
Introduction to Deep Beauty

Hans Halvorson

No scienti�c theory has caused more puzzlement and confusion than quantum theory. Begin-
ning in 1900, the theory developed in �ts and starts, and only found a consistent mathematical
framing when in 1932, John von Neumann published hisMathematische Grundlagen der Quanten-
mechanik. But even today, we struggle to understand the world as pictured by quantum theory.
Physics is supposed to help us to understand the world, and yet quantum theory makes it seem a
very strange place.

Onemight be tempted to push aside our puzzlement as resulting fromour clinging to a primitive
worldview. But our puzzlement is not merely a psychological obstacle; it is also an obstacle to the
development of physics itself. �is obstacle is encountered primarily in our attempts to unify quan-
tum theory and the general theory of relativity. As argued persuasively by Chris Isham, Lee Smolin,
and others, the primary obstacle between us and future physics is our own failure to understand the
conceptual foundations of current physical theories.

How then are we to make conceptual progress? What is the process by which we �nd a new
perspective, a perspective in which previously puzzling phenomena �nd a place in an intelligible —
and perhaps beautiful — structure?

We do not wish here tomake prescriptions, or to claim that conceptual progress can be achieved
in only one way. But this book begins with the Ansatz that conceptual progress might be achieved
through free creations of the human intellect. And where are we to �nd this free creative activity?
According to a distinguished tradition, beginning with the philosopher Immanuel Kant and run-
ning through the philosopher-mathematicians Gottlob Frege and L.E.J. Brouwer, the mathematical
sciences are in the business of constructing new and “fruitful” concepts. �us, this book begins
from the assumption that creative developments in mathematics might catalyze the conceptual ad-
vances that enable us to understand our current physical theories (in particular, quantum theory),
and thereby to promote future advances in physics.

Since the guiding theme of this book is methodological, rather than thematic, its chapters are
naturally written fromdiverse perspectives—uni�ed only by the attempt to introduce new concepts
that will aid our understanding of current physics, and the growth of future physics. Some of our
authors are mathematicians (Conway, de Groote, Kochen), some mathematical physicists (Baez,
Coecke, Döring, Isham, Landsman, Lauda, Summers), some theoretical physicists (Brukner, Dakić,
Hardy), and some philosophers (e.g. Bub, Redei). But regardless of their professional a�liations,
each author takes an interdisciplinary approach that combines methods and ideas from physics,
mathematics, and philosophy. In the remainder of this introduction, we will brie�y overview the
various chapters and their contribution to the ongoing task of making sense of the physical world.
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1 Beyond Hilbert space
Quantum theory was born from a failure, namely the failure of classical mechanics to provide accu-
rate statistical predictions (e.g. in the case of blackbody radiation). Indeed, it was Einstein who saw
clearly — in the years between 1900 and 1905 — that the framework of classical physics required a
major overhaul. But unlike the theory of relativity, the quantum theory did not result from a single
stroke of genius. Rather, the following three decades witnessed a prolonged struggle by some of the
century’s greatestminds, includingNiels Bohr, Arnold Sommerfeld,Max Born,WernerHeisenberg,
Erwin Schrödinger, and Paul Dirac. �roughout this period of time, the developing “quantum” the-
ory was not much more than a cobbled together set of statistical rules of thumb that provided more
accurate predictions than classical statistical mechanics.

In the second half of the 1920s, these struggles yielded two major mathematical advances: �rst
with Schrödinger’s introduction of the wave mechanical formalism, and second with Heisenberg’s
introduction of matrix mechanics. But it was only in 1932 that these two advances were uni�ed, and
these new statistical recipes were providedwith a systematic theoretical underpinning. In a stroke of
mathematical genius, John von Neumann axiomatized the theory of mathematical spaces equipped
with linear structure and an inner product, a type of space that was �nding extensive use by David
Hilbert’s school inGöttingen. When such a space is topologically complete (i.e. contains limit points
for all Cauchy sequences), then von Neumann called it a Hilbert space. von Neumann then went
on to show how vectors in a Hilbert space can represent the states of quantum systems, and linear
operators on a Hilbert space can represent the quantities, or “observables” of the system. With von
Neumann’s formalism in hand, quantum theorists had a precise mathematical justi�cation for their
statistical recipes. Quantum theory had entered the domain ofmathematical physics.

