# Introduction to Econometrics (4 ${ }^{\text {th }}$ Edition) 

by<br>James H. Stock and Mark W. Watson

# Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 15 

(This version September 18, 2018)
15.1. (a) Since the probability distribution of $Y_{t}$ is the same as the probability distribution of $Y_{t-1}$ (this is the definition of stationarity), the means (and all other moments) are the same.
(b) $E\left(Y_{t}\right)=\beta_{0}+\beta_{1}\left(Y_{t-1}\right)+E\left(u_{t}\right)$, but $E\left(u_{t}\right)=0$ and $E\left(Y_{t}\right)=E\left(Y_{t-1}\right)$.

Thus $E\left(Y_{t}\right)=\beta_{0}+\beta_{1} E\left(Y_{t}\right)$, and solving for $E\left(Y_{t}\right)$ yields the result.
15.3. (a) To test for a stochastic trend (unit root) in $\ln (I P)$, the ADF statistic is the $t$ statistic testing the hypothesis that the coefficient on $\ln \left(I P_{t-1}\right)$ is zero versus the alternative hypothesis that the coefficient on $\ln \left(I P_{t-1}\right)$ is less than zero. The calculated $t$-statistic is $t=\frac{-0.0070}{0.0037}=-1.89$. From Table 15.4, the $10 \%$ critical value with a time trend is -3.12 . Because $-1.89>-3.12$, the test does not reject the null hypothesis that $\ln (I P)$ has a unit autoregressive root at the $10 \%$ significance level. That is, the test does not reject the null hypothesis that $\ln (I P)$ contains a stochastic trend, against the alternative that it is stationary.
(b) The ADF test supports the specification used in Exercise 15.2. The use of first differences in Exercise 15.2 eliminates random walk trend in $\ln (I P)$.
15.5. (a)

$$
\begin{aligned}
E\left[(W-c)^{2}\right] & \left.=E\left\{\left[W-\mu_{W}\right)+\left(\mu_{W}-c\right)\right]^{2}\right\} \\
& =E\left[\left(W-\mu_{W}\right)^{2}\right]+2 E\left(W-\mu_{W}\right)\left(\mu_{W}-c\right)+\left(\mu_{W}-c\right)^{2} \\
& =\sigma_{W}^{2}+\left(\mu_{W}-c\right)^{2} .
\end{aligned}
$$

(b) Using the result in part (a), the conditional mean squared error

$$
E\left[\left(Y_{t}-f_{t-1}\right)^{2} \mid Y_{t-1}, Y_{t-2}, \ldots\right]=\sigma_{t t-1}^{2}+\left(Y_{t t-1}-f_{t-1}\right)^{2}
$$

with the conditional variance $\sigma_{t t-1}^{2}=E\left[\left(Y_{t}-Y_{t t-1}\right)^{2}\right]$.This equation is minimized when the second term equals zero, or when $f_{t-1}=Y_{t \mid t-1}$. (An alternative is to use the hint, and notice that the result follows immediately from Appendix 2.2.)
(c) Applying Equation (2.27), we know the error $u_{t}$ is uncorrelated with $u_{t-1}$ if $E\left(u_{t} \mid u_{t-1}\right)=0$. From Equation (15.14) for the $\operatorname{AR}(p)$ process, we have

$$
u_{t-1}=Y_{t-1}-\beta_{0}-\beta_{1} Y_{t-2}-\beta_{2} Y_{t-3}-\quad-\beta_{p} Y_{t-p-1}=f\left(Y_{t-1}, Y_{t-2}, \ldots, Y_{t-p-1}\right),
$$

a function of $Y_{t-1}$ and its lagged values. The assumption $E\left(u_{t} \mid Y_{t-1}, Y_{t-2}, \ldots\right)=0$ means that conditional on $Y_{t-1}$ and its lagged values, or any functions of $Y_{t-1}$ and its lagged values, $u_{t}$ has mean zero. That is,

$$
E\left(u_{t} \mid u_{t-1}\right)=E\left[u_{t} \mid f\left(Y_{t-1}, Y_{t-2}, \ldots, Y_{t-p-2}\right)\right]=0 .
$$

