence of antimatter requires a particle interpretation, and so antimatter only

exists in free QFT. This may seem strange even in the absence of our results, since anti-

matter is supposed to explain pair creation and annihilation events which can only occur in

interacting theories. Wallace might hold that his antimatter concept applies approximately

in the asymptotic scattering limit, and can therefore do the needed explanatory work with-

out applying exactly. But we find it much more satisfying to suppose that it is exactly true

that matter-antimatter annihilation events can occur in interacting QFT — and this is what

we have shown, using the machinery of DHR.

The restrictiveness of the DHR criterion is, we grant, an outstanding limitation for our

antimatter concept. Since charged states in electrodynamics are globally, as well as locally,

inequivalent to the vacuum, we cannot at present prove that these states possess conjugates.

That is a project for future research. The existence of conjugates has already been shown

for QFTs (in four spacetime dimensions) meeting the less stringent Buchholz-Fredenhagen

condition, which requires equivalence to the vacuum outside one spacelike cone (Doplicher

and Roberts, 1990, pp. 75–85). DHR superselection theory has also been generalized to the

case of curved spacetimes (see Brunetti and Ruzzi, 2007), allowing us to define antimatter

in yet another arena where particle interpretations fail. Since the nonexistence of conjugates

has only been proven for systems with infinite statistics, which no known physical systems

16Wallace uses ‘antimatter’ to describe a narrower set of cases than we do — for him, a system has
antimatter only if it has nontrivial superselection sectors. That is to say, antimatter for Wallace occurs
only when a particle and its conjugate live in unitarily inequivalent sectors; he does not count self-conjugate
systems as possessing antimatter. This difference amounts to a mere choice of words, we think, especially
since Summers’ Yukawa2 theory is nontrivial in Wallace’s sense. But we also think our choice of words is
closer to that of practicing physicists, who are happy to say that “the photon is its own antiparticle.”
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obey, we are optimistic that proofs of their existence can be generalized. Even if not, our

main point stands: the antimatter concept does not stand or fall with the particle concept.

It may (or may not) stand or fall with physically unrealistic restrictions on the space of

states, like DHR, in which case there may be no antimatter in nature. But the notion of

antimatter is in no way parasitic on the particle notion.

Of course, like Wallace’s, our antimatter concept also applies to free and asymptotic

scattering states. So if need be, we can co-opt Wallace’s claim that the concept of antimatter

applies at least approximately to non-DHR states which resemble free states. But at least

our definition is strictly more general than his.

Besides the conceptual dependence of antimatter on particles, another view that has been

aired in the literature (especially in Feynman’s popular writings) is that matter is antimatter

moving “backward in time.”

The backwards-moving electron when viewed with time moving forwards appears

the same as an ordinary electron, except it’s attracted to normal electrons — we

say it has positive charge. . . For this reason it’s called a ‘positron’. The positron

is a sister to the electron, and it is an example of an ‘anti-particle’.

This phenomenon is general. Every particle in Nature has an amplitude to move

backwards in time, and therefore has an anti-particle. (Feynman, 1985, p. 98)

Feynman’s thought is motivated by the behavior of antimatter in the case of free particles,

in which a particle and its antiparticle have opposite frequency. Since negative-frequency

particles have past-directed wave vectors, it appears natural to say that these particles are

moving “back in time.”

Is this picture borne out by our definition of conjugate? In order for this to hold, it would

have to be the case that a state and its conjugate have opposite temporal orientations. This

would require that, if a state ω has future-directed momentum, its conjugate state(s) must

have past-directed momentum. But, as shown in Corollary 5.3 of Doplicher et al. (1974),

all Poincaré covariant DHR sectors meet the spectrum condition, which requires that all

their states have future-directed momentum. We suspect that Feynman’s view arises from

ignoring that, when the proper complex structure is applied to free particle systems, an

antiparticle’s wave vector and its four-momentum have opposite temporal orientation. So,

in the standard form of free QFT as well as in all DHR sectors, both matter and antimatter
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systems always move “forward in time” by virtue of meeting the spectrum condition.

It remains to be seen whether an alternative (perhaps empirically equivalent) formal-

ism can be devised on which Feynman’s claim holds true, but it is straightforwardly false

according to the standard formalism. Further, superselection theory provides a plausible ex-

planation of its falsity. The relationship between matter and antimatter (conjugate sectors)

arises from a physical system’s global internal symmetries (its gauge group). But one would

expect any relationship between a particle and its past-directed counterpart to be grounded

in its external spacetime symmetries. Insofar as internal and external symmetries really are

different in kind and not just in name, we should expect Feynman’s claim to turn out false.

7 Conclusions

The dogma that antimatter is matter made up of antiparticles has been turned on its head.

We have shown that the concept of antimatter is strictly more general than this naive picture

would suggest, since it applies perfectly well to physical systems with no particle interpre-

tation. Decades of careful research in AQFT have shown that all DHR states, as well as

Buchholz-Fredenhagen states, possess antimatter counterparts. If these conditions together

were true of all physically possible states, the distinction between matter and antimatter

would be fundamental, in the sense of applying to all the fundamental constituents of the

relativistic quantum world.

As it turns out, these conditions are too restrictive to include all of the physical possibil-

ities. But there is also no known obstacle to generalizing the results of DHR even further.

So for all we know, our world may be made up of matter and antimatter even at the most

fundamental level of quantum field-theoretic description, the level at which we err when we

claim that there are particles.
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