However, von Neumann’s formalization of quantum theory has yielded a false sense of concep-
tual clarity. For von Neumann’s formalization pushes back, but does not solve, the basic interpretive
problems of quantum theory. In particular, von Neumann’s formalism provides accurate statistical
predictions, but only if the formalism is severly limited in its application. Indeed, we still do not
know how to apply quantum mechanics to individual systems, nor to macroscopic systems, nor, a
fortiori, to “observers” like ourselves.

Furthermore, although theHilbert space formalism of quantum theory served as the framework
for some of the 20th century’s greatest scienti�c acheivements (e.g. the standard model of particle
physics), it is not clear that it will prove serviceable in the attempt to unify quantum theory and the
general theory of relativity. In fact, according to some notable physicists — e.g. Penrose, Isham (see
his paper in this volume) — the Hilbert space formalism might itself be implicated in our seeming
inability to �nd a conceptual uni�cation of our best two physical theories.

It is with these facts in mind that the authors of this book engage critically with the very mathe-
matical foundations of quantum theory. In fact, not a single one of the authors of this book accepts,
uncritically, the “standard formalism” (i.e. the Hilbert space formalism) as a background framework
with which to pursue conceptual and empirical questions. Rather, a consistent theme of this volume
is that we need to think creatively, and not just creatively within the current framework, but we need
to think creatively about how to transcend, or at least re-envision, the current framework.

But, as mentioned before, the authors of this volume approach this task from a broad range of
perspectives. Several of our authors (e.g. Baez and Lauda, Coecke, Döring, Isham, Landsman et al.)
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attack the problem bymeans of the tools of category theory— the theory ofmathematical structures
due primarily to Samuel Eilenberg and Saunders Mac Lane. Others (e.g. Redei, Summers) make
extensive use of the theory of operator algebras, a theory originally developed by von Neumann
himself, and which has found application in formalizing quantum �eld theory and (deformation)
quantization theory. Yet others (e.g. Brukner, Hardy) prefer to reduce mathematical assumptions to
a bare minimum, in the interest of displaying more vividly the physical content of quantum theory
and more general probabilistic theories. �us, while the underlying motivations are analogous, the
tools employed are quite diverse.

2 Categorical approaches to quantum theory
In recent years, category theory has found many uses in physics, and indeed in many of the exact
sciences. �is volume contains a representative sample of cutting edge uses of category theory in
the foundations of physics.

In this book, three sorts of category theoretic approaches to the foundations of physics are rep-
resented: an n-categorical approach (Baez and Lauda), a monoidal categorical approach (Coecke),
and a topos theoretic approach (Döring, Isham, Landsman et al.). Anyone who is acquainted with
category theory will recognize immediately that these approaches need not be seen as opposed, or
even as disjoint. Indeed, these approaches are in many ways mutually reinforcing, and might even
some day be uni�ed (e.g. by some notion of a weak monoidal n-topos).

2.1 n-categorical physics
In their magisterial “A prehistory of n-categorical physics,” John Baez and Aaron Lauda recount the
ways in which n-category theory has entered into physics, and they discuss many of the ways in
which n-categories might play a role in the physical theories of the future. But why, you might ask,
should we think that n-categories are a good place to look for some new insight into the very basic
structures of the physical world? As Baez and Lauda point out, the theory of n-categories is itself
based on a perspective-changing idea: the idea that what might be seen, from one point of view, as
an object, might be seen, from another point of view, as a process. For the simplest example of this
“Copernican revolution” of mathematical framework, consider the example of a group, i.e. a set G
equipped with a binary product and an identity element e ∈ G satsifying certain equations. Since we
so frequently think of categories on themodel of concrete categories (i.e. categories of sets equipped
with structure), it comes as a bit of surprise to realize that a group is itself an example of a category.
In particular, a group G is a category with one object (call it whatever you wish, say ∗), and whose
arrows are elements of G.

Such a change of perspective might seem rather minor — but we should not minimize the
amount of insight that can be gained by seeing a familiar object in a new guise. For example, once
we see a group as a category, we can also see a group representation as a certain sort of functor,
viz. a functor into the category HILB of Hilbert spaces. But now these group representations them-
selves naturally form a category, and we can consider the arrows in this category — usually called
“intertwiners.” With this new perspective on groups, Baez and Lauda point out that Feynman di-

3



agrams and Penrose spin networks are both examples of categories of group representations with
intertwiners as arrows.