Thus $u_{t}$ and $u_{t-1}$ are uncorrelated. A similar argument shows that $u_{t}$ and $u_{t-j}$ are uncorrelated for all $j \geq 1$. Thus $u_{t}$ is serially uncorrelated.
15.7. (a) From Exercise (15.1) $E\left(Y_{t}\right)=2.5+0.7 E\left(Y_{t-1}\right)+E\left(u_{t}\right)$, but $E\left(Y_{t}\right)=E\left(Y_{t-1}\right)$ (stationarity) and $E\left(u_{t}\right)=0$, so that $E\left(Y_{t}\right)=2.5 /(1-0.7)$. Also, because $Y_{t}=2.5+0.7 Y_{t-1}+u_{t}, \operatorname{var}\left(Y_{t}\right)=0.7^{2} \operatorname{var}\left(Y_{t-1}\right)+\operatorname{var}\left(u_{t}\right)+2 \times 0.7 \times$ $\operatorname{cov}\left(Y_{t-1}, u_{t}\right)$. But $\operatorname{cov}\left(Y_{t-1}, u_{t}\right)=0$ and $\operatorname{var}\left(Y_{t}\right)=\operatorname{var}\left(Y_{t-1}\right)$ (stationarity), so that $\operatorname{var}\left(Y_{t}\right)=9 /\left(1-0.7^{2}\right)=17.647$.
(b) The $1^{\text {st }}$ autocovariance is

$$
\begin{aligned}
\operatorname{cov}\left(Y_{t}, Y_{t-1}\right) & =\operatorname{cov}\left(2.5+0.7 Y_{t-1}+u_{t}, Y_{t-1}\right) \\
& =0.7 \operatorname{var}\left(Y_{t-1}\right)+\operatorname{cov}\left(u_{t}, Y_{t-1}\right) \\
& =0.7 \sigma_{Y}^{2} \\
& =0.7 \times 17.647=12.353 .
\end{aligned}
$$

The $2^{\text {nd }}$ autocovariance is

$$
\begin{aligned}
\operatorname{cov}\left(Y_{t}, Y_{t-2}\right) & =\operatorname{cov}\left[(1+0.7) 2.5+0.7^{2} Y_{t-2}+u_{t}+0.7 u_{t-1}, Y_{t-2}\right] \\
& =0.7^{2} \operatorname{var}\left(Y_{t-2}\right)+\operatorname{cov}\left(u_{t}+0.7 u_{t-1}, Y_{t-2}\right) \\
& =0.7^{2} \sigma_{Y}^{2} \\
& =0.7^{2} \times 17.647=8.6471
\end{aligned}
$$

(c) The $1^{\text {st }}$ autocorrelation is

$$
\operatorname{corr}\left(Y_{t}, Y_{t-1}\right)=\frac{\operatorname{cov}\left(Y_{t}, Y_{t-1}\right)}{\sqrt{\operatorname{var}\left(Y_{t}\right) \operatorname{var}\left(Y_{t-1}\right)}}=\frac{0.7 \sigma_{Y}^{2}}{\sigma_{Y}^{2}}=0.7
$$

The $2^{\text {nd }}$ autocorrelation is

$$
\operatorname{corr}\left(Y_{t}, Y_{t-2}\right)=\frac{\operatorname{cov}\left(Y_{t}, Y_{t-2}\right)}{\sqrt{\operatorname{var}\left(Y_{t}\right) \operatorname{var}\left(Y_{t-2}\right)}}=\frac{0.7^{2} \sigma_{Y}^{2}}{\sigma_{Y}^{2}}=0.49 .
$$