Baez and Lauda go on to discuss some of the most interesting recent developments where cat-
egory theory, and n-category theory in particular, promises to open new vistas. Among these de-
velopments, they discuss topological quantum �eld theories and quantum groups. �ey also brie�y
discuss Baez’ own “periodic table” of n-categories, which neatly characterizes the zoology of higher
categories.

2.2 Quantum theory in monoidal categories
As brie�y mentioned above, the category HILB of Hilbert spaces plays a central role in quantum
physics. We now expect, however, that quantum theory will play a central role in the computation
theory of the future. A�er all, physical computers aremade of objects that obey the laws of quantum
mechanics.

It is well known that a quantum computer behaves di�erently from a classical computer; and it is
the di�erences in behavior that account, e.g., for the fact that a quantum computer should be able to
solve some problems more e�ciently than any classical computer. But theoretical computer science
is wont to abstract away from the nitty gritty details of physical systems. In most cases, the com-
puter scientists needs only know the structural properties of the systems at his disposal; it is these
structural properties that determine how such systems might be used to implement computations
or other information theoretic protocols.

It is no surprise, then, that theoretical computer scientists have led the way in describing the
structural features of quantum systems. It is also no surprise that theoretical computer scientists
have found it useful to use notions from category theory in describing these structures.

In “A universe of processes and some of its guises,” BobCoecke provides a blueprint of a universe
governed by quantum mechanics. Intriguingly, however, we see this universe through the eyes of a
computer scientist: we do not see waves, particles, or any other concrete manifestation of physical
processes. Rather, by means of a diagrammatic calculus, Coecke displays the very structures of the
processes that are permitted (and forbidden) by the laws of quantum theory.

What is perhaps most striking about Coecke’s approach is the sheer ratio of results to assump-
tions. From an extremely spartan set of assumptions about how processes can combine (both verti-
cally and horizontally), Coecke is able to reproduce all of the central results of quantum information
science (in a broadly construed sense which includes “von Neumann measurement”).

Another noteworthy aspect of Coecke’s chapter is his discussion of the relation of categorical
quantum mechanics (in its monoidal category guise) to other traditional approaches to the math-
ematical foundations of quantum mechanics (e.g. quantum logic, convex sets, C∗-algebras, etc.).
Here we get a “compare and contrast” from a researcher who has worked on both sides of the fence
— �rst as a member of the Brussels school (directly descended from the Geneva school of Jauch and
Piron), and more recently as a co-founder (with Samson Abramsky) and leader of the categorical
approach to quantum computation. �us, this chapter is absolutely manadatory reading for anyone
interesting in the fate of our attempts to understand the formalism of quantum theory and its utility
in describing the processes that occur in our world.
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2.3 Quantum theory in toposes
What is so radical about quantum theory? Perhaps the �rst thing to spring tomind is indeterminism:
quantum theory describes a world in which the future is not determined by the past. With a bit
more sophistication, onemight claim that the most radical feature of quantum theory is nonlocality:
quantum theory describes a world in which there are subtle dependency relations between events
that occur in distant regions of space.

Another suggestion, originally put forward byBirkho� and vonNeumann (1936), and later taken
up by the philosopher Hilary Putnam (1968), is that quantum theory overturns the laws of classical
logic. According to this proposal, the rules of classical (formal) logic— in particular the distribution
postulate (of conjunction over disjunction) — lead to conclusions in con�ict with the predictions
of quantum theory. �us, the new physics requires a revolution in logic. Indeed, Putnam went on
to claim that quantum theory’s relation to logic is directly analogous to general relativity’s relation
to geometry: just as general relativity forces us to abandon Euclidean geometry, so quantum theory
forces us to abandon classical logic.

But this proposal has not found many advocates — even Birkho�, von Neumann, and Putnam
eventually abandoned the idea. Nor has quantum logic catalyzed progress within physics, or sug-
gested routes towards the uni�cation of quantum theory and general relativity. Even if quantum
logic has not been shown to be wrong, it has proved to be mathematically sterile: it fails to link up
in interesting ways with mainstream developments in mathematical physics.

�e central motivating idea behind quantum logic is that the quantum revolution is a thorough-
going conceptual revolution, i.e. that it requires us to revise some of the constitutive concepts of our
worldview.�e idea itself is intriguing, and perhaps even plausible.�us, we turn with great interest
to a very recent proposal by Jeremy Butter�eld and Chris Isham. According to the Butter�eld-Isham
proposal, quantum mechanics requires us not only to replace classical logic, but the entire classical
mathematical universe — as articulated in 20th century mathematical logic and set theory — with
a more general universe of sets, namely a topos. It is true that such a replacement would also ne-
cessitate a replacement of classical logic; but not, à la von Neumann, with a non-distributive logic.
Rather, the internal logic of a topos is intuitionistic logic, where the law of excluded middle fails.

�ree of the chapters in this book— by Döring, Isham, Landsman, et al. — push the Butte�eld-
Isham idea even further. As we will see, the underlying idea of these approaches is strikingly similar
to Putnam’s, although it is executed within an in�nitely richer and more fruitful mathematical con-
text.

�e chapters in our book represent two distinct approaches to using topos theory in the founda-
tions of physics: the approach of Döring and Isham, and the approach of Heunen, Landsman, and
Spitters. (Both approaches have been developed extensively in the literature, and we refer the reader
to the bibliographies of the chapters in this book.) Although there are several divergences in im-
plementation between the Döring-Isham approach and the Landsman-Heunen-Spitters approach,
the underlying idea is similar, and in both cases would amount to nothing less than a Copernican
revolution.

�e idea of adopting a new mathematical universe is so radical and profound that one cannot
appreciate it without immersing oneself in these works. [Of course it would also help to spend
some time learning background rudiments of topos theory; for this we recommend the book of
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Mac Lane and Moerdijk (1992).] Rather than attempt to summarize the content of these chapters,
we recommend that the reader begin by reading Isham’s chapter, which provides a lucid motivation
and discussion of the framework. �e reader may then wish to proceed to the more technically
demanding chapters by Heunen et al. and by Döring. Finally, in reading Döring’s article, the reader
can gain further insight by referring to de Groote’s article, which carefully articulates some of the
background mathematics needed to generalize familiar notions from the classical universe of sets
to the quantum topos.

3 Operator algebras
Since the 1960s it has been appreciated that the theory of operator algebras (especially C∗ and von
Neumann algebras) provides a natural generalization of the Hilbert space formalism, and is es-
pecially suitable for formalizing quantum �eld theories, or quantum theories with superselection
rules. More recently, operator algebras have been applied to the task of clarifying conceptual issues.
In this vein, we point especially to thework on non-locality carried out by Summers andWerner (see
Summers 1990), and the work on quantum logic carried out by Redei (1998). Summers and Redei
continue this sort of foundational work in chapters in this book on, respectively, the vacuum state
in relativistic quantum �eld theory, and on Einstein’s notion of “separability” of physical systems.

Summers aims to characterize properties of the vacuum— in relativistic quantum�eld theory—
in a mathematically precise way. He begins with the standard characterization, which involves both
symmetries (the vacuum as invariant state), and energy conditions (the vacuum as lowest energy
state). He then points out that these characterizations do not straightforwardly generalize to QFT
on curved spacetimes. �us, we stand in need of a more mathematically nuanced characterization
of the vacuum.

According to Summers, the primary tool needed for this characterization is the Tomita-Takesaki
modular theory, and in particular, the geometrical interpretation of modular theory provided by
Bisognano and Wichmann. However, Summers proceeds to recount a more ambitious program
that he and his collaborators have undertaken: a program that would use modular symmetries as a
basis from which the very structure of spacetime can be recovered. As Summers points out, such a
reconstruction would have profound conceptual implications. Indeed, one is tempted to say that the
success of such a program would be a partial vindication of Leibniz-Machian relationalism about
spacetime. But whether or not the reconstruction supports certain philosophical views about the
nature of spacetime, a more clear understanding of the vacuum is crucial for the development of
future physics — especially since future physical theories will most certainly not posit a �xed back-
ground Minkowski spacetime structure.

Summers also discusses the fact — without mentioning explicitly that it was �rst proved by
himself and Reinhard Werner — that the vacuum state is nonlocal, indeed violates Bell’s inequality
maximally relative to measurements that can be performed in tangent spacetime wedges. In doing
so, Summers notes the importance of making �ne-grained distinctions between di�erent types of
nonlocality. �is theme is treated at length in the chapter by Redei.