(d) The conditional expectation of $Y_{T+1}$ given $Y_{T}$ is

$$
Y_{T+1 / T}=2.5+0.7 Y_{T}=2.5+0.7 \times 102.3=74.11 .
$$

15.9. (a) $E\left(Y_{t}\right)=\beta_{0}+E\left(e_{t}\right)+b_{1} E\left(e_{t-1}\right)+\cdots+b_{q} E\left(e_{t-q}\right)=\beta_{0}$ [because $E\left(e_{t}\right)=0$ for all values of $t$ ].
(b)

$$
\begin{aligned}
\operatorname{var}\left(Y_{t}\right) & =\operatorname{var}\left(e_{t}\right)+b_{1}^{2} \operatorname{var}\left(e_{t-1}\right)+\cdots+b_{q}^{2} \operatorname{var}\left(e_{t-q}\right) \\
& +2 b_{1} \operatorname{cov}\left(e_{t}, e_{t-1}\right)+\cdots+2 b_{q-1} b_{q} \operatorname{cov}\left(e_{t-q+1}, e_{t-q}\right) \\
& =\sigma_{e}^{2}\left(1+b_{1}^{2}+\cdots+b_{q}^{2}\right)
\end{aligned}
$$

where the final equality follows from $\operatorname{var}\left(e_{t}\right)=\sigma_{e}^{2}$ for all $t$ and $\operatorname{cov}\left(e_{t}, e_{i}\right)=0$ for $i \neq t$.
(c) $Y_{t}=\beta_{0}+e_{t}+b_{1} e_{t-1}+b_{2} e_{t-2}+\cdots+b_{q} e_{t-q}$ and

$$
Y_{t-j}=\beta_{0}+e_{t-j}+b_{1} e_{t-1-j}+b_{2} e_{t-2-j}+\cdots+b_{q} e_{t-q-j} \text { and }
$$

$$
\operatorname{cov}\left(Y_{t}, Y_{t-j}\right)=\sum_{k=0}^{q} \sum_{m=0}^{q} b_{k} b_{m} \operatorname{cov}\left(e_{t-k}, e_{t-j-m}\right), \text { where } b_{0}=1
$$

Notice that $\operatorname{cov}\left(e_{t-k}, e_{t-j-m}\right)=0$ for all terms in the sum.
(d) $\operatorname{var}\left(Y_{t}\right)=\sigma_{e}^{2}\left(1+b_{1}^{2}\right), \operatorname{cov}\left(Y_{t}, Y_{t-1}\right)=\operatorname{cov}\left(Y_{t}, Y_{t+1}\right)=\sigma_{e}^{2} b_{1}$, and $\operatorname{cov}\left(Y_{t}, Y_{t-j}\right)=0$
for $|j|>1$.
15.11. Write the model as $Y_{t}-Y_{t-1}=\beta_{0}+\beta_{1}\left(Y_{t-1}-Y_{t-2}\right)+u_{t}$. Rearranging yields $Y_{t}=\beta_{0}+\left(1+\beta_{1}\right) Y_{t-1}-\beta_{1} Y_{t-2}+u_{t}$.
15.13 Recursive substitution yields $Y_{t}=Y_{0}+\sum_{i=1}^{t} u_{i}=\sum_{i=1}^{t} u_{i}$.
(a) $E\left(Y_{t}\right)=E\left(\sum_{i=1}^{t} u_{i}\right)=\sum_{i=1}^{t} E\left(u_{i}\right)=0$.
$\operatorname{var}\left(Y_{t}\right)=\operatorname{var}\left(\sum_{i=1}^{t} u_{i}\right)=\sum_{i=1}^{t} \operatorname{var}\left(u_{i}\right)=t \sigma^{2}$, where the second equality uses $\operatorname{cov}\left(u_{t} u_{i}\right)=0$ for $t$ $\neq i$.
(b) $Y_{t}=\sum_{i=1}^{t} u_{i}$ and $Y_{t-k}=\sum_{i=1}^{t-k} u_{i}$, so that $\operatorname{cov}\left(Y_{t}, Y_{t-k}\right)=\min (t, t-k) \sigma^{2}$.
(c) From (a) the variance of $Y_{t}$ depends on $t$, so $Y_{t}$ is nonstationary. From (b) the $\operatorname{cov}\left(Y_{t}, Y_{t-k}\right)$ depends on $t$, so again $Y_{t}$ is nonstationary.