Redei begins in a historical vein, by discussing Einstein’s worries about quantum theory. Al-
though Einstein’s objections to indeterminism are the better known (witness: “God does not roll
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dice”), Einstein seems to have lost even more sleep over the issue of nonlocality. Indeed, it seems
that Einstein thought that quantum nonlocality would make physics impossible!

Redei distills from Einstein’s writings a set of criteria that any theory must satisfy in order to be
consistent with the principle of locality. He then proceeds to argue that relativistic quantum �eld
theory does in fact satisfy these criteria! Moreover, Redei’s arguments are far from speculative — or
as some might dismissively say, “philosophical.” Rather, Redei proceeds in a highly mathematical
spirit: he translates the criteria into precise mathematical claims, and then he employs the tools of
operator algebras in attempt to demonstrate that the criteria are satis�ed.�e net result is a paradigm
example of mathematical innovation in the service of conceptual clari�cation.

4 Behind the Hilbert space formalism
We have seen that several of the chapters in this book take well developed (or independently de-
veloping) mathematical theories and apply them in innovative ways to the foundations of physics.
Such an approach is characteristic of mathematical physics. �is book, however, also represents a
second approach, an approachmore characteristic of theoretical physics. In particular, the theoreti-
cal physicist begins from explicitly physical principles, rather than frommathematical assumptions,
and he then attempts to formulate these physical principles in as transparent a fashion as possible,
using mathematical formalism when it might help achieve that goal. �e chapters by Brukner and
Dakić, by Bub, and by Hardy, exemplify this second methodology.

In “Quantum theory and beyond: Is entanglement special”, Brukner and Dakić aim to clarify
the fundamental physical principles underlying quantum theory; and in doing so, they keep in �rm
view the relationship between quantum theory and potential future theories in physics. Brukner
and Dakić begin by recounting several recent attempts to derive the formalism of quantum theory
from physical principles — an attempt that is motivated by Einstein’s derivation of special relativity.
As they note, such derivations ought to be subjected to severe critical scrutiny, because thinking
that quantum theory “must be true,” could easily impede the development of successor theories,
and could easily blind us to ways in which quantum theory could be modi�ed or superceded.

Nonetheless, Brukner and Dakić prove that quantum theory is the unique theory that describes
entangled states and that satis�es their other physical principles.�is striking result displays a sort of
robustness of the central features of quantum theory: to the extent that the basic physical principles
are justi�ed, we can expect any future theory to incorporate, rather than supercede, quantum theory.

�is same sensitivity to quantummechanics as a potentially replacable theory is displayed through-
out the chapter by Lucien Hardy. Hardy in essence provides a parameterization of theories in terms
of a crucial equation involving two variables K and N . In this parameterization, classical mechan-
ics is characterized by the equation K = N , whereas quantum mechanics is characterized by the
equation K = N2. �is leaves open the possibility of alternate theories, or even possible successor
theories, of greater conceptual intricacy. Our past and current theories are only at the very low end
of an in�nite hierarchy of increasingly complex theories.

Hardy’s chapter also pays special attention to the generalizability, or projectability into the future,
of our theories. In particular, Hardy constructs his generalized probabilitistic framework without
reliance on a notion of �xed background time. As a result, the framework stands ready for applica-
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tion to relativistic contexts. Butmore is true: Hardy develops his frameworkwith an eye on synthesis
of general relativity and quantum mechanics, a context in which causal structure is �exible enough
that it might be adapted to contexts where even it is subject to quantum indeterminacy.

In “Is von Neumann’s ‘no hidden variables proof ’ silly?” Je�rey Bub takes up the question of
whether the Hilbert space formalism of quantum mechanics is complete — i.e. does all states cor-
respond to vectors (or density operators), or could there be “hidden variables.” �is question was
supposedly answered in the negative in 1932 by von Neumann’s no hidden variables proof. If von
Neumann’s argument were valid, then there would be a strong sense in which the interpretive prob-
lems of quantummechanics could not be solved bymeans of technical innovation, e.g. by providing
a more complete formalism.

But von Neumann’s argument has not convinced everyone. In particular, John Bell, and sub-
sequently David Mermin, argued that von Neumann’s result is based on an illicit assumption — in
particular, that von Neumann imposes unrealistic constraints on the mathematical representation
of hidden variables. �ese critiques of von Neumann’s result were motivated by — and, in turn,
provide support for — hidden variable programs such as Bohmian mechanics.

Bub argues, however, that Bell and Mermin’s criticism is o� the mark. Rather, claims Bub, von
Neumann states quite clearly that an operator A + B has no direct physical signi�cance in cases
where A and B are incompatible (i.e. not simultaneously measurable). Read from this perspective,
von Neumann intends to show not that hidden variables are impossible tout court, but that hidden
variables are inconsistent with the way that quantummechanics uses mathematical objects to repre-
sent physical objects. But then the possibility opens that intuitive desiderata for a physical theory of
microobjects (e.g. determinism) could only be satis�ed by overhauling the Hilbert space formalism.

Bub closes his piece on this suggestive note, leaving it for the reader to judge whether it would
be preferable to maintain the Hilbert space formalism — along with its puzzling interpretive con-
sequences — or to attempt to replace it with some other formalism.

�e book concludes with an already famous article: the free will argument by John Conway and
Simon Kochen. But what has such an argument to do with the theme of the book — i.e. with the
theme of conceptual insight developing in tandem with mathematical insight? �e careful reader
will see that Conway and Kochen’s argument proceeds independently of the standard formalism
(i.e. Hilbert spaces) for quantum theory. �at is, Conway and Kochen do not take the Hilbert space
formalism for granted, and then draw out conceptual consequences regarding free will. Rather, they
argue from simple, physically veri�able assumptions to the conclusion that if an experimenter has
the freedom to choose what to measure, then particles have the freedom to choose what result to
yield. �e only input here from quantum mechanics is indirect: quantum mechanics predicts that
Conway and Kochen’s empirical assumptions are satis�ed. �us, if quantummechanics is true, then
Conway and Kochen’s argument is sound.

We see, then, that Conway and Kochen’s argument exempli�es the method of applying math-
ematical argument to the task of gaining new conceptual insight — in this case, insight about the
logical connection between certain statistical predictions (which are in fact made by quantum me-
chanics) and traditional metaphysical hypotheses (freedom of the will). If their argument is suc-
cessful, then Conway and Kochen have provided us with insight that transcends the bounds of our
current mathematical framework, hence insight that will endure through the vicissitudes of scien-
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ti�c progress or revolutions.

In conclusion, the authors of this book were given carte blanche to employ as little or as much
technical apparatus as they deemed necessary to advance conceptual understanding of the foun-
dations of physics. For some of the authors, this meant employing highly sophisticated mathe-
matical theories such as n-categories (Baez and Lauda), monoidal categories (Coecke), topos the-
ory (Döring, Isham, Landsman et al.), or operator algebras (Redei, Summers). For other authors,
the emphasis lies more on examining the physical and conceptual motivation for the Hilbert space
formalism (Brukner and Dakić), or on what might lie beyond the Hilbert space formalism (Bub,
Hardy).

�e liberty given to the authors means that, for the reader, some of these chapters are techni-
cally demanding, and even for those with previous technical training, these chapters ought to be
approached with equal doses of patience and persistence. However, the technicalities seem to be
demanded by the nature of the subject matter: quantum theory shows that conceptual insights and
understanding do not come for cheap, and the physical world does not come ready-made to be un-
derstood by the untrained human mind. Already it required the combined mathematical genius of
Dirac and von Neumann, among others, to unify the various statistical recipes of the old quantum
theory. �e Hilbert space formalism has proved fruitful for many years, and is partially responsible
for some of the great advances of 20th century physics. But taking the Hilbert space formalism as
a �xed, non-negotiable, framework may also be partially responsible for our current predicament
— both our troubles in interpreting quantum mechanics, and the challenges of unifying quantum
theory with the general theory of relativity. If this is the case, then it is imperative that we marshal
the same sort of resources that Dirac and von Neumann marshalled; we must, indeed, employ our
utmost mathematically creativity in attempt to �nd an underlying intelligibility behind the physical
phenomena. It is with this aim in mind that we present this collection to you, hoping to play some
small role in the next quantum leap in our understanding of nature.
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